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Abstract: Preserving long-tail, minority information during model compression has been linked
to algorithmic fairness considerations. However, this assumes that large models capture long-tail
information and smaller ones do not, which raises two questions. One, how well do large pretrained
language models encode long-tail information? Two, how can small language models be made
to better capture long-tail information, without requiring a compression step? First, we study the
performance of pretrained Transformers on a challenging new long-tail, web text classification task.
Second, to train small long-tail capture models we propose a contrastive training objective that
unifies self-supervised pretraining, and supervised long-tail fine-tuning, which markedly increases
tail data-efficiency and tail prediction performance. Third, we analyze the resulting long-tail learning
capabilities under zero-shot, few-shot and full supervision conditions, and study the performance
impact of model size and self-supervision signal amount. We find that large pretrained language
models do not guarantee long-tail retention and that much smaller, contrastively pretrained models
better retain long-tail information while gaining data and compute efficiency. This demonstrates
that model compression may not be the go-to method for obtaining good long-tail performance from
compact models.

Keywords: contrastive language models; long-tail compression, text-to-text; self-supervised con-
trastive pretraining, contrastive autoencoder.

1. Introduction

Long-tail information has been found to be disproportionately affected during model
compression, which has in turn been linked to reducing aspects of algorithmic fairness for
minority information [1,2]. Additionally, real-world data is subject to long-tail learning
challenges such as imbalances, few-shot learning, open-set recognition [3], or feature and
label noise [4,5]. Crucially, works by Hooker et al. [6], Zhuang et al. [7] find that common
long-tail evaluation measures like top-k metrics mask tail prediction performance losses.
Current works on long-tail preservation in smaller models are focused on compressing large,
supervised computer vision models [3,8–11], while general long-tail learning methods only
study supervised contrastive learning.

In this work, we extend the field of ‘long-tail preservation in compact models’ to
(self-supervised) pretrained language models (PLMs), and investigate whether contrastive
language modeling (CLM) can be used to train a small, long-tail preserving model which
does not require compression or large pretrained models. In this context, large PLMs are
an important point of reference since they are often assumed to be base models for use
in arbitrary NLP downstream tasks, as a trade-off for their large pretraining costs. These
models are pretrained over many text domains in the hopes of achieving partial in-domain
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pretraining that later overlaps with arbitrary downstream applications. This works well
except in cases where fine-tuning data is limited [12]. Unfortunately, training data and
sub-domains in the tail of a distribution are always limited and diverse by definition, which
foreseeably increases the domain distribution mismatch between large PLMs and long-tail
distributed end-task data. Hence, in order to train long-tail preserving models, it is useful
to study small-scale, but in-domain pretraining, which ideally, is similarly or more compute
efficient than fine-tuning a large PLM, while still achieving superior long-tail prediction
performance. Thus, we first evaluate a large PLM in a challenging long-tail tag prediction
setup (see Section 4) and then move on to propose a small contrastive language model
(CLM) to answer the following three research questions.

• RQ-1: Does a large pretrained language model, in this case, RoBERTa [13], achieve
good long-tail class prediction performance (Section 5.1)?

• RQ-2: Can we extend language models such that a small language model can retain
accurate long-tail information, with overall training that is computationally cheaper
than fine-tuning RoBERTa?

• RQ-3: What are the long-tail prediction performance benefits of small CLMs that unify
self-supervised and supervised contrastive learning?

Contributions

We address RQ-2 by proposing a contrastive language model objective that unifies
supervised learning with self-supervised pretraining to produce a small model, with strong long-
tail retention that is cheap to compute, thereby avoiding the need for compressing a large
model. This takes inspiration from supervised contrastive learning, which is known to
improve long-tail learning in NLP [8,14,15]. However, we add self-supervised contrastive
learning since its effect has not been studied in the context of language models for long-
tail learning, especially not with the requirement of producing small models. We call
this unified learning objective: Contrastive Long-tail Efficient Self-Supervision or CLESS.
The method constructs pseudo-labels from input text tokens to use them for contrastive
self-supervised pretraining. During supervised fine-tuning on real (long-tail) labels, the
model directly reuses the self-supervision task head to predict real, human-annotated,
text labels. Thus, we unify self-supervised and supervised learning regimes into a ‘text-
to-text’ approach. This builds on ideas for large PLMs that use ‘text-to-text’ prediction
like T5 [16] and extends them to contrastive self-supervision to ensure long-tail retention
in small language models that pretrain efficiently, even under strong data limitations.
Using a ‘text-to-text’ prediction objective allows for modeling arbitrary NLP tasks by
design, though in this work we focus exclusively on improving the under-studied field
of long-tail language modeling. We evaluate RQ-1 and RQ-2 by comparing RoBERTa
against CLESS regarding long-tail prediction in Section 5.1. To address RQ-3, we study
three long-tail learning performance aspects. (RQ-3.1) We study how well our contrastive
self-supervised pretraining generalizes to long-tail label prediction without using labeled
examples, i.e. zero-shot, long-tail prediction in Section 5.2. (RQ-3.2) We evaluate how zero-
shot performance is impacted by increased model size and pseudo-label amount during
self-supervised pretraining (Section 5.2). (RQ-3.3) Finally, we investigate our models’ few-
shot learning capabilities during supervised long-tail fine-tuning and compare the results
to the RoBERTa model in Section 5.3.

2. Related Work

In this section, we summarize related work and how it influenced our method design
and evaluation strategy decisions.

2.1. Long-Tail Compression

Works by Hooker et al. [1,6] raised awareness of the disproportionate loss of long-tail
information during model compression and the undesirable rise in algorithmic bias and
fairness issues this may cause. Other works such as Liu et al. [3] pointed out that real-world
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learning is always long-tailed and that few-shot and zero-shot learning settings naturally
arise in tailed, real-world distributions. To make matters worse, real-world long-tail data
is highly vulnerable to noise, which creates drastic learning and evaluation challenges,
especially for self-supervised learning methods. For example, D’souza et al. [4] identify
types of noise that especially impact long-tail data prediction and Zhuang et al. [7] find
that noise disproportionately affects long-tail metrics. In fact, all the aforementioned show
that top-k metrics hide long-tail performances losses. This means that we need long-tail
sensitive evaluation, which inspired us to use Average Precision as a measure. In addition,
we split tail analysis into 5 buckets that all contain an equal amount of positive labels,
where each bucket contains increasingly more and rarer classes—see Section 4. These
label imbalances in long-tail tasks make manual noise treatment very cumbersome, but
fortunately, contrastive objectives are naturally robust to label noise as we will detail in the
paragraph below.

2.2. Contrastive Learning Benefits

Contrastive objectives like Noise Contrastive Estimation (NCE), have been shown to be
much more robust against label noise overfitting than the standard cross-entropy loss [17].
Additionally, Zimmermann et al. [18] found that contrastive losses can “recover the true
data distribution even from very limited learning samples”. Supervised contrastive learning
methods like Chang et al. [8], Liu et al. [14], Pappas and Henderson [15], Zhang et al. [19]
have repeatedly demonstrated improved long-tail learning. Finally, Jiang et al. [11] recently
proposed contrastive long-tail compression into smaller models. However, this still leaves
the research question (RQ-1), whether large models learn long-tail well enough in the first
place, unanswered. These observations, learning properties and open research questions
inspired us to forgo large model training and the subsequent compression by instead
training small contrastive models and extending them with contrastive self-supervision to
combine the benefits of language model pretraining and contrastive learning. This imbues
a small (contrastive language) model with strong long-tail retention capabilities, as well as
with data-efficient learning for better zero to few-shot learning—as is detailed in the results
Section 5.

2.3. Long-Tail Learning

Long-tail learning has prolific subfields like extreme classification, which is concerned
with supervised long-tail learning and top-line metric evaluation. The field provides varied
approaches for different data input types like images [3], categorical data, or text classifica-
tion using small supervised [14] or large supervision fine-tuned PLMs like Chang et al. [8]
for supervised tail learning. However, these methods only explore supervised contrastive
learning and limit their evaluation to top-line metrics, which, as mentioned above, mask
long-tail performance losses. This naturally leads us to explore the effects of self-supervised
contrastive learning (or pretraining) as one might expect such pretraining to enrich long-tail
information before tail learning supervision. Additionally, as mentioned above, we use Av-
erage Precision over all classes, rather than top-k class, to unmask long-tail performance losses.

2.4. Negative and Positive Generation

As surveys like Musgrave et al. [20], Rethmeier and Augenstein [21] point out, tra-
ditional contrastive learning research focuses on generating highly informative (hard)
negative samples, since most contrastive learning objectives only use a single positive learn-
ing sample and b (bad) negative samples—Musgrave et al. [20] give an excellent overview.
However, if too many negative samples are generated they can collide with positive sam-
ples, which degrades learning performance [22]. More recent computer vision works like
Khosla et al. [23], Ostendorff et al. [24] propose generating multiple positive samples to
boost supervised contrastive learning performance, while Wang and Isola [25] show that,
when generating positive samples, the representations of positives should be close (related)
to each other. Our method builds on these insights and extends them to self-supervised
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contrastive learning and to the language model domain using a straightforward extension
to NCE. Instead of using only one positive example the like standard NCE by Mnih and
Teh [26], our method uses g good (positive) samples (see Section 3). To ensure that positive
samples are representationally close (related) during self-supervised contrastive pretrain-
ing, we use words from a current input text as positive ‘pseudo-labels’—i.e., we draw
self-supervision pseudo-labels from a related context. Negative pseudo-labels (words) are
drawn as words from other in-batch text inputs, where negative sample words are not
allowed not appear in the current text to avoid the above-mentioned collision of positive
and negative samples.

2.5. Data and Parameter Efficiency

Using CNN layers can improve data and compute efficiency over self-attention layers
as found by various works [27–29]. data-efficiency is paramount when pretraining while
data is limited, which, for (rare) long-tail information, is by definition, always the case.
Radford et al. [30] find that replacing a Transformer language encoder with a CNN backbone
increases zero-shot data-efficiency 3 fold. We thus use a small CNN text encoder, while for
more data abundant or short-tail pretraining scenarios a self-attention encoder may be used
instead. Our method is designed to increase self-supervision signal, i.e., by sampling
more positive and negatives, to compensate for a lack of large pretraining data (signal)—
since rare and long-tailed data is always limited. It is our goal to skip compression and
still train small, long-tail prediction capable models. Notably, CLESS pretraining does not
require special learning rate schedules, residuals, normalization, warm-ups, or a modified
optimizer as do many BERT variations [13,31,32].

2.6. Label Denoising

Label dropout of discrete {0, 1} labels has been shown to increase label noise ro-
bustness by [33]. We use dropout on both the dense text and label embeddings. This
creates a ‘soft’, but dense label noise during both self-supervised and supervised training,
which is also similar to sentence similarity pretraining by Gao et al. [34], who used text
embedding dropout rather than label embedding dropout to generate augmentations for
contrastive learning.

3. CLESS: Unified Contrastive Self-supervised to Supervised Training and Inference

As done in natural language usage, we express labels as words, or more specifically as
word embeddings, rather than as {0, 1} label vectors. CLESS then learns to contrastively
(mis-)match <text embedding, (pseudo/real) label embedding> pairs as overviewed in
Figure 1. For self-supervised pretraining, we in-batch sample g (good) positive and b (bad)
negative <text, pseudo label> embedding pairs per text instance to then learn good and
bad matches from them. Positive pseudo labels are a sampled subset of words that appear
in the current text instance. Negative pseudo labels are words sampled from the other texts
within a batch. Crucially, negative words (pseudo labels) can not be the same words as
positive words (pseudo labels)—i.e. w+

i ∩w−j = ∅.
This deceptively simple sampling strategy ensures that we fulfill two important

criteria for successful self-supervised contrastive learning. One, using multiple positive labels
improves learning if we draw them from a similar (related) context, as Wang and Isola [25]
proved. Two, we avoid collisions between positive and negative samples, which otherwise
degrades learning when using more negatives as Saunshi et al. [22] find. Similarly, for
supervised learning, we use g positive, real labels and undersample b negative labels
to construct <text, positive/negative real label> pairs. A text-2-label classifier 5 learns
to match <text, label> embedding pairs using a noise contrastive loss [35], which we
extend to use g positives rather than just one. This unifies self-supervised and supervised
learning as contrastive ‘text embedding to (label) text embedding matching’ and allows
direct transfer like zero-shot predictions of real labels after pseudo label pretraining—i.e.
without prior training on other real labels as required by methods like [15,19,36]. Below,
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we describe our approach and link specific design choices to insights from existing research
in steps 1 - 6 .
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Figure 1. Contrastive <text, pseudo/real label> embedding pair matcher model: A word embedding
layer E 1 embeds text and real/pseudo labels, where labels are word IDs. CLESS embeds a text
(‘measuring variable interaction’), real positive (R) or negative (p-value) labels, and positive (variable)
or negative (median) pseudo labels. A sequence encoder T 2 embeds a single text, while a label
encoder L 3 embeds c labels. Each text has multiple (pseudo) labels, so the text encoding ti is
repeated for, and concatenated with, each label encoding l◦i,l . The resulting batch of <text embedding,
label embedding> pairs [[ti, l◦i,1], . . . , [ti, l◦i,c]] 4 are fed into a ‘matcher’ classifier 5 that is trained
in 6 as a binary noise contrastive estimation loss LB [35] over multiple label (mis-)matches {0, 1}
per text instance ti. Unlike older works, we add contrastive self-supervision over pseudo labels as a
pretraining mechanism. Here, the word ‘variable’ is a positive self-supervision (pseudo) label for a
text instance ti, while words from other in-batch texts, e.g. ‘median’, provide negative pseudo labels.

We give the model a text instance i of words wi and a set of positive and negative label
words w◦i = w+

i ⊕w−j ∈ Rc=g+b. We also construct a label indicator Ii as ground truth
labels for the binary NCE loss in 6 . This label indicator contains a g-sized vector of ones
1 ∈ Ng

0 to indicate positive (matching) <text, label> embedding pairs and a b-sized zero
vector 0 ∈ Nb

0 to indicated mismatching pairs, resulting in the indicator

Ii = {1⊕ 0} ∈ Nc=g+b
0 0

CLESS then encodes input text and labels in three steps 1 - 3 . First, both the input text
(words) wi and the labels w◦i are passed through a shared embedding layer 1 to produce
E(wi) as text embeddings and E(w◦i ) as label embeddings. Then, the text embeddings are
encoded via a text encoder T 2 , while labels are encoded by a label encoder L as follows:

E(wi), E(w◦i ) 1

ti = T(E(wi)) 2

L◦i = L(E(w◦i )) = [l+i,1, . . . , l+i,g, l−i,1, . . . , l−i,b] 3

To make model learning more data-efficient we initialize the embedding layer E with
fastText word embeddings that we train on the 60MB of in-domain text data. Such word
embedding training only computes a few seconds, while enabling one to make the text
encoder architecture small, but well initialized. The text encoder T consists of a single,
k-max-pooled CNN layer followed by a fully connected layer for computation speed and
data-efficiency [30,37,38]. As a label encoder L, we average the embeddings of words in a
label and feed them through a fully connected layer—e.g. to encode a label ‘p-value’ we
simply calculate the mean word embedding for the words ‘p’ and ‘value’.
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To learn whether a text instance embedding ti matches any of the c label embed-
dings l◦i,· ∈ L◦i , we repeat the text embedding ti, c times, and concatenate text and label
embeddings to get a matrix Mi of <text, label> embedding pairs:

Mi = [[ti, l+i,1], . . . , [ti, l−i,c]] 4

This text-label paring matrix Mi is then passed to the matcher network M 5 , which
first applies dropout to each text-label embedding pair and then uses a three layer MLP to
produce a batch of c label match probabilities:

pi = {σ(M(Mi,1)), . . . , σ(M(Mi,c))} 5

Here, applying dropout to label and text embeddings induces a dense version of label
noise. Discrete {0,1} label dropout has been shown to improve robustness to label noise in
Szegedy et al. [33], Lukasik et al. [39]. Because we always predict correct pseudo labels in
pretraining, this forces the classifier to learn to correct dropout induced label noise.

Finally, we use a binary noise contrastive estimation loss as in [35], but extend it to use
g positives, not one.

LB = −1
c

g+b=c

∑
l=1

Ii,l · log(pi,l) + (1− Ii,l) · log(1− pi,l) 6

Here, LB is the mean binary cross-entropy loss of g positive and b negative labels—i.e.
it predicts c = b+g label probabilities pi, where the label indicators Ii from 1 are used as
ground truth labels.

Though we focus on evaluating CLESS for long-tail prediction in this work, other
NLP tasks such as question answering or recognizing textual entailment can similarly be
modeled as contrast pairs <X = ’text 1 [sep] text 2’, Y = ’is answer’>. Unlike T5 language
models [16], this avoids translating back and forth between discrete words and dense
token embeddings. Not using T5s’ softmax objective, also allows for predicting unforeseen
(unlimited) test classes (label). We provide details on hyperparameter tuning of CLESS for
self-supervised and supervised learning in Appendix C.

Figure 2. Head to long-tail as 5 balanced class bins: We bin classes by label frequency. Each bin
contains equally many active label occurrences. Classes within a bin are imbalanced and become
few-shot or zero-shot towards the tail, especially after train/dev/test splitting. Class frequencies are
given in log scale—task data details in Section 4.

4. Data: Resource Constrained, Long-Tail, Multi-Label, Tag Prediction

To study efficient, small model, long-tail learning for ‘text-to-text’ pretraining models,
we choose a multi-label question tag prediction dataset as a testbed. We use the “Questions
from Cross Validated” dataset, where machine learning concepts are tagged per question—–
https://www.kaggle.com/stackoverflow/statsquestions, accessed on 30 August 2021. This
dataset is small (80MB of text), and entails solving a challenging ‘text-to-text’ long-tailed
prediction task. The dataset has 85k questions with 244k positive labels, while we do not
use answer texts. As with many real-world problems, labels are vague, since tagging was
crowd-sourced. This means that determining the correct amount of tags per question (label

https://www.kaggle.com/stackoverflow/statsquestions
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density) is hard, even for humans. The task currently has no prior state-of-the-art. As seen
in Figure 2, the datasets’ class occurrence frequencies are highly long-tailed, i.e. the 20%
most frequently occurring classes result in 7 ‘head’ classes, while the 20% least frequent
(rightmost) label occurrences cover 80% or 1061/1315 of classes. Tags are highly sparse—at
most 4 out of 1315 tags are labeled per question. We pretrain fastText word embeddings on
the unlabeled text data to increase learning efficiency, and because fastText embeddings
only take a few seconds to pretrain. The full details regarding preprocessing can be found
in Appendix A.

Long-tail evaluation metrics and challenges:

Long-tail, multi-label classification is challenging to evaluate because (i) top-k quality
measures mask performance losses on long-tailed minority classes as Hooker et al. [6]
point out. Furthermore, (ii) measures like ROCAUC overestimate performance under class
imbalance [40,41], and (iii) discrete measures like F-score are not scalable, as they require
discretization threshold search under class imbalance. Fortunately, the Average Precision
score AP = ∑n(Rn − Rn−1)Pn addresses issues (i-iii), where Pn and Rn are precision and
recall at the nth threshold. We choose APmicro weighting as this score variant is the hardest
to improve.

5. Results

In this section, we analyze the three research questions: (RQ-1) Does RoBERTa learn
long-tail tag prediction well? (RQ-2) Can a 12.5x smaller CLESS model achieve good
long-tail prediction, and at what cost? (RQ-3) How does CLESS compare in zero to few-
shot prediction and does its model size matter. We split the dataset into 80/10/10 for
training, development, and test set. Test scores or curves are reported for models that have
the best development set average precision score APmicro over all 1315 classes. RoBERTa has
125 million parameters and is pretrained on 160GB of text data. CLESS has 8-10 million
parameters and is pretrained on just 60MB of in-domain text data. We use a ZeroR classifier,
i.e. predicting the majority label per class, to establish imbalanced guessing performance.
The ZeroR APmicro on this dataset is 0.002 since a maximum of 4 in 1315 classes are active
per instance—i.e., which underlines the challenge of the task.

Figure 3. Long-tail performance (RQ-1, RQ-2), over all five head to tail class bins—see Figure 2. The
tail class bin contains 80.7% or 1062/1315 of classes. The non-pretrained CLESS (2) underperforms,
while RoBERTa performs the worst on the 80.7% of tail classes. The largest pretrained CLESS model
(3.XL) outperforms RoBERTa in tail and mid class prediction, while performing nearly on par for the
7/1315 = 0.5% (most common) head classes.
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5.1. (RQ-1+2): Long-Tail Capture of RoBERTa vs. CLESS

Here we compare the long-tail prediction performance of RoBERTa (1) vs. CLESS
setups that, either were pretrained (3, 3.XL), or not pretrained (2). Plotting individual scores
for 1315 classes is unreadable. Instead, we sort classes from frequent to rare and assign
them to one of five ‘20% of the overall class frequency’ bins, such that all bins are balanced.
This means all bins contain the same amount of positive real labels (label occurrences) and
are directly comparable. As seen in Figure 2, this means that the head bin (left) contains
the most frequent 7/1315 = 0.5% classes, while the tail contains the most rarely occurring
1061/1315 = 80.7% classes.

5.1.1. RoBERTa: A Large Pretrained Model Does not Guarantee Long-Tail Capture

Figure 3 shows how a tag prediction fine-tuned RoBERTa performs over the five
class bins as described above or in Section 4. RoBERTa learns the most common (0.5%
head) classes well, but struggles with mid to tail classes. On the tail class bin, i.e., on
1061/1315 = 80.7% of classes, RoBERTa performs worse than a CLESS model that did not
use contrastive pretraining (2). This allows multiple insights. One, a large PLM should not
implicitly be assumed to learn long-tail information well. Two, large-scale pretraining data
should not be expected to contain enough (rare) long-tailed domain information for an
arbitrary end-task, since in the tail-domain, data is always limited. Three, even a small
supervised contrastive model, without pretraining, can improve long-tail retention (for
80.7% of classes). Together these results indicate that compressing a large PLM may not be
the optimal approach to training a small, long-tail prediction capable model.

5.1.2. CLESS: Contrastive Pretraining Removes the Need for Model Compression

Model (3) and (3.XL) use our contrastive pretraining on the end-tasks’ 60MB of un-
labeled text data before supervised fine-tuning. We see that models with contrastive
pretraining (3, 3.XL) noticeably outperform RoBERTa (1) and the non-pretrained contrastive
model (2), on all non-head class bins, but especially on the 80.7% tail classes. We also see
that the pretraining model parameter amount impacts CLESS performance as the 10 million
parameter model (3.XL) outperforms the 8M parameters model (3) over all class bins and
especially the tail bin. The above observations are especially encouraging as they tell us that
contrastive in-domain pretraining can produce small, long-tail learning capable models
without the need for compressing large models. It also tells us that model capacity matters
in long-tail information retention, but not in the common sense that large PLMs are as
useful as they have proven to be for non-long-tail learning applications. This also means
that contrastive self-supervised LM pretraining can help reduce algorithmic bias caused by
long-tail information loss in smaller models, the potential fairness impact of which was
described by [1,2,6].

5.1.3. Practical Computational Efficiency of Contrastive Language Modeling

Though the long-tail performance results of CLESS are encouraging, its computational
burden should ideally be equal or less than that of fine-tuning RoBERTa. When we analyzed
training times we found that RoBERTa took 126 GPU hours to fine-tune for 48 epochs, when
using 100% of fine-tuning labels. For the same task we found that CLESS (3.XL) took 7 GPU
hours for self-supervised pretraining (without labels) and 5 GPU hours for supervised
fine-tuning over 51 epochs—To bring CLESS to the same GPU compute load as RoBERTa
(≈ 96%) we parallelized our data generation—otherwise our training times double and
the GPU load is only ≈ 45%. As a result, pretraining plus fine-tuning takes CLESS (3.XL)
12 h compared to 126 for fine-tuning RoBERTa. This means that the proposed contrastive
in-domain pretraining has both qualitative and computational advantages, while remaining
applicable in scenarios where large collections of pretraining data are not available—which
may benefit use cases like non-English or medical NLP. Additionally, both methods benefit
from parameter search, but since CLESS unifies self-supervised pretraining and supervised
fine-tuning as one objective we can reuse pretraining hyperparameters during fine-tuning.
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A more in-depth account of computational trade-offs is given in Appendix B, while details
of hyperparameter tuning are given in Appendix C.

It is of course possible to attempt to improve the long-tail performance of RoBERTa,
e.g. via continued pretraining on the in-domain data [42] or by adding new tokens [43,44].
However, this further increases the computation and memory requirements of RoBERTa,
while the model still has to be compressed—which requires even more computation. We
also tried to further improve the embedding initialization of CLESS using the method
described in [45], to further boost its learning speed. While this helped learning very small
models (<2M parameters), it did not meaningfully impact the performance of contrastive
pretraining or fine-tuning.

5.2. (RQ-3.1-2): Contrastive Zero-Shot Long-Tail Learning

Thanks to the unified learning objective for self-supervised and supervised learning,
CLESS enables zero-shot prediction of long-tail labels after self-supervised pretraining,
i.e. without prior training on any labels. Therefore, in this section, we analyze the impact
of using more model parameters (RQ-3.1) as well as using more pseudo labels (RQ-3.2)
during self-supervised contrastive pretraining.

Figure 4. Zero-shot pretraining data-efficiency: by model size, pseudo label amount and pretraining
text amount. Left: The zero-shot (data-efficiency) performance of the self-supervised pretraining
base model (3) is increased when, adding more self-supervision pseudo labels (3.PL+) and when
increasing model parameters (3.XL). Right: When only using only a proportion of the pretraining
input data texts to pretrain model (3), its zero-shot learning is slowed down proportionally, but still
converges towards the 100% for all but the most extreme pretraining data reductions.

5.2.1. (RQ-3.1): More Self-supervision and Model Size Improve Zero-Shot Long-Tail
Capture

In Section 4, we study how CLESSs’ zero-shot long-tail retention ability is impacted by:
(left) using more pseudo labels (learning signal) during pretraining; and (right) by using
only portions of unlabeled text data for pretraining. To do so, we pretrain CLESS variants
on pseudo labels and evaluate each variant’s zero-shot APmicro performance over all 1315
classes of the real-label test set from Section 4. As before, we show test score curves for the
models with the best APmicro dev set performance.

The left plot of Figure 4, shows the effect of increasing the number of self-supervision
pseudo label and model parameters. The CLESS 8M model (3), pretrained with 8 million
parameters and 150 pseudo labels, achieves around .10APmicro on the test real labels as
zero-shot long-tail performance. When increasing the pseudo label number to 500 in model
(3.PL+), the model gains zero-shot performance (middle curve), without requiring more
parameters. When additionally increasing the model parameters to 10M in (3.XL), the zero-
shot performance increases substantially (top curve). Thus, both increasing self-supervision
signal amount and model size boost zero-shot performance.
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5.2.2. RQ-3.2: Contrastive pretraining Leads to Data-Efficient Zero-Shot Long-Tail Learning

Further, in the right plot of Figure 4 we see the CLESS 8M model (3) when trained
on increasingly smaller portions (100%, . . . , 10%) of pretraining text. For all but the small-
est pretraining data portions (<25%) the model still converges towards the original 100%
performance. However, as expected, its convergence slows proportionally with smaller
pretraining text portions since each data reduction implies seeing less pseudo label self-
supervision per epoch. As a result, the data reduced setups need more training epochs,
so we allowed 5x more waiting-epochs for early stopping than in the left plot. Thus, our
contrastive self-supervised objective can pretrain data-effectively from very limited data.
Similar data-efficiency gains from using contrastive objectives were previously only ob-
served in computer vision applications by Zimmermann et al. [18], which confirms our
initial intuition that contrastive self-supervision is generally useful for self-supervised
learning from limited data.

Methods like Pappas and Henderson [15], Jiang et al. [36], Augenstein et al. [46]
required supervised pretraining on real labels to later predict other, unseen labels in a
zero-shot fashion. CLESS instead uses self-supervised pretraining to enable zero-shot
prediction without training on real labels. This ‘text-to-text’ prediction approach is in-
tentionally reminiscent of zero-shot prediction approaches in large PLMs like GPT-3 [47],
but is instead designed to maximize zero-shot, long-tail prediction for use cases that
strongly limit pretraining data amounts and model size. Hooker et al. [6] hypothesized
that long-tail prediction depends on the model capacity (parameter amount). Additionally,
Brown et al. [47] found that zero-shot prediction performance depends on model capacity,
but [48,49] experimentally showed or visualized how inefficiently model capacity is used by
common models, especially after fine-tuning. From the above observations, we can confirm
the impact of model size for the doubly challenging task of long-tail, zero-shot prediction, but
we can also confirm that contrastive pretraining allows a model to much more efficiently
use its capacity for long-tail capture, i.e., requiring 12.5x fewer parameters (capacity) than
common the RoBERTa model. Perhaps more encouragingly, we also observed that cheap,
contrastive in-domain pretraining boosts zero-shot prediction, even when pretraining data
is very limited—i.e. either by lack of large domain text data or due to data limitations
caused by a long-tail distribution.

Figure 5. (RQ-3.3) Few-shot label-efficiency: (1) RoBERTa. (2) CLESS without pretraining. (3) CLESS
with pretraining. (3.XL) CLESS pretrained with more pseudo labels and model parameter as described
in (Section 5.2). APmicro_test scores for few-shot portions: 100%, 50%, 10% of training samples with
real labels. CLESS 10M outperforms RoBERTa, and retrains 93.5% of its long-tail performance using
only 10% of fine-tuning label texts.
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5.3. (RQ-3.3): Few-Shot Long-Tail Learning

Since CLESS models allow direct transfer (reuse) of the pretrained prediction head
for supervised label prediction one would also expect the models’ few-shot long-tail
prediction performance to benefit from self-supervised pretraining. We thus study the
few-shot learning performances of both CLESS and RoBERTa, to understand differences in
large pretrained language models (PLMs) and small contrastive language model (CLM)
pretraining in more detail. For the few-shot setup, we use 100%, 50% and 10% of labeled
text instances for supervised training or fine-tuning of all models. This implies that if labels
were common in the 100% setup, they now become increasingly rare or few-shot in the 10%
setup, since the smaller label sets are still long-tail distributed. We again use APmicro test
set performance over all 1315 classes to compare models.

In Figure 5, we see that when using full supervision (100%), all models perform
similarly, with CLESS (3.XL) slightly outperforming RoBERTa (0.493 vs. 0.487) APmicro_test.
For few-shot learning (10%, 50%), we see that CLESS 3.XL retrains 0.461/0.493 = 0.935% of
its original performance when using only 10% of fine-tuning labels, while RoBERTa and
CLESS 8M each retain around 77%. This demonstrates that even a sightly larger contrastive
pretraining model, with increased self-supervision signal (3.XL), not only improves zero-
shot learning performance as was seen in Figure 4, but also markedly boosts few-shot
performance. Noticeably, the only non-pretrained model (2), performs much worse than
the others in the more restricted few-shot scenarios. Since models (2) and (3) use the
same hyperparameters and only differ in being pretrained (3) or not being pretrained
(2), this demonstrates that contrastive self-supervised pretraining largely improves label
efficient learning.

6. Conclusion

We introduce CLESS, a contrastive self-supervised language model (CLM), that uni-
fies self-supervised pretraining and supervised fine-tuning into a single contrastive ‘text
embedding to text embedding’ matching objective. Through three research questions (RQ-1
to RQ-3) we demonstrate that this model learns superior zero-shot, few-shot, and fully su-
pervised long-tail retention in small models without needing to compress large models. In RQ-1,
we first show that a fine-tuned, large pretrained language model like RoBERTa should not
implicitly be expected to learn long-tail information well. Then, in RQ-2, we demonstrate
that our contrastive self-supervised pretraining objective enables very text data-efficient
pretraining, which also results in markedly improved (label efficient) few-shot or zero-shot
long-tail learning. Finally, in RQ-3, we find that using more contrastive self-supervision
signals and increasing model parameter capacity play important roles in boosting zero
to few-shot long-tail prediction performance when learning from very limited in-domain
pretraining data. We also find that the very low compute requirements of our method
make it a viable alternative to large pretrained language models, especially for learning
from limited data or in long-tail learning scenarios, where tail data is naturally limited. In
future work, we envision applying CLESS to low-data domains like medicine [27] and fact-
checking [50], or to tasks where new labels emerge at test time, e.g. hashtag prediction [51].
Code and setup can be found at https://github.com/NilsRethmeier/CLESS (accessed on
30 August 2021).
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Appendix A

Text preprocessing details: We decompose tags such as ‘p-value’ as ‘p’ and ‘value’
and split latex equations into command words, as they would otherwise create many long,
unique tokens. In the future, character encodings may be better for this specific dataset,
but that is out of our current research scope. Words embedding are pretrained via fastText
on the training corpus text. 10 tag words are not in the input vocabulary and thus we
randomly initialize their embeddings. Though we never explicitly used this information,
we parsed the text and title and annotated them with ‘Html-like’ title, paragraph, and
sentence delimiters, i.e. </title>, </p>, and </s>.

Appendix B

Here we will discuss the time and transfer complexity of CLESS vs. Self-attention
models. We do so since time complexity is only meaningful if the data-efficiency of two
methods is the same, because the combination of convergence speed, computation speed,
and end-task performance makes a model effective and efficient.

Table A1. Time complexity O(Layer), data-efficiency, number of trainable parameters, number of all
parameters. The data-efficiency of Convolutions (*) is reported in various works to be superior to
that of self-attention models [28,30,52–56]. d is the input embedding size and its increase slows down
convolutions. n is the input sequence length and slows down self-attention the most [57]. There exist
optimizations for both problems.

Layer Type O(Layer) Literature Reported Data Requirements Trainable Parameters

Convolution O(n · d2) small (*) 8M-10M (CLESS)

Self-Attention O(n2 · d) large to web-scale (*) 125M (RoBERTa)

Time complexity: Our text encoder uses a single 1D CNN encoder layer which
has a complexity of O(n · k · d · f ) vs. O(n2 · d) for vanilla self-attention as outlined
in Vaswani et al. [57]. Here n is the input sequence length, k is the convolution filter
size, d is the input embedding dimension [d = 512 in [57] vs. d = 100 for us], and f
is the number of convolution filters (at maximum f = 3 · 100 for our (3.XL) pretraining
model). Since we use kernel sizes {1, 2, 3} we get for the largest configuration (3.XL) an
O(n · k = 6 · d = 1 · f = 3d) ≈ O(n · 3d2) vs. O(n2 · 5d) in a vanilla (2017) self-attention
setup where d = 512. Furthermore Transformer self-attention runs an n-way soft-max
computation at every layer (e.g. 16 layers), while we run g · b single-class predictions at the
final output layer using a noise contrastive objective NCE. We use NCE to undersample
both: true negative learning labels (label=0) as well as positive and negative pseudo labels
(input words). If the goal is to learn a specific supervised end-task, more informed sampling
of positive and negative pseudo labels can be devised. However, we did not intend to
overfit the supervised task by adding such hand-crafted human biases. Instead we use
random sampling to pretrain a model for arbitrary downstream tasks (generalization),
which follows a similar logic as random masking does in masked language modeling.

Transfer complexity: Traditional transfer NLP approaches like RoBERTa [13] need to
initialize a new classification head per task which requires either training a new model per
task or a joint multi-task learning setup. CLESS however can train multiple tasks, even
if they arrive sequentially over time, while reusing the same classifier head from prior
pretraining or fine-tuning. Thus, there is no need to retrain a separate model each time
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as in current Transformer transfer models. Once pretrained a CLESS model can zero-shot
transfer to any new task since the match classifier is reused.

Appendix C

In this section, we describe the data and memory efficiency of the proposed method as
well as the hyperparameter tuning we conducted.

Data, sample and memory efficiency: We analyzed input data and label efficiency in
the main documents zero and few-shot learning sections. Regarding data-efficiency and
model design choices we were guided by the existing research and optimized for data-
efficient learning with inherent self-supervised zero-shot capabilities in order to facilitate
and study supervision-free generalization to unforeseen tasks. We explain the origins of
these design choices in more detail below. As mentioned in the related research section,
Transformers rely on large to Web-scale pretraining data collections ‘end-task external pre-
training data’ [52,53], which results in extensive pretraining hardware resources [58,59], con-
cerns about environmental costs [56,60] and unintended contra-minority biases [56,61,62].
CNNs have been found to be more data-efficient than Transformers, i.e., train to better per-
formance with less data, several works. For example in OPENAI’s CLIP model, see Figure
2 in [30], the authors find that replacing a Transformer language model backbone with a
CNN backbone increased the zero-shot data-efficiency 3 fold, which they further increased
by adding a supervised contrastive learning objective. Ref. [38] showed that adding a CNN
component to a vision Transformer model helps with data and computational efficiency,
see Figure 5 and text in [38]. When comparing works on small-scale data pretraining
capabilities between [54] (CNN, LSTM) with recent Transformer models Wang et al. [55],
one can see that Transformer encoders struggle to learn from small pretraining collections.
They also struggle to fine-tuning on smaller supervised collections [12,32,59]. For CLESS,
tuning the embedding layer made little difference to end-task performance, when starting
training with pretrained fastText word embedding. Thus embedding tuning the embedding
layer can be turned off to reduce gradient computation and memory. For example, when
not tuning embeddings, the CLESS 10M model has only 3.2M trainable parameters.

Parameter tuning + optima (2)-(3.XL) We provide detailed parameter configurations
as python dictionaries for reproducibility in the code repository within the /confs folder.
In Table A2 we see how the hyperparameters explored in CLESS—the optimal CLESS
3.XL parameters are marked in bold. The baseline CLESS configuration (2) hyperpa-
rameters were found as explained in the table, using the non-pretraining CLESS 8M (2)
model—its best parameters are italic. We found these models by exploring hyperparam-
eters that have been demonstrated to increase generalization and performance in [63,64].
To find optimal hyperparameter configurations for the baseline model (2) we ran a ran-
dom grid search over the hyperparameter values seen in Table A2. For the baseline
CLESS 8M model (2), without pretraining, we found optimal hyperparameters to be:
lr = 0.001 (lr=0.0005 works too), f ilter_sizes_and_number = {1 : 100, 2 : 100, 3 : 100},
match_classi f ier=two_layer_classifier, ’conf’:[{’do’: None|.2, ’out_dim’: 2048 | 4196 |
1024}, max_kpooling=7, bs=1536, etc.—see Table A2. Increasing the filter size, classifier
size, its depth, or using larger k in k-max pooling decreased dev set performance of the
non-pretrained model (i.e., CLESS 8M) due to increased overfitting. The largest pretrained
CLESS 10M (3.XL) model was able to use more: ‘max-k=10’, a larger ‘label’ and ‘text
sequence encoder’= one_layer_label_enc, ’conf’:[{’do’: .2, ’out_dim’: 300} while the batch
size shrinks to 1024 due to increased memory requirements of label matching. Note that
label and text encoder have the same output dimension in all settings—so text and label
embeddings remain in the same representation dimensionality R300. The label encoder
averages word embeddings (average pooling), while the text encoder uses a CNN with
filters as in Table A2. The model receives text word ids and label-word ids, that are fed to
the ‘text encoder’ and ‘label-encoder’. These encoders are sub-networks that are configured
via dictionaries to have fully connected layers and dropout, with optimal configurations
seen in the table. As the match-classifier, which learns to contrast the (text embedding,
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label embedding) pairs, we use a two_layerMLP which learns a similarity (match) function
between text embedding to label embedding combinations (concatenations).

Table A2. Explored parameters. We conducted a random grid search over the following hyperpa-
rameters while optimizing important parameters first to largely limit trials. We also pre-fit the filter
size, lr, and filters on a 5k training subset of samples to further reduce trails. Then, to further reduce
the number of trials, we tuned in the following order: learning rate lr, filter sizes f , max-k pooling,
tuning embeddings, batch size bs, and finally the depth of the matching-classifier MLP. This gave us
a baseline model, (2) CLESS 8M, that does not use pretraining to save trials and compute costs, but
could be used to build up into the self-supervised pretraining models (3) and (3.XL) by increasing
self-supervision and model size. Fortunately, RoBERTa has established default parameters reported in
both its code documentation (https://github.com/pytorch/fairseq/tree/master/examples/roberta)
(accessed on 30 September 2021) and the https://simpletransformers.ai (accessed on 30 September
2021) version, where we varied batch size, warmup, and learning rate around the default setting of
these sources. Below we give the search parameters for CLESS. For CLESS 8M (2,3) the best params
are italic and for CLESS 10M (3.XL) the best params are bold.

Filter size: num filters
{1: 57, 2: 29, 3: 14}, {1:100, 2:100, 1:100},{1: 285, 2: 145, 3: 70},
{1:10, 10:10, 1:10}, {1:15, 2:10, 3:5}, {1:10}, {1:100}, {10:100}

lr 0.01, 0.0075, 0.005, 0.001, 0.0005, 0.0001

bs (match size) 1024, 1536, 4096

max-k 1, 3, 7, 10

match-classifier
two_layer_classifier, ’conf’:[{’do’: None|.2, ’out_dim’: 2048|4196|1024}, {’do’:None|0.2}]},
one_layer_classifier, ’conf’:[{’do’:.2}]}

label encoder
one_layer_label_enc, ’conf’:[{’do’: None|.2, ’out_dim’: 100},
one_layer_label_enc, ’conf’:[{’do’: .2, ’out_dim’: 300}

seq encoder
one_layer_label_enc, ’conf’:[{’do’: None|.2, ’out_dim’: 100},
one_layer_label_enc, ’conf’:[{’do’: .2, ’out_dim’: 300}

tune embedding: True, False

#real label samples: 20, 150, 500 (g positives (as annotated in dataset), b random negative labels—20 works well too)

#pseudo label samples: 20, 150, 500 (g positives input words, b negative input words)—used for self-superv. pretraining

optimizer: ADAM—default params, except lr

Parameter tuning + optima (2)-(3.XL) We provide detailed parameter configurations
as python dictionaries for reproducibility in the code repository within the /confs folder.
In Table A2 we see how the hyperparameters explored in CLESS—the optimal CLESS
3.XL parameters are marked in bold. The baseline CLESS configuration (2) hyperpa-
rameters were found as explained in the table, using the non-pretraining CLESS 8M (2)
model—its best parameters are italic. We found these models by exploring hyperparam-
eters that have been demonstrated to increase generalization and performance in [63,64].
To find optimal hyperparameter configurations for the baseline model (2) we ran a ran-
dom grid search over the hyperparameter values seen in Table A2. For the baseline
CLESS 8M model (2), without pretraining, we found optimal hyperparameters to be:
lr = 0.001 (lr=0.0005 works too), f ilter_sizes_and_number = {1 : 100, 2 : 100, 3 : 100},
match_classi f ier=two_layer_classifier, ’conf’:[{’do’: None|.2, ’out_dim’: 2048 | 4196 |
1024}, max_kpooling=7, bs=1536, etc.—see Table A2. Increasing the filter size, classifier
size, its depth, or using larger k in k-max pooling decreased dev set performance of the
non-pretrained model (i.e., CLESS 8M) due to increased overfitting. The largest pretrained
CLESS 10M (3.XL) model was able to use more: ‘max-k=10’, a larger ‘label’ and ‘text
sequence encoder’= one_layer_label_enc, ’conf’:[{’do’: .2, ’out_dim’: 300} while the batch
size shrinks to 1024 due to increased memory requirements of label matching. Note that
label and text encoder have the same output dimension in all settings—so text and label

https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://simpletransformers.ai
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embeddings remain in the same representation dimensionality R300. The label encoder
averages word embeddings (average pooling), while the text encoder uses a CNN with
filters as in Table A2. The model receives text word ids and label-word ids, that are fed to
the ‘text encoder’ and ‘label-encoder’. These encoders are sub-networks that are configured
via dictionaries to have fully connected layers and dropout, with optimal configurations
seen in the table. As the match-classifier, which learns to contrast the (text embedding,
label embedding) pairs, we use a two_layerMLP which learns a similarity (match) function
between text embedding to label embedding combinations (concatenations).

During self-supervised pretraining, the models (3) and (3.XL) optimize for arbitrary
unforeseen long-tail end-tasks, which allows zero-shot prediction without ever seeing real
labels, but also uses a very diverse learning signal by predicting sampled positive and
negative input word embeddings. If the goal is to solely optimize for a specific end-task,
this self-supervision signal can be optimized to pretrain much faster, e.g. by only sampling
specific word types like nouns or named entities. With specific end-task semantics in mind,
the pseudo label and input manipulations can easily be adjusted. This allows adding new
self-supervision signals without a need to touch the model’s network code directly, which
helps ease application to new tasks and for less experienced machine learning practitioners.
Finally, we mention implementation features, that can safely be avoided to reduce com-
putation and optimization effort, so that following research needs not explore this option.
When training the supervised and self-supervised loss at the same time (jointly), CLESS
rescales both batch losses to be of the same loss value as using a single loss. This makes
it easy to balance (weight) the two loss contributions in learning, and allows transferring
hyperparameters between self-supervised and supervised pretraining. We also allow re-
weighting the loss balance by a percentage, so that one loss can dominate. However, we
found that in practice: (a) using the self-supervised loss along with the supervised one
does not improve quality, but slows computation (2 losses). (b) We also found that, if one
decides to use joint self and supervised training, loss re-weighting had no marked quality
effects, and should be left at 1.0 (equal weighting), especially since it otherwise introduces
further, unnecessary hyperparameters. For pretraining research, hyperparameter search is
very involved, because we deviate in common practice by introducing a new architecture,
a new loss variation, an uncommon optimization goal and metrics as well as a new dataset.
Thus we ended up with 205 trails for small test set, RoBERTa, CLESS variants, zero-shot
and few shot hyperparameter search. On the herein reported dataset, we have not yet
tested further scaling up model parameters for pretraining as this goes against the goal of
the paper and is instead investigated in followup work. Furthermore, when we ran such
parameter scale-up experiments, to guarantee empirical insights, these created a significant
portion of trails, meaning that, now that sensible parameters are established, we can use
much fewer trials, as is the case with pretrained transformers. The work at hand suggest
that, once sensible parameters are established, they are quite robust, such that doubling the
learning rate, batch size and loss weighting only cause moderate performance fluctuations.
Finally, the above reported pretraining hyperparameters seem to work well on currently
developed followup research, that uses other, even much larger, datasets. This makes the
205 hyperparameter trials a one time investment for initial pretraining hyperparameter
(re)search for this contrastive language model (CLESS).
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