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Abstract: Few-shot semantic segmentation aims to transfer knowledge from base classes with suffi-
cient data to represent novel classes with limited few-shot samples. Recent methods follow a metric
learning framework with prototypes for foreground representation. However, they still face the
challenge of segmentation of novel classes due to inadequate representation of foreground and lack
of discriminability between foreground and background. To address this problem, we propose the
Dual Complementary prototype Network (DCNet). Firstly, we design a training-free Complementary
Prototype Generation (CPG) module to extract comprehensive information from the mask region in
the support image. Secondly, we design a Background Guided Learning (BGL) as a complementary
branch of the foreground segmentation branch, which enlarges difference between the foreground
and its corresponding background so that the representation of novel class in the foreground could
be more discriminative. Extensive experiments on PASCAL-5i and COCO-20i demonstrate that our
DCNet achieves state-of-the-art results.

Keywords: few-shot; semantic segmentation

1. Introduction

Attributed to the development of convolutional neural networks (CNNs) with its
strong representation ability and the access of large-scale datasets, semantic segmentation
and object detection have developed tremendously. However, it is worth to point out that
annotating a large number of object masks is time-consuming, expensive, and sometimes
infeasible in some scenarios, such as computer-aided diagnosis systems. Moreover, without
massive annotated data, the performance of deep learning models drops dramatically
on classes that do not appear in the training dataset. Few-shot segmentation (FSS) is a
promising field to tackle this issue. Unlike conventional semantic segmentation, which
merely segments the classes appearing in the training set, few-shot segmentation utilizes
one or a few annotated samples to segment new classes.

They firstly extract features from both query and support images, and then the support
features and their masks are encoded into a single prototype [1] to represent foreground
semantics or a pair of prototypes [2,3] to represent the foreground and background. Fi-
nally, they conduct dense comparison between prototype(s) and query feature. Feature
comparison methods are usually performed in one of two ways: explicit metric function,
(e.g., cosine-similarity [3]) and implicit metric function (e.g., relationNet [4]).

As shown in Figure 1a, it is common-sense [2,5,6] that using a single prototype gener-
ated by masked average pooling is unable to carry sufficient information. Specifically, due
to variant appearance and poses, using masked average pooling only retains the informa-
tion of discriminative pixels and ignores the information of plain pixels. To overcome this
problem, multi-prototype strategy [2,5,6] is proposed by dividing foreground regions into
several pieces.
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Figure 1. Illustration of difference in prototype learning for 1-shot segmentation. (a) Single prototype
methods [1,7] tend to lose information as plain pixels. (b) Multi-prototype methods [2,5,8] based
on regional division may damage the representation for the whole object. (c) Our Complementary
Prototype Generation module retains the information of discriminative pixels and plain pixels
adaptively.

However, as shown in Figure 1b, these multi-prototype methods still suffer from
two drawbacks. Firstly, the whole representation of foreground region is weakened, since
existing methods split regions into several pieces and damage the correlation among the
generated prototypes. Moreover, current methods often ignore inter-class similarity be-
tween foreground and background, and their training strategy in the context of segmenting
the main foreground objects leads to underestimating the discrimination between the fore-
ground and background. As a result, existing multi-prototype methods tend to misclassify
background pixels into foreground.

In this paper, we propose a simple yet effective method, called Dual Complementary
prototype Network (DCNet), to overcome the above mentioned drawbacks. Specifically, it is
composed of two branches to segment the foreground and background in a complementary
manner, and both segmentation branches rely on our proposed Complementary Prototype
Generation (CPG) module. The CPG module is proposed to extract comprehensive support
information from the support set. Through global average pooling with support mask, we
extract the average prototype at first, and we obtain its attention weight on the support
image by calculating the cosine distance between the foreground feature and the average
prototype iteratively. In this way, we can easily figure out which part of the information is
focused and which part of the information is ignored without segmentation on support
image. Then we use this attention weight to generate a pair of prototypes to represent
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the focused and the ignored region. By using a weight map to generate prototypes for
comparison, we can preserve the correlation among the generated prototypes and avoid
the information loss to a certain extent.

Furthermore, we introduce background guided learning to pay additional attention
on the inter-class similarity between the foreground and background. Considering that the
background in support images is not always the same as that in a query image, we adopt
a different training manner from foreground segmentation, where the query background
mask is used as guidance for query image background segmentation. In this way, our
model could learn a more discriminative representation for distinguishing foreground and
background. The proposed method effectively and efficiently improves the performance
on FSS benchmarks without extra inference cost.

The main contributions of this work are summarized as follows.

1. We propose Complementary Prototype Generation (CPG) to learn powerful prototype
representation without extra parameters costs;

2. We propose Background Guided Learning (BGL) to increase the feature discrimination
between foreground and background. Besides, BGL is merely applied in the training
phase so that it would not increase the inference time;

3. Our approach achieves the state-of-the-art results on both PASCAL-5i and COCO-20i

datasets and improves the performance of the baseline model by 9.1% and 12.6% for
1-shot and 5-shot setting on COCO-20i.

2. Related Work
2.1. Semantic Segmentation

Semantic segmentation, which aims to perform classification for each pixel, has been
extensively investigated. Following Fully Convolution Network (FCN) [9], which uses
fully convolutional layers instead of fully connected layers as a classifier for semantic
segmentation, large numbers of network frameworks have been designed. For example,
Unet adopted a multi-scale strategy and a encoder-decoder architecture to improve the
performance of FCN, and PSPNet was proposed to use the pyramid pooling module
(PPM) to generate object details. Deeplab [10,11] designed an Atrous Spatial Pyramid
Pooling (ASPP) module, conditional random field (CRF) module, and dilated convolution
to FCN architecture. Recently, attention mechanism has been introduced, PSANet [12] was
proposed to use point-wise spatial attention with a bi-directional information propagation
paradigm. Channel-wise attention [13] and non-local attention [14–17] are also effective for
segmentation. These methods have managed to succeed in large-scale datasets but they are
not designed to deal with rare and unseen classes and cannot be accommodated without
fine-tuning.

2.2. Few-Shot Learning

Few-shot learning focuses on the generalization ability of models, so that they can learn
to predict novel classes with a few annotated examples [4,18–21]. Matching networks [19]
were proposed for 1-shot learning to exploit a special kind of mini-batches called episodes
to match the training and testing environments, enhancing the generalization on the novel
classes. Prototypical network [20] was introduced to compute the distances between the
representation cluster centers for few-shot classification. Finn et al. [21] proposed an
algorithm for meta-learning that is model-agnostic. Even though few shot learning has
been extensively studied for classification task, it is still hard to adopt few-shot learning
directly on segmentation due to the dense prediction.
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2.3. Few-Shot Segmentation

As the extension of few-shot learning, few-shot semantic segmentation has also re-
ceived considerable attention very recently. Shaban et al. first proposed the few-shot
segmentation problem with a two-branch conditional network that learned the parameters
on support images. Different from [22], later works [1–3,23,24] follow the idea of metric
learning. Zhang et al. generates the foreground object segmentation of the support class by
measuring the embedding similarity between query and supports, where their embeddings
are extracted by the same backbone model. Generally, metric learning based methods
can be divided into two groups: one group is inspired by ProtoNet [20], e.g., PANet [3]
first embeds different foreground objects and the background into different prototypes via
a shared feature extractor, and then measures the similarity between the query and the
prototypes. The other group is inspired by relationNet [4], which learns a metric function
to measure the similarity, e.g., Refs. [1,7,8] use an FPN-like structure to perform dense
comparison with affinity alignment. Then, considering the incomplete representation of a
single prototype, Li et al. [5] divide the masked region into pieces, the number of which is
decided by the area of the masked region and then conducts masked average pooling for
each piece to generate the numbers of the prototypes.Zhang et al. [6] utilize the uncovered
foreground region and covered foreground region through segmentation on support im-
ages to generate a pair of prototypes to retrieve the loss information. However, compared
to self-segmentation mechanism [6], our CPG does not need to segment on support images
and utilization of CPG obtains competitive performance with few cost.s Compared to
cluster methods [5,8], the experiment in the ablation study shows that our method can
avoid over-fitting and generate stable performance in each setting.

Moreover, recent methods such as MLC [25] and SCNet [26] start to make use of
knowledge hidden in the background. By exploiting the pre-training knowledge for the dis-
covery of the latent novel class in the background, their methods bring huge improvements
to the few-shot segmentation task. However, we argue that such a method is difficult to
apply in realistic scenarios, since a novel class object is not only unlabelled but also unseen
in the training set. Instead, we propose background guided learning to enhance the feature
discriminability between the foreground and the background, which also improves the
performance of the model.

3. Proposed Methods
3.1. Problem Setting

The aim of few-shot segmentation is to obtain a model that can learn to perform
segmentation from only a few annotated support images in novel classes. The few-shot
segmentation model should be trained on a dataset Dtrain and evaluated on a dataset Dtest.
Given the classes set in Dtrain is Ctrain and classes set in Dtest is Ctest, there is no overlap
between training classes and test classes, e.g., Ctrain ∩ Ctest = ∅.

Following a previous definition [22], we divide the images into two non-overlapping
sets of classes Ctrain and Ctest. The training set Dtrain is built on Ctrain and the test set is
built on Ctest. We adopt the episode training strategy, which has been demonstrated as an
effective approach for few-shot recognition. Each episode is composed of a shot support
set S = {Is

k , Ms
k}

K
k=1 and a query set Q = Iq, Mq to form a K-shot episode {S, Iq}, where I∗

andM∗ are the image and its corresponding mask label, respectively. Then, the training set
and test set are denoted by Dtrain = {S}Ntrain and Dtest = {Q}Ntest , where Ntrain and Ntest
is the number of episodes for the training and test set. Note that both the mask Ms of the
support set and the mask Mq of the query set are provided in the training phase, but only
the support image mask Ms is included in the test phase.

3.2. Overview

As shown in Figure 2, our Dual Complementary prototype Network (DCNet) is trained
via the episodic scheme on the support-query pairs. In episodic training, supports images
and a query image are input to the share-weight encoder for feature extraction. Then,
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the query feature is compared with prototypes of the current support class to generate a
foreground segmentation mask via a FPN-like decoder. Besides, we propose an auxiliary
supervision, named Background Guided Learning (BGL), where our network learns robust
prototype representation for a class-agnostic background in an embedding space. In this
supervision, the query feature is compared with prototypes of the query background to
make a prediction on its own background. With this joint training strategy, our model can
learn discriminative representation for foreground and background.

Thus, the overall optimization target can be briefly formulated as:

Loverall = L f g + γLbg, (1)

where L f g and Lbg denote the foreground segmentation loss and background segmentation
loss, respectively, and γ is the balance weight, which is simply set as 1.

Figure 2. The framework of the proposed DCNet for 1-shot segmentation. At first, the encoder
generates feature maps Fs and Fq from the support images and query images. Then, the support
image masks Ms and related features are fed into CPG to generate a pair of foreground prototypes Ps.
Finally, Ps is expanded and concatenated with the query feature Fq as an input to the decoder to predict
the foreground in the query image. In the meantime, in BGL, the query feature Fq and its background
mask Mbq are fed into CPG to generate a pair of background prototypes Pbq. Pbq is expanded and
concatenated with query feature Fq as an input to the decoder to predict the background in the
query image.

In the following subsections, we first elaborate our prototype generation algorithm.
Then, background-guided learning on 1-shot setting is introduced, followed by inference.

3.3. Complementary Prototypes Generation

Inspired by SCL [6], we propose a simple and effective algorithm, named Complemen-
tary Prototypes Generation (CPG), as shown in Figure 3. This CPG algorithm generates a
pair of complementary prototypes and aggregates information hidden in features based
on cosine similarity. Specifically, given the support feature F ∈ RH×W×C with the mask
region as M ∈ RH×W , we extract a pair of prototypes to fully represent the information in
the mask region.

As the first step, we extract the targeted feature F′ ∈ RH×W×C filtered through mask
M from F, in Equation (2),

F′ = F�M (2)
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where � represents element-wise multiplication. Then, we initiate prototype P0 by masked
average pooling, in Equation (3),

P0 =
∑H

i ∑W
j F′i,j

∑H
i ∑W

j Mi,j
(3)

where i, j represents the coordination of each pixel, H, W denotes the width and height of
feature F′, respectively. Since Mi,j ∈ 0, 1, the sum of M represents the area of the foreground
region.

Figure 3. Illustration of the proposed Complementary Prototypes Generation. Similarity St and
prototype Pt

c,0 is obtained in t-th iteration. The red arrow indicates the final result ST after T iterations.

In the next step, we aggregate the foreground features into two complementary clusters.
For each iteration t, we first compute the cosine distance matrix St ∈ RH×W between the
prototype Pt−1

0 and the targeted features F′ as follows,

St = cosine(F′, Pt−1
0 ) (4)

As we keep the relu layer in the encoder layer, the cosine distance is limited in [0, 1].
To calculate the weight of target features contributed to Pt

0, we normalize the S matrix as:

St
i,j =

St
i,j

∑H
i ∑W

j St
i,j

(5)

Then, after the end of the iteration, based on matrix St, we aggregate the features into
two complementary prototypes as:

P1 =
H

∑
i

W

∑
j

Si,j ∗ F′i,j (6)

P2 =
H

∑
i

W

∑
j
(1− Si,j) ∗ F′i,j (7)

It is worth noting that these prototypes are not separated like priors and CPG algorithm
utilizes a weighted map to generate a pair of complementary prototypes. In this way, we
retain the correlation between the prototypes. The whole CPG is delineated in Algorithm 1.
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Algorithm 1 Complementary Prototypes Generation (CPG).
Input: targeted feature F′, corresponding mask M, the number of iteration T.

init prototype P0
c,0 by masked average pooling with F′. P0 =

∑H
i ∑W

j F′i,j
∑H

i ∑W
j Mi,j

for iteration t in {1, .., T} do
Compute association matrix S between targeted feature F′ and prototype Pt−1

0 ,
St = cosine(F′, Pt−1

c,0 )

Standardize association St,
St

i,j = St
i,j/(∑

H
i ∑W

j St
i,j)

Update prototype Pc,0,
Pt

0 = ∑H
i ∑W

j St
i,j ∗ F′i,j

end for
generate complementary prototypes Pc from ST ,
P1 = ∑H

i ∑W
j (ST

i,j) ∗ F′i,j
P2 = ∑H

i ∑W
j (1− ST

i,j) ∗ F′i,j
return final prototypes P1, P2

3.4. Background Guided Learning

In previous works [1,5,6], the background information has not been adequately ex-
ploited for few-shot learning. Especially, these methods only use foreground prototypes to
make a final prediction on the query image in the training. As a result, the representation on
class-agnostic background is the lack of discriminability. To solve this problem, Background
Guided Learning (BGL) is proposed via joint training strategy.

As shown in Figure 2, BGL is proposed to segment the background on the query
image based on query background mask Mbq. As the first step, query feature Fq and its
background mask Mbq are fed into the CPG module to generate a pair of complementary
prototypes Pbq = P1, P2, following Algorithm 1. Next, we concatenate the complementary
prototype Pbq with all spatial location in query feature map Fq, as Equation (8):

Fm = ε(P1)⊕ ε(P2)⊕ Fq, (8)

where ε denotes the expansion operation and ⊕ denotes the concatenation operation, P1
and P2 are the complementary prototypes Pbq as well as Fm, denoting the concatenated
feature. Then, concatenate feature Fm is fed into the decoder, generating the final prediction,
as shown in Equation (9):

M̂ = D(Fm), (9)

where M̂ is the prediction of the model, D is a decoder. The loss Lbg is computed by:

Lbg = CE(M̂bq, Mbq) (10)

where M̂bq denotes the background prediction on a query image and CE denotes the
cross-entropy loss.

Intuitively, if the model can predict a good segmentation mask for the foreground
using a prototype extracted from the foreground mask region, the prototype learned
from the background mask region should be able to segment itself well. Thus, our BGL
encourages the model to distinguish the background from the foreground better.

3.5. Inference

In the inference phase, we only keep the foreground segmentation branch for the
final prediction. For K-shot setting, we following previous works and use the average to
generate a pair of complementary prototypes.
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4. Experiments
4.1. Dataset and Evaluation Metrics
4.1.1. Datasets

We evaluate our algorithm on two public few-shot datasets: PASCAL-5i [22] and
COCO-20i [27]. PASCAL-5i is built from PASCAL VOC 2012 and SBD datasets. COCO-20i

is built from MS-COCO dataset. In PASCAL-5i, 20 object classes of PASCAL VOC are split
into 4 groups, in which each group contains 5 categories. In COCO-20i, as PASCAL-5i, we
divide MS-COCO into 4 groups, in which each group contains 20 categories. For PASCAL-
5i and COCO-20i, we evaluate our approach based on PFENet. We use the same categories
division and randomly sample 20,000 support-query pairs to evaluate as PFENet.

For both datasets, we adopt 4-fold cross-validation i.e., a training model on three folds
(base class) and the inference model on the remaining one (novel class). The experimental
results are reported on each test fold, and we also report the average performance of all
four test folds.

4.1.2. Evaluation Metrics

Following previous work [7,27], we use the widely adopted class mean intersection
over union (mIoU) as our major evaluation metric for the ablation study, since the class
mIoU is more reasonable than the foreground-background IoU (FB-IoU), as stated in [7].
For each class, the IoU is calculated by TP

TP+FN+FP , where TP denotes the number of true
positives, FP denotes the number of false postives and FN denotes the number of false
negatives. Then, mIOU is the mean value of all classes IoU in the test set. For FB-IoU, only
the foreground and background are considered (C = 2). We take the average of the results
on all folds as the final mIoU/FB-IoU.

4.2. Implementation Details

Our approach is based on PFENet [1] with ResNet-50 as the backbone to create a
fair comparison with the other methods. Following previous work [1,5,6], the parameters
of the backbone are initialized with the pre-trained ImageNet, and is kept fixed during
training. Other layers are initialized by the default setting of PyTorch. For PASCAL-5i, the
network is trained with an initial learning rate of 2.5× 10−3, weight decay of 1× 10−4, and
a momentum of 0.9 for only 100 epochs. The batch size is 4. For COCO-20i, the network
is trained for 50 epochs with a learning rate of 0.005 and batch size of 8. We use data
augmentation during training. Specifically, input images are transformed with random
scale, horizontally flipped and rotated from [−10, 10], and then all images are cropped to
473× 473 (for PASCAL and COCO) or 641× 641 (for COCO) as the training samples, for
fair comparison. We implemented our model with 4 RTX2080Ti.

4.3. Comparisons with State-of-the-Art

4.3.1. COCO-20i Result

COCO-20i is a very challenging dataset that contains the numbers of objects in realistic
scene images. We compare our approach with others on this dataset, and our approach
outperforms other approaches by a big margin, as shown in Table 1. It can be seen that
our approach achieves state-of-the-art performance on both 1-shot and 5-shot settings with
mIOU gain of 0.3% and 0.5%, respectively. Furthermore, compared to our baseline (PFENet
with ResNet101), our approach (with ResNet101) obtains 9.1% and 12.6% mIoU increases
for 1-shot and 5-shot settings. In Table 2, our method obtains a top-performing 1-shot result
and competitive 5-shot result with respect to FB-IoU. Once again, these results demonstrate
that the proposed method is able to deal with more complex cases, since MSCOCO is a
much more challenging dataset with diverse samples and categories.
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Table 1. Comparison with other state-of-the-art methods on COCO-20i for 1-shot and 5-shot settings.
† denotes the model using size 641× 641 as the training samples. All methods are tested on the
original size. Bold denotes the best performance and red denotes the second best performance.

Method Backbone
1-Shot 5-Shot

Fold-1 Fold-2 Fold-3 Fold-4 Mean Fold-1 Fold-2 Fold-3 Fold-4 Mean

PFENet (TPAMI’20) ResNet101 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4
SCL (CVPR’21) ResNet101 36.4 38.6 37.5 35.4 37.0 38.9 40.5 41.5 38.7 39.9
RePRI (CVPR’21) ResNet101 36.8 41.8 38.7 36.7 38.5 40.4 46.8 43.2 40.5 42.7
FWB (ICCV’19) ResNet101 17.0 18.0 21.0 28.9 21.2 19.1 21.5 23.9 30.1 23.7
CWT (ICCV’21) ResNet101 30.3 36.6 30.5 32.2 32.4 38.5 46.7 39.4 43.2 42.0
HSNet (ICCV’21) ResNet101 37.2 44.1 42.4 41.3 41.2 45.9 53 51.8 47.1 49.5
SCNet (2021) ResNet101 38.3 43.1 40.0 39.1 40.1 44.0 47.7 45.0 42.8 44.8
MLC (ICCV’21) ResNet101 50.2 37.8 27.1 30.4 36.4 57.0 46.2 37.3 37.2 44.4

SST (IJCAI’20) ResNet50 - - - - 22.2 - - - - 31.3
DAN (ECCV’20) ResNet50 - - - - 24.4 - - - - 29.6
PPNet (ECCV’20) ResNet50 34.5 25.4 24.3 18.6 25.7 48.3 30.9 35.7 30.2 36.2
RPMMs (ECCV’20) ResNet50 29.5 36.8 28.9 27.0 30.6 33.8 42.0 33.0 33.3 35.5
ASR (CVPR’21) ResNet50 29.9 35.0 31.9 33.5 32.6 31.3 37.9 33.5 35.2 34.4
ASGNet † (CVPR’21) ResNet50 - - - - 34.6 - - - - 42.5
CWT (ICCV’21) ResNet50 32.2 36.0 31.6 31.6 32.9 40.1 43.8 39.0 42.4 41.3

Ours † ResNet50 37.1 42.8 39.4 37.7 39.3 41.9 49.0 46.3 44.0 45.3
Ours ResNet101 40.6 44.1 40.6 40.2 41.5 49.0 52.9 50.5 47.7 50.0

Table 2. Comparison of FB-IoU on COCO-20i.

Methods Backbone 1-Shot 5-Shot

PFENet (TPAMI’20) ResNet101 58.6 61.9
DAN (ECCV’20) ResNet101 62.3 63.9

Ours ResNet101 64.0 68.8

4.3.2. PASCAL-5i Result

In Table 3, we compare our method with other state-of-the-art methods on PASCAL-
5i. It can be seen that our method achieves on par state-of-the-art performance on 1-shot
setting and 5-shot setting. Additionally, our method significantly improves the performance
of PFENet on 1-shot and 5-shot segmentation settings, with an mIOU increase of 1.6%
and 4%, respectively. In Table 4, our method obtains competitive 1-shot results and top-
performing 5-shot results with respect to FB-IoU. In Figure 4, we report some qualitative
results generated by our approach with PFENet [1] as the baseline. Our method is capable
of making correct predictions and each part of our method could independently improve
the performance of the model.

Table 3. Comparison with state-of-the-art methods on PASCAL-5i for 1-shot and 5-shot settings.
For fair comparison, all methods are evaluated with backbone ResNet50 and tested on labels with
original sizes. Bold denotes the best performance and red denotes the second best performance.

Method
1-Shot 5-Shot

Fold-1 Fold-2 Fold-3 Fold-4 Mean Fold-1 Fold-2 Fold-3 Fold-4 Mean

PGNet (ICCV’19) 56.0 66.9 50.6 50.4 56.0 57.7 68.7 52.9 54.6 58.5
CANet (CVPR’19) 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1
CRNet (CVPR’20) - - - - 55.7 - - - - 58.8
SimPropNet (IJCAI’20) 54.9 67.3 54.5 52.0 57.2 57.2 68.5 58.4 56.1 60.0
DAN (ECCV’20) - - - - 57.1 - - - - 59.5
PPNet (ECCV’20) 47.8 58.8 53.8 45.6 51.5 58.4 67.8 64.9 56.7 62.0
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Table 3. Cont.

Method
1-Shot 5-Shot

Fold-1 Fold-2 Fold-3 Fold-4 Mean Fold-1 Fold-2 Fold-3 Fold-4 Mean

RPMMs (ECCV’20) 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3
PFENet (TPAMI’20) 61.7 69.5 55.4 56.3 60.7 63.1 70.7 55.8 57.9 61.9
ASR (CVPR’21) 53.8 69.6 51.6 52.8 56.9 56.2 70.6 53.9 53.4 58.5
ASGNet (CVPR’21) 58.8 67.9 56.8 53.8 59.3 63.7 70.6 64.2 57.4 63.9
SCL (CVPR’21) 63.0 70.0 56.5 57.7 61.8 64.5 70.9 57.3 58.7 62.9
RePRI (CVPR’21) 59.8 68.3 62.1 48.5 59.7 64.6 71.4 71.7 59.3 66.6
CWT (ICCV’21) 56.3 62.0 59.9 47.2 56.4 61.3 68.5 68.5 56.6 63.7
MLC (ICCV’21) 59.2 71.2 65.6 52.5 62.1 63.5 71.6 71.2 58.1 66.1
HSNet (ICCV’21) 64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5

Ours 63.6 70.2 57.1 58.2 62.3 67.7 72.3 59.3 64.1 65.9

Table 4. Comparison of FB-IoU on PASCAL-5i for 1-shot and 5-shot settings. We used ResNet50
as the backbone.

Methods 1-Shot 5-Shot

PFENet(TPAMI’20) 73.3 73.9
PANet (ICCV’19) 66.5 70.7
CANet (CVPR’19) 66.2 69.6
PGNet (ICCV’19) 69.9 70.5
CRNet (CVPR’20) 66.8 71.5
PPNet (ECCV’20) 69.2 75.8
DAN (ECCV’20) 71.9 72.3
SCL (CVPR’21) 71.9 72.8
ASGNet (CVPR’21) 69.2 74.2
ASR (ICCV’21) 71.3 72.5

Ours 72.5 76.0

Figure 4. Qualitative examples of 5-shot segmentation on the PASCAL-5i. (a) The ground-truth of
the query images. (b) Results of baseline (PFENet) . (c) Results of BGL. (d) Results of CPG. (e) Results
of the combination of BGL and CPG. Best viewed in color and zoomed in.

4.4. Ablation Study

To verify the effectiveness of out proposed methods, we conduct extensive ablation
studies with a ResNet-50 backbone on PASCAL-5i.
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4.4.1. The Effectiveness of CPG

To verify the effectiveness of CPG, we conduct several experiments on prototype
generation and compare it with other prototype generation algorithms. As a kind of soft
cluster algorithm, we first compare our method with Adaptive K-means Algorithm (AK)
provided by ASGNet [5], and a traditional algorithm, Expectation-Maximization Algorithm
(EM), as shown in Table 5. Compared to the baseline, both AK and EM degenerate the
performance of segmentation in a 1-shot setting while our CPG offers 0.6% improvement
on the baseline. Compared to SCL [6] which needs to segment both support images and
query images, our approach uses less computation cost and inference times (in Table 6)
with competitive results on both 1-shot and 5-shot settings. These indicated the superiority
of CPG on the few-shot segmentation task.

Table 5. Ablation study on prototype generation in a 1-shot setting on PASCAL-5i.

Methods Fold-1 Fold-2 Fold-3 Fold-4 Mean

baseline 61.7 69.5 55.4 56.3 60.8
AK [5] 60.5 68 55 54.2 59.4
EM 56.9 67.7 54.2 53.6 58.1
CPG 62.9 69.6 56.8 56.4 61.4

Table 6. Ablation study on the effectiveness of different components, evaluated on PASCAL-5i. We
report the mIoU and Frames (number of episodes) per second (FPS) for 1-shot and 5-shot. CPG:
Complementary Prototypes Generation. BGL: Background Guided Learning.

CPG BGL 1-Shot FPS 5-Shot FPS

- - 60.7 50 61.9 12.5√
- 61.4 50 63.6 11.11

-
√

62.1 50 65.1 12.5√ √
62.3 50 65.9 11.11

4.4.2. The Effectiveness of BGL

To demonstrate the effectiveness of our proposed BGL, we conduct both qualitative
and quantitative analysis on BGL. We assume the BGL has two sides of effectiveness on
feature representation. The first one is the enhancement of feature representation for the
novel classes and the second one is discrimination between the class-specific (foreground)
feature and the class-agnostic (background) feature. Following [28], we measure the inter-
class variance, intra-class variance, and discriminative function φ. Here φ is defined as
inter-class variance divided by the intra-class variance.

As shown in Figure 5a,b,d, BGL not only enlarges the inter-class variance for novel
classes but also increases intra-class variance for novel classes. In other words, BGL does
not improve the representation discriminability for novel classes. However, as shown in
Figure 5c,e, BGL enlarges the inter-class distance and increases the discriminative function
φ between the foreground and the background. Therefore, the effectiveness of BGL is in
the promotion of discrimination between the foreground and background.
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Figure 5. Discriminability analysis. (a) intra-class variance on novel classes. (b) Inter-class variance
on novel classes. (c) Inter-class variance on the foreground/background. (d) Discriminative function
φ on the novel class. (e) Discriminative function φ on the foreground/background.

4.4.3. The Effectiveness of BGL and CPG

To demonstrate the effectiveness of both CPG and BGL, ablation studies are conducted
on PASCAL-5i, as shown in Table 6. Compared with the baseline, using CPG and BGL
alone improves the performance by a large margin, 1.7% and 2.6% for mIoU on 5-shot
setting, respectively. In addition, we show that using CPG alone could achieve the current
SOTA performance provided by SCL [6], and using BGL could surpass thestate-of-the-
art performance with a 2.2% mIoU score. Then, combining both CPG and BGL achieves
higher performance than the aforementioned one, with 4% improvement in total. In
Figure 4, we show that using CPG and BGL alone may generate wrong segmentations on
the background, but a combination of them could improve the results. In Figure 6, we show
some representative heatmap examples, which further shows how the combination of CPG
and BGL helps the model segment precisely and accurately.

Figure 6. Heatmap examples on PASCAL-5i in a 5-shot setting. (a) Result of baseline. (b) Result of
CPG . (c) Result of BGL. (d) Result of the combination of BGL and CPG.

5. Conclusions

In this paper, we propose a novel few-shot semantic segmentation method named
DCNet, which is composed of CPG and BGL. Our approach is able to extract comprehensive
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support information through our proposed CPG module and generate discriminative
feature representation for background pixels by BGL. Extensive experiments demonstrate
the effectiveness of our proposed method.
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