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Abstract: Detecting defects, especially when they are small in the early manufacturing stages, is
critical to achieving a high yield in industrial applications. While numerous modern deep learning
models can improve detection performance, they become less effective in detecting small defects in
practical applications due to the scarcity of labeled data and significant class imbalance in multiple
dimensions. In this work, we propose a distribution-aware pseudo labeling method (DAP-SDD) to
detect small defects accurately while using limited labeled data effectively. Specifically, we apply
bootstrapping on limited labeled data and then utilize the approximated label distribution to guide
pseudo label propagation. Moreover, we propose to use the t-distribution confidence interval for
threshold setting to generate more pseudo labels with high confidence. DAP-SDD also incorporates
data augmentation to enhance the model’s performance and robustness. We conduct extensive
experiments on various datasets to validate the proposed method. Our evaluation results show that,
overall, our proposed method requires less than 10% of labeled data to achieve comparable results of
using a fully-labeled (100%) dataset and outperforms the state-of-the-art methods. For a dataset of
wafer images, our proposed model can achieve above 0.93 of AP (average precision) with only four
labeled images (i.e., 2% of labeled data).

Keywords: pseudo labeling; small defect detection; t-distribution; threshold setting

1. Introduction

In the semiconductor industry, detecting small defects at the early stages of man-
ufacturing is crucial for improving yield and saving costs. For example, as wafers are
processed in batches or lots, malfunctioning tools or suboptimal operations may result
in whole batches of wafers suffering mass yield loss or even being discarded [1,2]. If
we can detect anomalies early, tool issues or operation problems can be fixed quickly
before more batches of wafers travel through malfunctioning tools or undergo unnecessary
value-adding manufacturing processes. Small defects on wafer images usually indicate
early-phase tool malfunctions or improper operations. However, due to the high variance
of working conditions (e.g., position, orientation, illumination) and complex calibration
procedures [2], traditional inspection tools lack the flexibility to detect various defects and
suffer from poor detection performance, especially for small and dim defects.

In recent years, numerous deep learning models for object detection have been pro-
posed, such as object detection models [3–6] and segmentation models [7–9] and have
demonstrated impressive improvements in detecting objects. However, they suffer from
a performance bottleneck on detecting small objects [10,11] due to several factors. First,
small objects have a limited number of pixels to represent information. Additionally, small
objects are scarce in the training dataset [10,12]. Furthermore, key features that can be
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used to distinguish small objects from a background or other categories are vulnerable or
even lost while going through deep layers of networks, such as convolution or pooling
layers [13]. Figure 1 presents examples of small defects we explore in this work, which
have these previously mentioned challenges. In these industrial inspection datasets, the
sizes of defects range from 3 × 3 to 31 × 31 pixels and smaller than 16 × 16 on average.
Moreover, there are usually fewer than four small defects in each image.

(a) Edge void defects (b) Arc-like defects (c) Dagm-1 (d) Dagm-2

Figure 1. Examples of small defects that we explored in this work. (a,b) are examples of in-house
wafer image datasets; (c,d) are examples of industrial optical inspection [14]. Due to confidentiality
reasons, the wafer images are artificially-created ones that approximate the real-world data for
demonstration purposes; we use the real-world dataset for model training and evaluation in this work.

Several studies proposed techniques such as multi-scale feature learning [15,16], scale
normalization [17,18], or introducing super-resolution networks [19,20] to address the
challenges of small object detection. However, these deep learning models require a
large number of labeled data for training, while only a limited number of labeled data is
available in practical applications. Meanwhile, manual labeling is inherently expensive,
time-consuming, and especially challenging and error-prone for small defects. To ease the
effort of acquiring a large number of labels, semi-supervised learning (SSL) is a natural
fit as SSL offers a promising paradigm that leverages unlabeled data to improve model
performance [21]. However, much of recent progress in SSL has focused on image classi-
fication tasks, such as [21–24]. In our case, it is vital to obtain accurate, pixel-level labels
to understand the number of dies impacted by the defect. Thus, we formalize the task of
detecting small defects as a segmentation problem.

There have been several approaches proposed for semi-supervised semantic segmen-
tation [25–28]. However, they are mostly consistency-regularization-based methods, which
enforce the network output to be invariant to the input perturbations [25–27]. Though
these methods have reported encouraging results, they become less effective for small
defects as the information contained in the few pixels of a small defect can be lost due to
perturbations of the input.

Pseudo labeling [29] is another SSL strategy to utilize the limited labeled data to predict
labels for unlabeled data, where the model is encouraged to produce high-confidence
predictions. While it is a simple heuristic and does not require augmentations, some prior
works suggest that pseudo labeling alone is not competitive as other SSL methods [30]. The
reason is due to poor network calibration, or threshold setting used in the conventional
pseudo labeling methods usually resulting in many incorrect pseudo labels, which in turn
leads to a poor generalization of a model [24]. In this work, we use incorrect pseudo labels
and noisy pseudo labels or noisy predictions in pseudo labeling interchangeably. Several
works propose to combine pseudo labeling with consistency training, such as [28,31].
However, these proposed methods are primarily for medium or large objects and are
often unsuitable for small defects. For example, PseudoSeg [28] uses multiple predictions
obtained from class activation map (CAM) [32] to calibrate pseudo labels. However, CAM
is ineffective in locating the target regions of small defects due to too few pixels contained in
small defects. In other words, CAM cannot provide multiple reliable predictions for pseudo
labels calibration, thus making PseudoSeg [28] less effective in detecting small defects.
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To address these challenges and limitations, we propose a distribution-aware pseudo
labeling method (DAP-SDD) to detect small defects precisely while effectively using lim-
ited labeled data. To the best of our knowledge, there is no existing method based on
distribution-aware pseudo labeling for a semantic segmentation model. Our key contribu-
tions are summarized as follows:

• We propose a distribution-aware pseudo labeling method for small defect detection
(DAP-SDD) that maximizes the use of the limited number of labels available. Bootstrap-
ping is applied on the limited available labels to obtain an approximate distribution of
the complete labels, effectively guiding the pseudo labeling propagation.

• We utilize the approximate distribution in conjunction with t-distribution confidence
interval and adaptive training strategies in our proposed threshold setting method,
thereby dynamically generating more pseudo labels with high confidence while re-
ducing confirmation bias.

• We conduct extensive experiments on various datasets to validate the proposed
method. The evaluation results demonstrate the effectiveness of our proposed ap-
proach that outperforms the state-of-the-art techniques.

2. Related Work

Small Object Detection. In recent years, numerous deep learning models such
as [3–6] have been proposed and demonstrated impressive progress on detection per-
formance. However, these models focus on tuning for detecting general objects, mostly of
medium or large size, thus suffering from a performance bottleneck for small object detec-
tion. There are several approaches proposed to address the challenges of detecting small
objects. For example, Kisantal et al. [12] applied data augmentation techniques to increase
the number of small objects to improve the detection performance of the model. The au-
thors of [15,16,33] used a multi-scale feature pyramid and deconvolution layers to improve
detection performance on small and large objects. SNIP [17] proposed scale normalization
and [34] used a dilated convolution network to improve the performance of detecting small
objects. These approaches aimed to mitigate the imbalanced distribution of small objects
from conventional object sizes. However, they still require a substantial amount of labeled
data for training, which is not viable when limited labeled data are available.

Semi-supervised Semantic Segmentation. There are two common strategies used in
SSL: consistency regularization and entropy minimization. In consistency regularization-
based methods, the prediction is enforced to be consistent when using data augmentation
for input images [25], perturbation for embedding features [26], or different networks [35].
While these methods reported impressive detection performance, they become less effec-
tive for small defects because of a limited number of pixels in small objects, which could
be ignored or even lost when the input or embedding features are perturbed in consis-
tency regularization-based methods. In this way, the model fails to learn key features to
distinguish small defects from the background or other categories. On the other hand, en-
tropy minimization encourages a model to predict low-entropy outputs for unlabeled data.
Pseudo labeling [29] is one of the implicit entropy minimization methods [36]. Pseudo la-
beling is usually used with a high confidence threshold setting to reduce the introduction of
noisy predictions. With more high confidence information incorporated, the model would
learn to minimize output entropy better. However, due to suboptimal threshold setting
mechanisms in the conventional pseudo labeling methods [24], some prior works suggest
pseudo labeling on its own is not competitive as other SSL methods [30]. Ref. [28] combines
consistency regularization with pseudo labeling to improve model performance. However,
it still requires consistency regularization, which is ineffectual for small defects. Our de-
sign of pseudo labels is inspired by recent SSL-based image classification works [21–23],
which incorporated distribution alignment to generate high confidence pseudo labels for
unlabeled data. While these approaches require data augmentation to generate multiple
class distributions for distribution alignment or comparison, our method does not require
data augmentation during pseudo labeling. In addition to these two main categories of SSL
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methods, several GAN-based models are proposed. For example, Souly et al. [37] generates
additional training data via GAN to alleviate the lack of labeled data. Hung et al. [38], on
the other hand, uses an adversarial network to learn a discriminator between the ground
truth and the prediction to generate a confidence map. Unlike GAN-based models, which
require adversarial networks to generate additional data, our method directly generates
labels via proper threshold setting without introducing extra data.

3. Methodology

Figure 2 depicts an overview of our proposed method: distribution-aware pseudo
labeling for small defect detection (DAP-SDD).

Data 
Augmentation

Pseudo
Labeling
Model

Unlabeled Data

Pseudo Labels

Labeled DataLabels Distribution

Pseudo-labeled

Bootstrap
Labels Data

Predict

Guide

Update

Data 
Augmentation

Labeled Data

Figure 2. An overview of our proposed distribution-aware pseudo labeling for small defect detection
(DAP-SDD). We first use data augmentation techniques to leverage the limited labeled data for
training in Step 1 (green dash box). Then, we use the trained model to generate initial pseudo
labels for unlabeled data. We also apply bootstrapping for the limited labels to obtain approximate
distribution with statistics such as that of the whole labeled dataset. Then, we use it to guide the
threshold setting during pseudo labeling propagation in Step 2 (orange dash box). To achieve better
detection performance from our model, we update pseudo labels for unlabeled data iteratively.
Once the detection performance remains or starts to degrade, we apply the warm restart and mixup
augmentation for both labeled data and pseudo labeled data in Step 3 (purple dash box). This step is
to overcome confirmation bias [39] and overfitting, thereby improving model performance further.

3.1. Leverage Labeled Data

Data augmentation can usually help improve detection performance, and there are
several commonly used augmentation techniques we could employ, such as random crop,
rotation, horizontal flip, color jittering, mixup, etc. [28,40]. However, these commonly-used
techniques become incompetent in improving model performance when limited labels
are available, e.g., less than 5% of the fully-labeled dataset. Inspired by augmentation
techniques proposed in [12,41], we rotate images by 0, 90, 180, 270 degrees to quadruple
labeled data. Unlike augmenting images by directly copy-pasting multiple times as in [12],
our variants of original data not only enrich the labeled data but also can help prevent the
model from becoming biased when the amount of pseudo labeled data increases during
pseudo label propagation.

3.2. Distribution-Aware Pseudo Labeling

In pseudo labeling methods, one common way is to convert model predictions to
hard pseudo labels directly. To illustrate this, let Dl = {x

(i)
l , y(i)l } be a labeled dataset and

Du = {x(i)u } be a unlabeled dataset. We first train a model fθ on Dl and use the trained
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model to infer on Du. Let us further denote p(x(i)u ) as the prediction of unlabeled sample
x(i)u , then the pseudo label for x(i)u can be denoted as:

ỹ(i)u = 1[p(x(i)u ) > γ], (1)

where γ ∈ (0, 1) is a threshold to generate pseudo labels. Note that, for a semantic
segmentation model such as ours, p(x(i)u ) is a probability map and ỹ(i)u is a binary mask with
pseudo labels. As Equation (1) shows, threshold setting is critical to generate reliable pseudo
labels. However, determining an optimal threshold is difficult, and a sub-optimal threshold
value can introduce many incorrect pseudo labels, which degrades model performance.
Therefore, we propose a novel threshold setting method, which can generate more pseudo
labels with high confidence without bringing many noisy predictions.

3.2.1. Bootstrap Labels

Assuming the distribution of limited labeled data approximates that of fully labeled
data, we first apply bootstrapping, a resampling technique that estimates summary statistics
(e.g., mean and standard deviation) on a population by randomly sampling a dataset with
replacement. The metric we employed in bootstrapping is label_pixel_ratio, which is
denoted as:

label_pixel_ratio =
label_pixels

image_pixels
, (2)

where label_pixels is the number of pixels of one label, and the image_pixels is the number
of pixels of the image in which the label locates. For example, if the number of pixels of
one label is 256, and the image size is 2048× 2048, then the label_pixel_ratio for this label
is 256/(2048× 2048) = 0.00006104.

3.2.2. Distribution-Aware Pseudo Label Threshold Setting

Once we obtain the mean of label_pixel_ratio (µ) in the previous step, we calculate the
number (k) of pixels of predictions on Dl (p(Dl)), and the top k of sorted p(Dl) are pixels
for labels. In other words, the threshold for Dl is the k-th value in p(Dl), which we use to
set the threshold for unlabeled data Du as well. This mechanism works as both labeled and
unlabeled data are supposed to be sampled from the same distribution of fully labeled data
and share the same mean of label distribution. We also use the same trained model to infer
on them. The k at a specific iteration n with the predictions of pn(Dl) is given by:

kn,base = bN (pn(Dl)) ∗ µe, (3)

where N (pn(Dl)) is used to obtain the total number of pixels in pn(Dl). The raw outcome
from this equation is a real number, so we round it to the nearest integer to obtain kn,base.
Then, the corresponding kn,base-th value in pn(Dl) can be used for threshold setting.

Using Equation (3), we can set a quite reasonable initial threshold as the calculation
utilizes the mean of estimated label distribution. However, as the pseudo labeling model
is encouraged to produce more high-confidence (i.e., low-entropy) predictions as training
continues, this method alone may suffer from an insufficient number of proposed pseudo
labels. To incorporate more pseudo labels with high-confidence predictions while reducing
the possibility of introducing noisy predictions, we use a confidence interval and gradually
increase it. An increasing confidence interval allows incorporating a higher number of con-
fident predictions as high-confidence pseudo labels. Specifically, we use the t-distribution
to find a given 100(1− α)% confidence interval (CI), which can be obtained via:

CI = µ± tα/2,m−1
s√
m

, (4)

where µ and s are the estimated mean and sample standard deviation of label_pixel_ratio,
respectively. m represents the number of labels and t is a critical value in t-distribution
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table to obtain P(T ≤ t) = 1− α/2 at the degrees freedom of m− 1. The lower bound
of the confidence interval (CIlower) is µ− tα/2,m−1

s√
m , whereas the upper bound (CIupper)

is µ + tα/2,m−1
s√
m . We use the t-distribution in our proposed method because of the lack

of labeled samples available. In such a case, the estimated standard deviation tends to
be farther from the real standard deviation, and t-distribution fits better than the normal
distribution. We also present the comparison results of them in the later section of ablation
studies. Once we obtain the confidence interval, we can map them to find the lower and
upper bound of k via Equation (3) by replacing the µ with CIlower or CIupper. Then, we can
use the kn,ci-th value of pn(Dl), with a given 100(1− αn)% confidence level to obtain the
threshold γn at a specific iteration n:

γn = K(pn(Dl), bN (pn(Dl)) ∗ tαn/2,m−1
2s√

m
∗ νne), (5)

where K(pn, k) is a function to find k-th value in pn and νn is an adjustment factor used to
slow down or speed up propagation during training.

In addition to using the t-distribution to calculate the confidence interval for setting
thresholds, we also employ another intuitive method for selecting high confidence pseudo
labels. Specifically, we find the threshold that produces the best performance on labeled
data. We then use that threshold to generate initial pseudo labels for unlabeled data. To
illustrate this, let Pl,0 denote the precision obtained from the labeled data, which can be
considered as a confidence level for pseudo labels since the precision indicates how many
predictions out of all predictions are true small defects. We can increase the confidence
level with a moving step τ as the training goes on. Along with the kn,base via Equation (3),
we can obtain the threshold γn at a specific iteration n by using:

γn = K(pn(Dl), bN (pn(Dl)) ∗ µ ∗ (Pl,0 + νn ∗ τ)e). (6)

Overall, the method utilizing t-distribution confidence interval Equation (5) performs
better than the intuitive method Equation (6), and their comparison results are presented
in the later section of ablation studies.

3.2.3. Training Strategies

During training, we adjust the moving step of pseudo labeling propagation to set
threshold adaptively. To accomplish this, we keep monitoring training and use the model
evaluation results (e.g., Precision, Recall, F1 score) on labeled data. For example, if the
monitored results show a decrease in both F1 score and recall but an increase in precision
(close to 1.0), it indicates the threshold is set too high to incorporate more confident pseudo
labels. In other words, the model can speed up the propagation and set the adjustment factor
ν to a bigger value so that the threshold will be set to a lower value, thereby incorporating
more high-confidence pseudo labels and vice versa. Another strategy we adopt during
training is a weighted moving average of thresholds. Due to the random combination of
training data batch, a model may temporarily suffer a significant performance decrease in
a certain iteration. A weighted moving average of thresholds can prevent such an outlier
threshold from resetting the threshold value that the model has learned to ensure more
stable pseudo labeling propagation.

Algorithm 1 presents the training procedure of our proposed distribution-aware
pseudo labeling. First, we use the labeled data to train a model fθ,0, and then use the
trained model to generate initial pseudo labels and obtain the initial precision Pl,0. During
the iterative pseudo labeling with the maximum number of iterations N, we calculate
thresholds γn for each iteration via Equations (5) or (6). Then, we evaluate the obtained
thresholds γn and the moving average threshold γn−1,ma on labeled data. The threshold
that yields better evaluation results (i.e., F1 Score) is selected. Meanwhile, by comparing
the evaluation results (Precision, Recall, F1 Score denoted as Pn, Rn, F1n, respectively) of
the current iteration with that of the previous iteration, we can obtain the adjustment
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factor νn to speed up or slow down pseudo label propagation. Moreover, we update the
moving average threshold for the next iteration. Next, we use the selected threshold γn
to generate pseudo labels for unlabeled data Du. We then combine the pseudo labeled
data Dp with labeled data Dl to retrain the model. We repeat these steps to update pseudo
labels iteratively to achieve better detection performance of the model. Once the detection
performance from the model reaches a certain threshold (e.g., F1 ≥ 0.85) but remains or
decreases beyond that, the warm restart and mixup augmentation will be applied on both
labeled data and pseudo labeled data to improve detection performance further.

Algorithm 1 Distribution-Aware Pseudo Labeling.

1: Train a model fθ,0 using labeled data Dl .
2: for n = 1, 2, . . . , N do
3: Obtain threshold γn
4: Pn, Rn, F1n, νn, γn ← E(Dl , γn, γn−1,ma)
5: γn,ma ← M(γn, γn−1, γn−2, α, β)
6: Dp,n ← Pseudo label Du using γn
7: D̃ ← Dl ∪ Dp,n
8: Train fθ,n using D̃.
9: fθ , Dp ← fθ,n, Dp,n

10: end for
11: return fθ , Dp

3.2.4. Loss Function

During pseudo labeling propagation, the loss function Lp incorporates labeled and
pseudo labeled data, which can be denoted as:

Lp = −
(

∑
Dl

L(yl , ŷl) + η ∑
Du

L(yp, ŷp)
)

, (7)

where yl is the ground truth labels, and yp represents pseudo labels. ŷl and ŷp denote the
predictions of labeled data and unlabeled data, respectively. L represents the cross-entropy
loss function. As the pseudo labeling progresses, the amount of pseudo labeled data will
increase accordingly. To avoid the model increasingly favoring pseudo labeled data over
the original labeled data, we add a weight η ∈ (0, 1) to adjust the impact from pseudo labels.
In practice, we can achieve this by repeatedly sampling or using the similar augmentation
techniques described in Section 3.1.

During the training process using mixup augmentation, we define a mixup loss
function Lm, which is given by:

Lm = −
N

∑
i=1

(
λL(y(i)a , ŷ(i)a ) + (1− λ)L(y(i)b , ŷ(i)b )

)
, (8)

ya and yb are the original labels of the input images, and ŷa and ŷb are corresponding
predictions. N is the number of samples used for training. In the first step of leveraging
labeled data, N only includes the number of labeled data, while in the last step, both the
labeled and pseudo labeled data will be included. λ ∈ [0, 1] is used in mixup augmentation
for constructing virtual inputs and outputs [40]. Specifically, the mixup uses the following
rules to create virtual training examples:

x̃ = λ× xa + (1− λ)× xb

ỹ = λ× ya + (1− λ)× yb,

where (xa, ya) and (xb, yb) are two original inputs drawn at random from training batch,
λ ∈ [0, 1] and the x̃ and ỹ are constructed input and corresponding output.
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4. Results and Discussion
4.1. Datasets

We use an in-house dataset from the wafer inspection system (WIS) in our evaluation.
This dataset contains two types of small defects on wafer images: edge void and arc-like
defects. Each of them has 213 images: 173 for training and 40 for test. There are 618 labels
for edge void and 406 labels for arc-like, weak labels from the current system tool and
verified predictions from a trained model. The image size is 2048 × 2048, and we crop it
into 512 × 512 patches to fit into GPU memory.

We also evaluate our method on two public datasets: industrial optical inspection
dataset of DAGM 2007 [14] and tiny defect detection dataset for PCB [42]. We use Class
8 and Class 9 of DAGM as they fit into a small defect category (denoted as Dagm-1 and
Dagm-2). We split each class into two sets of 150 defective images in gray-scale for training
and testing. The image size is 512 × 512 in DAGM. The defects are labeled as ellipses, and
each image has one labeled defect.

On the other hand, the PCB dataset includes six types of tiny defects (missing hole,
mouse bite, open circuit, short, spur, and spurious copper), and each image may have
multiple defects. PCB contains 693 images with defects: 522 and 101 images for training
and test, respectively. The total number of defects is 2953. There are different sizes of
PCB images, and the average pixel size of an image is 2777 × 2138. We also crop it into
512 × 512 patches for training.

4.2. Evaluation Metrics

Intersection over Prediction (IoP). In this work, instead of using IoU (intersection
over union), we adopt IoP (intersection over prediction) [43] to overcome the issue shown
in Figure 1, where one weak label may contain multiple small defects or cover more area
than the true defect area. IoP is defined as the intersection area between ground truth and
prediction divided by the area of prediction. If the IoP of a prediction for a small defect is
greater than a given threshold (0.5 in this work), we count it as a true positive; otherwise,
we count it as a false positive. If one weak label contains multiple true positive predictions,
we only count it as one true positive.

Average Precision (AP), F1 Score. We use AP (average precision) and F1 Score to
evaluate the performance of small defect detection.

4.3. Experimental Settings and Parameters

In this work, we adopt a commonly-used segmentation model U-Net [8] in our pro-
posed method, which has been proven to be effective in medical image segmentation tasks,
such as detecting microcalcifications in mammograms [43,44]. Moreover, U-Net has a rela-
tively small size of model parameters, which is favorable in practical use. U-Net consists
of three downsampling blocks and three upsampling blocks with skip connections. Each
block has two convolution layers, and each of them is followed by batch normalization and
ReLU. As our proposed pseudo labeling strategy is not confined to a specific deep learning
model, it can be easily implemented in other deep neural networks. We will extend our
proposed techniques to other segmentation models in future work.

We use the Adam optimizer in the model training. The initial learning rate is set to
1 × 10−3 and gradually decreases during training. The adjustment factor νn is set to 1.1 to
speed up pseudo label propagation or set to 0.9 to slow down the propagation. The moving
average weights [α, β, (1− α− β)] are set to [0.5, 0.3, 0.2] for the current iteration threshold
γn and thresholds of previous two iterations γn−1, γn−2, respectively. The t-distribution
confidence interval ranges from 0.5 to 0.995 with a moving step of 0.005.

4.4. Experiment Results

We first evaluate our proposed method on two different types of small defects on
wafer images (the WIS dataset). Figure 3 demonstrates the improvements brought by our
method over the supervised baseline. Overall, our proposed method can achieve above
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0.93 of AP for a different amount of labeled data available and obtain comparable results as
a fully-labeled (100%) dataset even when the labeled data ratio is 2% (four labeled images).
However, the detection performance of the supervised method decreases dramatically
when the labeled data size is limited. For instance, the AP reduces to below 0.6 when 2% of
labeled data is available.

Figure 3. Improvement over the supervised baseline on two small defects in the WIS dataset.

Figure 4 demonstrates the improvements by our method (solid lines) over the super-
vised baseline (dash lines) on the DAGM and PCB datasets. Similar to the results of the
WIS dataset, our proposed method can achieve comparative results of fully-labeled (100%)
when the labeled data ratio is 10% on different small defects in DAGM and PCB datasets.
The average precision (AP) by our method remains above 0.9 when only 5% of labeled
data are available while the AP by the supervised model degrades dramatically. Note that
in Figure 4, the values of PCB-average represent the average AP of six different types of
defects in the PCB datasets.

Figure 4. Improvements over the supervised baseline on small defects in the DAGM and PCB datasets.

We then compare our method with state-of-the-art semi-supervised semantic segmen-
tation methods. Table 1 shows the comparison results on the Edge Void defect dataset with
10% of labeled data. CCT [26] is a consistency regularization-based method. As shown
in Table 1, the CCT alone fails to recognize and locate small defects. CCT also provides a
way of training with offline pseudo labels. So, we use the pseudo labels generated from the
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first step of our method. As we can see, CCT+Pseudo improves the detection performance
as more pseudo labeled data are incorporated. However, the initial pseudo labels might
contain incorrect labels, which are not updated iteratively in CCT. Therefore, CCT+Pseudo
still presents relatively low detection performance. AdvSemSeg [38], however, uses an
adversarial network for semi-supervised semantic segmentation. The experiment results
show that AdvSemSeg performs better than CCT, which indicates adversarial network
can be a potential direction for improving small defect detection. However, due to limited
ground truth labels, AdvSemSeg does not perform well as reported in [38]. In self-training,
we exclude the labeled data and only use the initial pseudo labels as the supervisory signals
for unlabeled data. During self-training, instead of setting pseudo labels based on pixel
confidence score higher than 0.5 as in [45], we adopt the same threshold setting strategies
as our method to generate pseudo labels for self-taught training effectively. As shown in
Table 1, self-training shows significantly better AP and F1 scores than CCT and AdvSegSeg.
Overall, DAP-SDD achieves the highest AP and F1 scores. We attribute this to the fact that
ours also incorporates labeled data that contain useful prior knowledge.

Table 1. Comparison with state-of-the-art methods on the WIS dataset with 10% of labeled data.

Method
Edge void Arc-like

AP (%) F1 (%) AP (%) F1 (%)

CCT (Ouali et al.) - - - -
CCT+Pseudo (Ouali et al.) 70.75 69.80 71.09 72.13
AdvSemSeg (Hung et al.) 76.61 76.42 76.98 79.51
Self-training (Zoph et al.) 89.29 88.14 85.34 86.89
DAP-SDD (Ours) 97.29 96.64 94.99 91.38

In Figure 5, we present examples of predicted labels for small defects generated by
different methods. We can observe that all the evaluated models can generate labels for
relatively large defects, as shown in the first row of edge void defects and the third row of
arc-like defects. Compared to CCT+Pseudo or AdvSemSeg, which generate incomplete
labels or overfull labels, self-training and our proposed method obtain more accurate labels.
However, for the significantly tiny or dim defects, such as ones shown in the second row
and fourth row, most of these models suffer from missing detection while our method can
still detect them. Overall, our proposed method performs best regardless of the different
sizes of small defects.

����� ��	�������� ������� ����	�
����� ����

��� ����

��� ����

�������

�������

Figure 5. Examples of predicted labels using different methods for edge void and arc-like defects
(marked in red) in the WIS dataset. From left to right, columns are defects, segmentation results using
CCT+Pseudo, AdvSemSeg, self-training, and DAP-SDD (ours), respectively.
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The prediction results and comparison results with state-of-the-art methods on the
DAGM and PCB datasets are shown in Tables 2 and 3.

Table 2. Evaluation results (AP, %) on public datasets (DAGM, PCB) when different amounts of
labeled data are available. Total data amount (100%): DAGM (552), DAGM (150).

Data Amount
DAGM PCB

Dagm-1 Dagm-2 Missing
Hole

Mouse
Bite

Open
Circuit Short Spur Spurious

Copper Average

100% 98.46 98.65 98.75 96.03 95.34 98.57 96.38 92.46 96.26
20% 99.14 97.26 98.54 94.71 96.45 94.03 97.19 96.27 96.20
10% 97.96 97.09 97.35 93.98 91.75 92.77 95.28 96.19 94.55
5% 96.15 97.41 97.13 89.10 86.07 89.92 91.95 96.98 91.86
2% 94.74 96.54 95.67 87.71 83.07 85.79 88.32 90.38 88.49

Table 3. Comparison with state-of-the-art methods on public datasets (DAGM, PCB), evaluation
metric: AP (%).

Data Amount
DAGM PCB

Dagm-1 Dagm-2 Missing
Hole Mouse Bite Open

Circuit Short Spur Spurious
Copper Average

CCT [26] 69.55 66.07 63.81 57.84 55.72 56.39 63.61 63.67 62.08
CCT+Pseudo [26] 83.15 82.79 79.37 73.32 70.18 72.46 79.40 76.99 75.29
AdvSemSeg [38] 84.62 85.68 84.28 80.71 80.44 82.10 83.45 83.75 82.46
Self-training [45] 92.59 91.18 88.15 85.84 86.83 85.67 87.92 87.41 86.97
DAP-SDD (Ours) 97.96 97.09 97.35 93.98 91.75 92.77 95.28 96.19 94.55

Moreover, we present examples of predicted labels for small defects in the DAGM
(Figure 6) and PCB datasets (Figure 7) generated by different methods. As the results have
shown, our proposed method consistently outperforms the state-of-the-art semi-supervised
segmentation models on various datasets with various types of defects.

Defects CCT + Pseudo AdvSemSeg Self-Training Ours

Dagm-1

Dagm-1

Dagm-2

Dagm-2

Figure 6. Examples of predicted labels using different methods on the DAGM dataset. The top
two rows show results for Dagm-1, while the bottom two rows show results for Dagm-2. The first
column shows defect images with original weak labels (marked in red color), and the remaining
columns are segmentation results using CCT+Pseudo, AdvSemSeg, self-training, and DAP-SDD
(ours), respectively.
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Defects CCT + Pseudo AdvSemSeg Self-Training Ours

Mouse
Bite

Missing
Hole

Open
Circuit

Short

Spurious 
Copper

Spur

Figure 7. Examples of predicted labels using different methods on the PCB dataset. From top to
bottom, each row represents six types of defects in the PCB dataset: mouse bite, missing hole, open
circuit, short, spur, and spurious copper. The first column shows defect images with original weak
labels (marked in red color), and the remaining columns are segmentation results using CCT+Pseudo,
AdvSemSeg, self-training, and DAP-SDD (ours), respectively.

4.5. Ablation Studies

Contribution of components for performance improvement. Figure 8 demonstrates
how different components in our proposed method contribute to detection performance on
both in-house and public datasets. For a fair comparison, we use the same data augmenta-
tions in the supervised baseline and ours. Therefore, the results of the first step using only
labeled data are also supervised baseline. As shown in Figure 8, for the WIS dataset (solid
bars), the model using 20% of labeled data can achieve around 88% of AP, which is still
lower than our target (our real-world applications typically require AP of 90% or higher).
When we have 2% of labeled data available, the AP value decreases to 56%. In Step 2,
utilizing the proposed distribution-aware pseudo labeling method significantly improved
the detection performance for all cases, and cases with fewer labeled data benefit more.
For example, AP is improved from 56% to 92% when using 2% of labeled data. The re-
sults demonstrate that our proposed method can effectively leverage the information from
massive unlabeled data to improve detection performance. In the final step, warm restart
and mixup are employed to improve performance further. We obtain similar results on
public datasets shown in Figure 8 (bars with patterns). Overall, the proposed distribution-
aware pseudo labeling contributes most significantly to the detection performance and
the data augmentations we adopted in DAP-SDD are effective in enhancing the model’s
performance and robustness.
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Figure 8. Ablation studies on different factors that contribute to performance improvement.

Compare with more baselines. In our proposed DAP-SDD, we assume the distribu-
tion of proposed labels approximates the distribution of ground truth labels as training
proceeds. We use the Kullback–Leibler (KL) divergence to evaluate the differences in the
distribution of proposed labels compared with ground truth labels during training, which
is shown in Figure 9. The KL divergence is a commonly-used measurement for evaluating
how one probability distribution differs from the other reference distribution. We can
observe that: (a) t-dist vs. normal-dist: t-distribution (t-dist) performs better than a normal
distribution (normal-dist) because t-dist has heavier tails. Thus it is more suitable for
estimating the confidence interval (CI) when the sample size is limited as in our cases. For
a given CI range, normal-dist tends to incorporate more predictions than t-dist, which in
turn brings ‘too many’ noisy predictions for pseudo labels. As a result, the accumulated
noisy impact overwhelms that of original limited labels as training proceeds. (b) Adaptive
vs. fixed threshold: adaptive thresholding that combines Equation (3) and Equation (5) can
keep the model learning more useful information during training and outperforms the
fixed threshold obtained via Equation (3). (c) Equation (5) vs. Equation (6): Equation (6) is
more conservative in incorporating confident predictions than Equation (5) when using
the same moving step (0.005), and it requires more training epochs to reach the equivalent
results as Equation (5). (d) with vs. without ma: compared with the baseline without
moving average (ma) threshold, our method incorporates ma, which helps prevent outlier
thresholds (e.g., epochs 23 and 65) from resetting what the model has learned. In addition,
the corresponding detection performance and KL divergence at the same training epoch
(100th) of these baselines are shown in Table 4. As we can observe, DAP-SDD using the
t-distribution confidence interval and with moving average achieves the best detection
performance while having the smallest KL divergence.

0
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2.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101

KL
Di

ve
rg
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Training Epoch
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Figure 9. KL divergence curves of various baselines.
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Table 4. Comparison of detection performance (AP, %) and KL divergence (same training epochs 100)
on various baselines.

Baseline Method AP (%) KL divergence

Normal distribution 66.52 2.3772
Fixed threshold Equation (3) 81.63 0.6528
DAP-SDD via Equation (6) 94.34 0.2288
DAP-SDD w/o ma 86.98 0.4181
DAP-SDD (t-dist, Equation (5), ma) 97.29 0.0127

5. Conclusions

In this work, we propose a distribution-aware pseudo labeling for small defect detec-
tion (DAP-SDD) when limited labeled data are available. We first applied bootstrapping
for the available labeled data to approximate the distribution of the whole labeled dataset.
Then, we used it to guide pseudo label propagation. Our proposed method incorporates
t-distribution confidence interval and adaptive training strategies, and thus can effectively
generate more pseudo labels with high confidence while reducing confirmation bias. The
extensive experimental evaluation on various datasets with various types of defects has
demonstrated that our proposed DAP-SDD consistently outperforms the state-of-the-art
techniques with above 0.9 of average precision and up to 0.99. Our in-depth analysis of the
ablation studies clearly shows how each component employed in our approach effectively
utilizes the limited labeled data.
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