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Abstract: The optimum design of tall buildings, which have a proportionately huge quantity of
structural elements and a variety of design code constraints, is a very computationally expensive
process. In this paper, a novel strategy, with a combination of evolutionary algorithms and machine
learning methods, is developed for achieving the optimal design of tall buildings. The most time-
consuming part is the analysis of tall buildings and the control of design code constraints requiring
long and frequent analyses. The main idea is to use machine learning methods for this purpose. In this
study, a practical methodology for obtaining the optimal design of tall building structures, regarding
the constraints imposed by typical building codes, is introduced. The optimization process will be
performed by a novel evolutionary algorithm, named asymmetric genetic algorithm (AGA), and in
each iteration that requires checking the constraints for a large number of different structural states,
machine learning methods, including MLP, GMDH and ANFIS-PSO are facilitators. More specifically,
MLP (R2 = 0.988) has performed better than GMDH (R2 = 0.961) and ANFIS-PSO (R2 = 0.953). By
coupling ETABS and MATLAB software, various combinations of sections for structural elements
are assigned and analyzed automatically, thus creating a database for training neural networks.
The applicability of the suggested procedure is described through the determination of the optimal
seismic design for a 40-story framed tube building. Results designate that the present method not
only supports the precision of the methodology but also remarkably diminishes the computational
time and memory needed in comparison with the existing classical methods. More importantly, the
optimization process time is also significantly decreased.

Keywords: practical structural optimization; seismic design; steel high-rise buildings; machine
learning; group method of data handling; multilayer perceptron; hybrid ANFIS–PSO; artificial
neural network

1. Introduction

In recent years, the demand for the optimal candidate of tall building structures has
grown significantly due to financial issues. On the other hand, the dependable design of
such structures brings many difficulties for an engineer because of the significant number
of structural members and also the strict design constraints imposed by codes. This makes
the conventional design provided by engineers not necessarily economical. This highlights
the significance of optimization tools in the design process of these structures to save on
construction costs [1–4]. Many of the studies in the field of tubular structures deal with
the modeling of a tall building as a huge cantilever box beam [5–7]. The recent advances
in high-performance computers made possible the precise analysis of the whole frame
of the high-rise building during the optimization process. Chan et al. [8] introduced an
iterative procedure based on drift, strength, and fabrication constraints. The effects of
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various parameters on the tube action of a reinforced concrete 55-story hotel building were
investigated by Shin et al. [9]. Some researchers proposed techniques for the minimization
of the weight of high-rise buildings subject to wind loads [10,11]. Aldwaik and Adeli [12]
conducted a review of the optimization of high-rise buildings with either tubular or other
structural systems.

The above-mentioned studies mostly consider fixed patterns of loads; however, an-
other line of thought deals exclusively with the seismic loads which lead to more cum-
bersome behavior in the structure. In this respect, the design codes prescribe additional
strict limitations on the design of structures subject to seismic loads. During the past
decades, many researchers focused on the seismic assessment of the structures [13,14].
More specifically, many studies incorporated seismic considerations into optimization
problems [15–17]. Moghaddam and Hajirasouliha [18] introduced an optimization tech-
nique to reach the uniform deformation of members in two-dimensional (2D) tall shear
buildings subject to seismic excitation. Furthermore, Ganjavi et al. [19] investigated the
best distribution of seismic lateral loads to achieve uniform damage distribution in 2D
shear buildings considering the soil–structure interaction (SSI). Recently, many researchers
employed optimization methods to reach the desired seismic performance objectives at
various seismic hazard levels in 2D low-rise and mid-rise steel frames [20,21] and also in
2D reinforced concrete frames [22]. Recently, with the aid of gradient-based optimization
algorithms, Sarcheshmehpour et al. proposed practical methodologies for optimal seismic
design of steel-framed tube tall buildings based on conventional building codes [23], as
well as life cycle costs [24].

Notwithstanding ample research on the optimization problems of tall buildings, using
soft computing methods in optimal seismic design of tall buildings is scarce in the literature.
In the current research, a practical methodology with logical computational demand to
achieve the most beneficial possible design within the constructional aspects, by the com-
bination of machine learning methods and evolutionary algorithms, was proposed. First,
the optimization problem considering all constraints is described. Then, by establishing
the connection between MATLAB and ETABS software, a huge database, which was used
for training ANNs, is created. The methods of MLP, GMDH, and ANFIS-PSO were inves-
tigated and the best one was selected for evaluating the constraints in the optimization
process, which was based on the AGA algorithm. Finally, the result for a sample 40-story
building was presented. The structural analysis procedure for creating the database is
convoyed based on the Iranian National Building Code (INBC), which is almost identical
to the ANSI/AISC 360-10 LRFD design guide [25].

2. Formulation of the Optimization Problem

In this section, the general formulation for seismic design optimization of high-rise
buildings is presented. The structural design is performed according to the conventional
load and resistance factor design (LRFD) approach:

Design for serviceability: Based on the Iranian Code of Practice for Seismic Resistant
Design of Buildings (Standard No. 2800), the inter-story drift ratio (∆i) of different stories of
the buildings more than five stories high, the following constraint shall be satisfied under
design seismic forces:

Cd∆i ≤ 0.02, (1)

In which Cd indicates the amplification factor accounting for the expected
inelastic response.
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1. Design for Strength
According to the building code, the demand–capacity ratio defined in Equation (2)
shall be equal to or less than one for all load combinations, i.e.,

Ru

φ Rn
≤ 1, (2)

where Ru represents the required strength under all LRFD load combinations and
φ Rn indicates the design strength of each structural element.

2. Strong-column/weak-beam (SC/WB): For the design of Special Moment Frames
(SMFs), the moment ratio shall satisfy the following constraint at each beam-to-column
connection:

∑ M∗
pb

∑ M∗
pc

< 1, (3)

where ∑ M∗
pb represents the total flexural strength of all beams attached to the connec-

tion and ∑ M∗
pc indicates the total flexural strength of the columns with a reduction

for the axial force.
3. Practical limitations: from a practical perspective, the dimensions of columns in

each story shall not be less than those in the upper stories. This constraint can be
formulated as:

dCol
j,i ≥ dCol

j+1,i, bCol
j,i ≥ bCol

j+1,i , j = 1, 2, · · · , NS − 1; i = 1, 2, · · · , NC, (4)

In Equation (4), dCol
j,i and bCol

j,i represent the depth and the width of the section of the
ith column in the jth story, respectively. Furthermore, NC denotes the number of columns
in each story and NS is the total number of stories.

In the current design optimization problem, the total weight of all beams and columns
in the 3D steel tall building indicates the objective function and all the above-mentioned
inequalities behave as the optimization constraints. In addition, the section properties of
the structural elements are considered as the design variables. The resulting nonlinear
constrained optimization problem is attacked by two basic approaches, in the current study.
The first one is the metaheuristic optimization method, named AGA. The second one is
using machine learning techniques for determining nonlinear inequality constraints instead
of time-consuming analytical approaches. For the sake of convenience, the proposed
procedure of the optimal seismic design is illustrated in Figure 1. A full description of the
parameters available in Figure 1 can be found in [23].
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Figure 1. The iterative procedure for the optimal structural seismic design.

3. Structural Model

In this study, a 40-story framed tube building is considered as the case study to
demonstrate the applicability of the proposed strategy. The 3D view and the typical floor
plan of this building are shown in Figure 2. As seen, in both directions, the plan consists
of nine bays, each with a length of 3 m. The gravitational columns (GC) and the corner
columns (CC) of the perimeter tube have box sections. The sections of the rest of the
columns (P1C and P2C) are I-shaped sections. As shown in Figure 2, there are two types of
non-corner perimeter columns: P1C columns which are only connected to the perimeter
beams from both sides, and P2C columns which are also connected to the pin-ended
gravitational beams (GB). The spandrel beams (PB) are fixed-ended and have a length of 3
m. Moreover, both types of gravitational beams (GB and IGB) are pin-ended with a length
of 9 m. As seen in Figure 2, IGB beams connect the gravitational columns together and GB
beams connect the gravitational columns to the perimeter tube.
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Figure 2. The 3D and plan view of the 40-story framed tube building.

The case study is a residential building in which the first four stories are considered as
parking lots. The gravitational beams (GB or IGB) are divided into two groups based on
their position in either residential floors or parking lots. For practical design purposes, all
spandrel beams and all columns are grouped every four stories. This leads to a considerable
reduction in the number of design variables. It is worth mentioning that the index i in
Figure 2 represents the group number of each structural section.

The building is considered to be located in Tehran with a very high level of seismicity.
Furthermore, the soil beneath the building is consistent with Soil Type 2 of Iranian seis-
mic code (in a depth of 30 m, the average shear wave velocity is between 375 m/s and
750 m/s). A fixed base is assumed at the ground level and all supports are fixed in the
structural model.

By coupling ETABS [26] and MATLAB software, 7800 combinations of sections for
structural elements are assigned and analyzed automatically, thus creating a database for
training neural networks.

Section Decision Variables

In this research, the sections properties indicating the decision variables are considered
to be continuous. The number of design variables reduces appreciably by relating all
dimensions of the section to its depth through rational equations. In this study, linear
equations relating the dimensions of the sections to their depths are determined according
to Euro-standard sections. For more details refer to [23,24].

The above-mentioned relations for I-shape sections pertinent to the non-corner columns
of the perimeter tube and beams are presented in Equations (5) and (6), respectively.

b f = d,
t f = 0.055d + 0.35
tw = 0.015d + 0.6

(5)

b f = 0.35d + 3.3,
t f = 0.026d + 0.33
tw = 0.016d + 0.25

(6)

In Equations (5) and (6), d is the section depth, b f denotes the flange width, t f is the
flange thickness, and tw represents the web thickness.

As mentioned before, all the corner and gravitational columns have box shape sections.
The equation relating the thickness (t) of the box section to its depth (d) is given as:

t = 0.06d (7)
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4. Machine Learning Techniques for Constraint Evaluation

Recently, machine learning has become very popular in engineering applications [27,28].
In this study, three non-linear machine learning models, namely multiplayer perceptron
(MLP) [29], group method of data handling (GMDH) [30], and combining adaptive-network-
based fuzzy inference system and particle swarm optimization (ANFIS–PSO) [31] were
employed to estimate structural constraints. These methods are examined and the best one
is selected in the optimization process as the function of constraint evaluation. For training
ANNs, 7800 models were created. For instance, the effect of dataset size for estimation
of one of the constraints, design ratio of CC1, by MLP method, is shown in Figure 3. As
shown in this figure, the number of 6000 is sufficient for the dataset size. Therefore, creating
the 7800 model is appropriate. By trying several different models for neural networks, their
final structures are presented in Table 1.
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Table 1. The parameters of Machine Learning methods.

ML Methods Parametrs

MLP
Number of Layers: 1 Training Percentage: 65%

Number of neurons: 20 Testing Percentage: 30%
Structure: 54-20-1 ANN Validation Percentage: 5%

GMDH
Maximum number of neurons in a layer: 30

Maximum number of
layers: 6 Training percentage: 50%

Selection pressure: 0.2 Testing percentage: 50%

ANFIS-PSO

Number of the
iterations: 5000 Cognitive acceleration: 1

Number of particles: 65 Social acceleration: 1.5
Initial inertia weight: 0.8 Training percentage: 70%
Final inertia weight: 0.2 Testing percentage: 50%

In Figure 4, the performances of the three selected ML tools are compared. It can be
seen that MLP is more accurate than GMDH and ANFIS-PSO in calculating the constraints
and catching the structural response. The output provided by MLP is shown to be much
less scattered than the others, and the linear interpolation of all the pairs of results is well
aligned with the (perfect fit) bisector of the quadrant. Therefore, for the optimization
process, the MLP method is selected.
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5. Results

In this part, the details of the optimal designs and the seismic behavior of the 40-story
framed tube are presented. For the optimization process, the algorithms of AGA, which are
depicted in [2], are used. The AGA algorithm has some differences from the GA, the most
important of which are in the constraints evaluation strategy. In AGA, initial population
members are sorted by goal function, and, despite GA, just the constraints of the best
member are evaluated. If the best member satisfies the constraints, AGA does not evaluate
other members’ constraints. If not, the penalty function is applied to the best one, and then
the population is sorted again, and the new best solution is evaluated by the constraints
again. This procedure proceeds to achieve the lowest weight member that is satisfied by
whole constraints. After reaching this goal, AGA goes to the next level, as is shown in the
related part in Figure 1. As a result, evaluation of constraints is not carried out for whole
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members of the population in AGA. See [2] for more information. The hyperparameters of
AGA were selected by trying different values of the number of generations, the population
size, the crossover probability, and the mutation probability, and the amounts of them are
200, 50, 60, and 5, respectively.

The optimization of the 40-story building consists of 54 decision variables. The sections’
depths of the optimal designs associated with the 40-story building with both systems
are given in Table 2. The inter-story drift ratios of different stories, SC/WB ratios, and
demand–capacity ratios relevant to the optimal design of the 40-story building, as well as
the corresponding code limits, are depicted in Figure 5.
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Table 2. The depth of columns sections in the optimal design of the building in (mm).

Element Name
Group Number

1 2 3 4 5 6 7 8 9 10

CC 1210 1118 983 853 724 598 475 401 340 273
P1C 593 593 581 569 553 533 511 480 433 357
P2C 605 599 583 566 544 517 493 468 428 358
GC 994 829 779 728 674 616 550 476 391 281
PB 577 635 637 631 615 585 563 539 495 423
GB 598 552 . . . . . . . . . . . . . . . . . . . . . . . .
IGB 590 554 . . . . . . . . . . . . . . . . . . . . . . . .

6. Conclusions

In the current work, the optimal seismic design of high-rise buildings, which is a
large-scale optimization problem, a time-consuming process requiring huge computational
demands, was investigated. These problems are cast into the context of optimization
with the combination of evolutionary algorithms and machine learning methods. AGA,
as a novel evolutionary algorithm, was employed for the optimization process. The
algorithm converged to optimal design, whose specifications were presented, with an
initial population of 50 after 200 iterations. For constraint evaluation, three machine
learning methods including MLP, GMDH, and ANFIS-PSO were investigated and the best
one, MLP, with a coefficient of determination of 0.988, was selected. Therefore, the strategy
mentioned in this paper can be used to achieve the minimum weight of the tall buildings
along with meeting all practical and design code constraints. This strategy donates a
methodical procedure for the reasonable comparison of different tall building designs.
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