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Abstract: To meet the need for reliable real-time monitoring of civil structures, safety control and
optimization of maintenance operations, this paper presents a computational method for the stochas-
tic estimation of the degradation of the load bearing structural properties. Exploiting a Bayesian
framework, the procedure sequentially updates the posterior probability of the damage parameters
used to describe the aforementioned degradation, conditioned on noisy sensors observations, by
means of Markov chain Monte Carlo (MCMC) sampling algorithms. To enable the analysis to run
in real-time or quasi real-time, the numerical model of the structure is replaced with a data-driven
surrogate used to evaluate the (conditional) likelihood function. The proposed surrogate model relies
on a multi-fidelity (MF) deep neural network (DNN), mapping the damage and operational param-
eters onto sensor recordings. The MF-DNN is shown to effectively leverage information between
multiple datasets, by learning the correlations across models with different fidelities without any
prior assumption, ultimately alleviating the computational burden of the supervised training stage.
The low fidelity (LF) responses are approximated by relying on proper orthogonal decomposition
for the sake of dimensionality reduction, and a fully connected DNN. The high fidelity signals,
that feed the MCMC within the outer-loop optimization, are instead generated by enriching the LF
approximations through a deep long short-term memory network. Results relevant to a specific
case study demonstrate the capability of the proposed procedure to estimate the distribution of
damage parameters, and prove the effectiveness of the MF scheme in outperforming a single-fidelity
based method.

Keywords: structural health monitoring; Markov chain Monte Carlo; deep learning; multi-fidelity;
reduced order modeling; damage identification

1. Introduction

Civil structures and infrastructures are critical for the life of the world population and
play a strategic role for the global economy [1]. Aging and ever-increasing extreme loading
conditions threaten existing and new structural systems, stressing the need of real-time
structural health monitoring (SHM) procedures to detect and identify any deviation from
the damage-free baseline [2].

Vibration-based SHM techniques investigate the structural health by recording and
analyzing the vibration response, e.g., acceleration or displacement multivariate time
series, of the monitored structure. Two competitive SHM approaches can be formally
distinguished [3]: the model-based one, e.g., [4,5], and the data-based one, e.g., [6,7].
The former is usually implemented through an updating strategy of a physics-based model
on the basis of measured experimental data, which attempts to estimate the location and the
extent of the occurred structural changes. The latter is based on a machine learning (ML)
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paradigm that, once trained, can be used as a black-box tool. ML systems automatically
learn how the features, originated from the recorded data, are statistically correlated
with the sought damage patterns [8]. After the advent of deep learning (DL), which can
incorporate the selection and extraction of optimized features into the end-to-end learning
processes, the feature engineering stage has been progressively automatized.

This work proposes an output-only approach to the damage localization problem (see
for instance [9,10]), leveraging a synergic combination of multi-fidelity (MF) data-driven
meta-modeling and Bayesian parameter identification. The probability distribution of
the unknown damage parameters is approximated through a Markov chain Monte Carlo
(MCMC) sampling algorithm.

MCMC has been applied in Bayesian model updating and model class selection in
structural mechanics as well as in SHM, see, e.g., [11,12]. In this work, MCMC is used to
construct a Markov chain of the sought damage parameters, whose limit distribution is
the target probability distribution. The probability distribution is sequentially updated by
exploring the support of the damage parameters with a density of steps proportional to the
unknown posterior distribution. The sampling acceptance is governed by the evidence of
the current parameters to represent sparse dynamic response measurements, as provided
by a sensors network, by means of a data-driven surrogate model.

Because handling finite element (FE) simulations within an MCMC analysis is com-
putationally impractical, a FE model capable of simulating the effect of damage on the
structural response is adopted only to build labelled datasets of vibration recordings for
known damage positions, see for instance [13]. A data-driven surrogate model is adopted
instead to map operational and damage parameters to the associated vibration signals in
place of the FE model. Such surrogate is based on a multi-fidelity deep neural network
(MF-DNN) trained on synthetic data of multiple fidelities, a ML paradigm adopted and
extended for instance in [14,15]. Specifically, a limited amount of high fidelity (HF) data and
a lot of cheaper low fidelity (LF) data are considered. This type of meta-modeling is useful
to alleviate the high demand during training of HF data, potentially expensive to collect.
Indeed, the LF data supply useful information on the trends of HF data, allowing the
MF-DNN to enhance the prediction accuracy only leveraging few HF data in comparison
to the single-fidelity method [16].

2. SHM Methodology

The proposed methodology is detailed as follows. The composition of the datasets
used to train the surrogate model is specified in Section 2.1, the considered numerical mod-
els are discussed in Section 2.2, the MF-DNN surrogate model is described in Section 2.3,
and the setup of the MCMC analysis for damage localization is explained in Section 2.4.

2.1. Datasets Definition

The LF and HF datasets, respectively DLF and DHF, are built from the assembly of ILF
and IHF instances, as follows

DLF = {(xLFi , ULF
i )}ILF

i=1 , DHF = {(xHFj , UHF
j )}IHF

j=1 ; (1)

each LF instance is provided by a LF model of the structure to be monitored in undamaged
conditions, and consists of the input parameters xLFi ∈ RNLFpar defining the operational
conditions, i.e., the loadings acting on the structure during the i-th instance, and the relative
LF vibration time-histories ULF

i (xLFi ) = [uLF
1 , . . . , uLF

Nu
]i ∈ RNu×L shaped as Nu arrays of

length L. The HF counterpart is provided by a HF model of the same structure, which
also accounts for the presence of structural damage and internal damping. Each HF
instance consists of the input parameters xHFj ∈ RNHFpar , defining the operational and damage
conditions, with NHFpar > NLFpar, and the associated HF vibration recordings UHF

j (xHFj ) ∈
RNu×L. As often done in the SHM literature, see for instance [3,6,12], the structural damage
is modeled as a selective reduction of the material stiffness, applied to a subdomain
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identified by the spatial coordinates of its center θj ⊂ xHFj . For simplicity, the same sampling
frequency and monitored degrees of freedom (dofs) are considered for the two fidelities,
but there are no restrictions on this respect. Each instance refers to a time window (0, T),
short enough to assume steady operational, environmental, and damage conditions. In the
reminder of the paper the indexes i, j will be dropped.

2.2. Datasets Population

The monitored structure is modeled as an elastic continuum discretized in space by
means of a FE triangulation. The HF numerical model results from the semi-discretized
form of the elasto-dynamic problem defined over the FE mesh. On the other hand, in order
to ease the construction of a large LF dataset, a projection-based model order reduction
strategy for parametrized systems is adopted to build the LF model, see, e.g., [9]. To this
aim, the reduced basis method [17] relying on the proper orthogonal decomposition (POD)-
Galerkin approach is considered. Hence, the LF approximation is obtained as a linear
combination of POD-basis functions, yet not accounting for the presence of damage and
structural damping. The LF and HF models read respectively as

MRd̈R(t) + KRdR(t) = fR(xLF) , t ∈ (0, T)
dR(0) = W>d0
ḋR(0) = W>ḋ0 ,

(2)


Md̈(t) + C(xHF(θ))ḋ(t) + K(xHF(θ))d(t) = f(xHF) , t ∈ (0, T)
d(0) = d0
ḋ(0) = ḋ0 ,

(3)

where the superscripts L and H are omitted from all the arrays for simplicity, while the
superscript R stands for reduced. Having denoted by: t ∈ (0, T) the time coordinate;
d(t) ∈ RM, ḋ(t) ∈ RM and d̈(t) ∈ RM the vectors of nodal displacements, velocities and
accelerations, respectively, whereas M is the number of dofs; M ∈ RM×M the mass matrix;
C(xHF(θ)) ∈ RM×M the damping matrix, modeled as Rayleigh damping for mathematical
convenience; K(xHF(θ)) ∈ RM×M the stiffness matrix; f(xLF), f(xHF) ∈ RM the vectors of
nodal forces; d0 and ḋ0 the initial conditions at t = 0; W = [w1, . . . , wMR ] ∈ RM×MR

the matrix gathering the MR � M retained POD-basis functions; MR, KR, fR(xLF), dR(t)
the reduced arrays, playing the same role of the FE matrices but with dimension ruled
by MR instead of M. It has to be noted that, even if in this case the two fidelities differ
through the presence of structural damage and viscous damping in the HF model, the pro-
posed computational framework is general and can be arbitrarily adapted to different
modeling choices.

The datasets DLF and DHF are populated accordingly to Equation (1) by sampling the
parametric input spaces, respectively defined by a uniform probability distribution over
xLF and xHF, via latin hypercube sampling. The relevant vibration recordings ULF and UHF

are extracted from dLF and dHF, respectively, through a Boolean operation.

2.3. MF-DNN Surrogate Model

The MF-DNN NNMF is composed of a LF neural network NNLF, trained on low-cost
data, which is used as baseline model, and a HF neural network NNHF, trained on few HF
data, which is used to adaptively learn the correlation between LF and HF data. The overall
evaluation of NNMF reads as

ÛHF = NNMF(xHF, xLF) = NNHF(xHF, ÛLF) , ÛLF = reshape[Y(
1
ω
�NN LF(xLF))] ; (4)

here: Y = [y1, . . . , yMLF
] ∈ RLconcat×MLF , with Lconcat = L× Nu, is a matrix gathering MLF

POD-basis functions built upon DL and used to compress the LF data in order to ease the
complexity of NNLF; NNLF is a fully connected DNN, mapping the LF input parameters
onto the POD-basis coefficients; ω ∈ RMLF is a vector of numbers linearly decreasing from
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1 to 0.2, used to weight the regression over the POD-basis coefficients by their relative
importance; � denotes the Hadamard product; the reshape operation is used to recast the
reconstructed LF signals from a single vector of size Lconcat into Nu arrays of length L;
NNHF is a long short-term memory (LSTM) NN that, as more appropriate to solve time-
dependent problems, is adopted to map the HF input parameters and the approximated LF
signals onto the HF signals.

2.4. Damage Localization via MCMC

Accordingly to the Bayes’ rule, the posterior probability density function (pdf) of the
damage parameters θ, conditioned on the observed signals UEXP

1,...,Nobs is

p(θ|UEXP
1,...,Nobs ,NN MF) =

p(UEXP
1,...,Nobs |θ,NN MF)p(θ,NN MF)∫

p(UEXP
1,...,Nobs |θ,NN MF)p(θ,NN MF) dθ

, (5)

where: p(θ,NN MF) is the prior of θ; p(UEXP|θ,NN MF) is the likelihood of the evidence,
which measures the goodness of fit of NN MF to UEXP given the parameters θ. By assuming
that the uncertainties follow a Gaussian distribution, the likelihood function can be assumed
Gaussian too thanks to the central limit theorem:

p(UEXP
1,...,Nobs |θ,NN MF) =

Nobs

∏
k

1
(
√

2π)Nu
√
|Σc|

exp

(
−

1
L ∑L

τ=1[(e
>
τ ∆k)

>Σ−1
c (e>τ ∆k)]

2

)
; (6)

here: Nobs is the batch size of the processed observations; ∆k = UEXP
k − ÛHF(xHF(θ), xLF) is

the prediction error for the k-th observation, assumed independent between different time
instants and modeled as a Gaussian random vector with zero mean and covariance matrix
Σc ∈ RNu×Nu , describing the spatial correlation of prediction errors due to modeling errors
and measurement noise; eτ is a Boolean vector with a single non-zero entry in τ-th position,
used to extract the relevant time step. For further details see, e.g., [18].

To avoid the expensive computation of the integral at the denominator of Equation (5),
an MCMC sampling algorithm is adopted to approximate the posterior pdf. Specifically,
the posterior pdf is sequentially updated accordingly to the Metropolis-Hastings (MH)
algorithm [19]. The MH algorithm simulates a chain of θ samples distributed according
to the posterior, with each sample only depending on the previous one. This generate a
random walk in the space of θ, where each point is sampled with a frequency proportional
to its probability. Hence, the stationary distribution of the Markov chain, under the
assumption of ergodicity, asymptotically approaches the target pdf.

Let q(ξ|θ) be the assumed proposal pdf and δ(θ) = p(UEXP
1,...,Nobs |θ,NN MF)p(θ,NN MF)

for the sake of simplicity. The MH algorithm recursively simulate the next Markov chain
sample θk+1 from the current sample θk, with k = 1, . . . , Lchain, as follows [20]: sample a
candidate ξ from q(ξ|θk); compute the ratio α = δ(ξ)q(θk |ξ)

δ(θk)q(ξ|θk)
; accept the candidate ξ with

probability min{1, α} and store it as next state of the chain, i.e., θk+1 = ξ, otherwise reject it
and keep the current state of the chain, i.e., θk+1 = θk.

After Lchain states are evaluated, the burn-in period of the chain, i.e., the initial transi-
tory phase, is removed to eliminate the initialization effect. The resulting chain is thinned
up to L̃chain = Lchain

kT
, with kT a small fixed integer, in order to remove dependencies among

consecutive samples. The target distribution can be ultimately approximated via histograms
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and the posterior expected values and covariance can be eventually approximated with the
empirical mean and covariance of the θ1, . . . , θL̃chain samples:

µθ = E(θ|UEXP
1,...,Nobs ,NN MF) ≈

1
L̃chain

L̃chain

∑
l=1

θl , (7)

cov(θ|UEXP
1,...,Nobs ,NN MF) ≈

1
L̃chain − 1

L̃chain

∑
l=1

[θl − µθ][θl − µθ]
> . (8)

3. Virtual Experiment

The proposed method is validated on the digital twin shown in Figure 1. The HF
model in Equation (3) is obtained from a FE discretization resulting in M = 4659 dofs
and integrated in time using the Newmark method. The structure is made of concrete,
whose mechanical properties are: Young’s modulus E = 30 GPa; Poisson’s ratio ν = 0.2;
density ρ = 2500 kg/m3. The structure is excited at the tip by a distributed load q(t),
acting on an area of (0.3× 0.3) m2, as depicted in Figure 1. The load q(t) varies in time
according to q(t) = Q sin (2π f t), where Q ∈ [1, 5] kPa and f ∈ [10, 60]Hz respectively
denote the load amplitude and frequency, collected as xLF = (Q, f )>. Damage is intro-
duced by reducing the material stiffness by 25% within the subdomain Ω, which is a box
(0.3× 0.3× 0.4) m3 as depicted in Figure 1. The target position of this reduction is given by
the coordinates of its center and can be identified with a single abscissa θΩ ∈ [0.15, 7.55]m
running along the axis of the structure. Hence, the input parameters of the HF part are
collected as xHF = (Q, f , θΩ)>. Also the Rayleigh damping matrix, which account for a
5% damping ratio on the first 4 structural modes, is affected by the damage through the
stiffness matrix. Synthetic displacement recordings un(t), with n = 1, . . . , Nu, are collected
from Nu = 8 dofs, mimicking a monitoring system arranged as depicted in Figure 1, for a
time interval (0, T = 1 s), providing L = 200 data points.

Figure 1. Physics-based digital twin of the monitored structure.

The reduced-order model in Equation (2), i.e., the LF model used to construct DLF,
has been built performing a POD upon 40,000 snapshots in time, collected while exploring
the parametric input space xLF. 14 POD-bases are selected and stored in matrix W, in place
of the original 4659 dofs, after having fixed a suitable tolerance on the energy norm of the
reconstruction error (tolPOD = 10−3); for further details see, e.g., [9,13].

For the training of the surrogate model in Equation (4), ILF = 10,000 and IHF = 1000 in-
stances have been collected from the LF and HF model, respectively. Concerning the
compression of the LF data for the sake of prior dimensionality reduction, 104 POD-bases
have been selected (tolPOD = 10−3) and stored in matrix Y, in place of 1600 data points.

The mean squared error and the mean absolute error have been used as loss functions
for the training of NNLF and NNHF, respectively, together with the Adam optimization
algorithm [21]. The implementation has been carried out through the Tensorflow-based
Keras API [22], running on an Nvidia GeForce RTX 3080 GPU card.
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An example of the reconstruction capabilities achieved by the surrogate model is
shown in Figure 2 for the monitored gdl u8(t), where the outcome of the regression over
the POD-basis coefficients, ruled by the NNLF, and the corresponding expanded LF signal
are reported together with the signal enrichment, provided by theNNHF. To quantify the ac-
curacy of the predicted signals, the Pearson correlation coefficients (PCC) between predicted
and ground truth HF signals are adopted as a measure of fitness. The PCC coefficients are
evaluated with respect to 40 testing instances generated with the HF model while exploring
the parametric input space xHF. The minimum PCC value over the 40 testing instances for
each monitored channel is respectively {0.983; 0.988; 0.994; 0.995; 0.998; 0.998; 0.998; 0.998},
which largely validate the performance of the surrogate model. The other way around,
if the NNHF is employed without being coupled with the NNLF, the maximum PCC value
drops to {0.605; 0.603; 0.601; 0.601; 0.791; 0.735; 0.709; 0.696}, showing the utility of the MF
setting that outperforms the single-fidelity based method.

(a)

10-5

(b) (c)

Figure 2. Reconstruction capacity of NNMF: (a) regression over the POD-basis coefficients relative to
a compressed LF signal; (b) decompressed LF signal; (c) regression over the HF signal.

In the absence of experimental data, the Bayesian estimation of the damage parameter
θΩ is simulated by considering pseudo-experimental instances, generated with the HF
model, that have been corrupted by adding independent, identically distributed Gaussian
noise featuring a signal-to-noise ratio equal to 80 to each vibration recording. Batches
of Nobs = 3 observations relative to the same damage condition but different operational
conditions are processed during the evaluation of the likelihood in Equation (6). The prior
pdf p(θΩ,NN MF) is taken as uniform, while, to account for the bounded domain in which
θΩ can fall, a truncated Gaussian centered on the last accepted state is considered for the
proposal q(ξ|θΩ). The adaptive Metropolis [23] algorithm is adopted in order to ease the
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calibration of the proposal distribution, enabling its covariance to be tuned on the basis
of past samples as the sampling evolves. The MCMC algorithm is run for 5000 samples,
the first 500 of which are removed to get rid of the burn-in period. The obtained chain
is ultimately thinned by discarding 3 samples over 4 to remove dependencies among
consecutive samples.

Two examples of MCMC analyses are reported in Figure 3, showing the generated
Markov chains alongside the estimated posterior mean and credibility intervals. In both
cases, the damage parameter θΩ, here normalized between 0 and 1, is properly identified. It
has to be noted that the larger uncertainty in the second case is somehow expected; indeed,
given the structural layout and the placing of the sensors, the sensitivity of measures to
damage positions far apart from the clamped side is smaller.

(a) (b)

Figure 3. Examples of MCMC analysis, in case of damage position (a) close to the clamped side and
(b) far from the clamped side.

4. Conclusions

This paper has presented a stochastic approach for SHM, here applied to the problem
of damage localization in case of slow damage progression. The presence of damage
has been postulated as already detected, e.g., as identified by an early warning tool,
and only the localization task has been analyzed. The Bayesian identification of damage
parameters is achieved through an MCMC sampling algorithm, adopted to approximate
their posterior distribution conditioned on a set of measurements. Few investigations
are present in literature involving the use of MCMC for the health monitoring of civil
structures, and this is the first one considering a MF-DNN surrogate model to accelerate the
computation of the conditional likelihood. The surrogate model learns from simulated data
of multiple fidelities, i.e., few HF data and several inexpensive LF data, such to alleviate
the computational burden of the supervised training stage. The method has been assessed
on a numerical case study, showing remarkable accuracy under the effect of measurement
noise and varying operational conditions.

The method is suitable for structural typologies whose damage patterns can be repre-
sented by a stiffness reduction fixed within the time interval of interest. Since it enables a
time scale separation between damage growth and damage assessment, this is a standard
assumption for most practical scenarios in SHM. Such description of damage is consistent
with the adopted vibration-based SHM approach, and allows the structure to be modeled
as a linear system both in the presence and absence of damage. Moreover, as shown in [9],
even if the stiffness reduction takes place over domains of different size from that one
adopted during the dataset construction, it is still possible to identify the correct position
of damage.
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Considering data-driven algorithms, damage localization is often addressed by ex-
ploiting a DL feature extractor followed by a classification or a regression module, e.g., as
done in [9,10,13]. However, due to the need of training in a simulated environment, the risk
of losing generalization capabilities on real monitoring data is high. The proposed proce-
dure tries to overcomes such generalization problems. Damage is located by seeking for
those parameters of the surrogate model producing the closest output to the measured one,
in terms of a suitable distance function measuring the signals similarity. For this reason
and thanks to the fully stochastic framework here considered, which is suitable for dealing
with noisy data and modeling inaccuracies, it is reasonable to expect a better ability of
generalizing outside the training regime.

Besides the need of validating the proposed methodology within a suitable experimen-
tal setting, the next studies will extended the Bayesian identification also to the parameters
controlling the operational conditions. Moreover, a usage monitoring tool powered by
a suitable data-driven paradigm will be considered to provide useful prior knowledge
as opposite to an informative flat prior. The analysis of dynamic effects resulting from
localized damage mechanisms is also left for future investigations.
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