#
Two-Scale Deep Learning Model for Polysilicon MEMS Sensors^{ †}

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Model of the Polysilicon MEMS and Intrinsic Uncertainties

#### 2.1. Oscillation Amplitude of the Lorentz Force MEMS Magnetometer

^{3})/12. The beam is made of a polycrystalline silicon film with columnar structure, and the elastic properties governing its in-plane vibrations are assumed to be obtained through homogenization over a statistical volume element (SVE) of the polysilicon film.

_{1}and K

_{3}), amplitude of the oscillating external Lorentz force (${F}_{0}$), frequency of the forcing term (ω), and natural frequency of the beam (${\omega}_{1}$). The dynamics of this system is governed by weakly coupled thermo-electro-magneto-mechanical multi-physics, noticeable when writing explicit expressions for each of the previous terms. Nonetheless, the key aspect to highlight is that, since the solution for ${\mathsf{\nu}}_{max}$ depends on K

_{1}and K

_{3}which, in turn, depend on the flexural (EI) and axial (EA) rigidities of the beam, uncertainties in the values of the homogenized Young’s modulus, $\overline{E}$ and in-plane width, h (induced by defects such as over-etch, O), produce a scattering in the expected value of ${\mathsf{\nu}}_{max}$.

#### 2.2. Sources of Uncertainty in Polysilicon MEMS

## 3. Methodology

#### 3.1. Representation of the Resonant Structure

#### 3.2. The Neural Network-Based Model

_{1}branch, are fully connected to the eight-neuron input layer of the MLP

_{2}.

_{1}is composed of a sequence of fully connected layers. The specific sequence features an 8-node hidden layer followed by a 4-node and a 1-node output layer. As in the case of the CNN, only the output neuron was activated by a linear activation function while the rest of the units use ReLU activations. An identical configuration was chosen for MLP

_{2}.

^{−3}, the optimizer to Adam and the loss function to MSE. Furthermore, the implementation was completed, making use of Keras API. Regarding the hardware, a GeForce GTX 1050 Ti GPU was used.

## 4. Results

^{−8}$\mathsf{\mu}$m

^{2}was attained after 328 epochs. After this epoch, no considerable improvement was observed on the validation set over the next 100 epochs (set as the patience parameter), inducing the early stopping.

^{2}and the $5\times 5$ $\mathsf{\mu}$m

^{2}SVEs, respectively. In light and dark green we have included the corresponding identity mapping, which represents the ideal behavior we could expect from the model.

^{2}are reported in the plots: R

^{2}values are all close to 1, indicating a good performance. Moreover, as it could have been foreseen from the imbalance of the datasets, a slightly better result is observed for the smaller SVE samples.

^{2}values, the results are comparable to the performance obtained on the training set, which is a clear indication of the good generalization capability of the model.

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Owens, J.D.; Houston, M.; Luebke, D.; Green, S.; Stone, J.E.; Phillips, J.C. GPU Computing. Proc. IEEE
**2008**, 96, 879–899. [Google Scholar] [CrossRef] - Nickolls, J.; Dally, W.J. The GPU Computing Era. IEEE Micro
**2010**, 30, 56–69. [Google Scholar] [CrossRef] - Schmidt, J.; Marques, M.R.G.; Botti, S.; Marques, M.A.L. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater.
**2019**, 5, 83. [Google Scholar] [CrossRef] - Himanen, L.; Geurts, A.; Foster, A.S.; Rinke, P. Data-Driven Materials Science: Status, Challenges, and Perspectives. Adv. Sci.
**2019**, 6, 1900808. [Google Scholar] [CrossRef] [PubMed] - Bock, F.E.; Aydin, R.C.; Cyron, C.J.; Huber, N.; Kalidindi, S.R.; Klusemann, B. A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics. Front. Mater.
**2019**, 6, 110. [Google Scholar] [CrossRef][Green Version] - Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 1st ed.; Pearson Education Limited: Kuala Lumpur, Malaysia, 2016. [Google Scholar]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psych. Rev.
**1958**, 65, 386–408. [Google Scholar] [CrossRef] [PubMed][Green Version] - Deng, L. Deep Learning: Methods and Applications. FNT Signal Processing
**2014**, 7, 197–387. [Google Scholar] [CrossRef][Green Version] - Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw.
**2015**, 61, 85–117. [Google Scholar] [CrossRef][Green Version] - Cang, R.; Ren, M.Y. Deep Network-Based Feature Extraction and Reconstruction of Complex Material Microstructures. In Proceedings of the 42nd Design Automation Conference, Charlotte, NC, USA, 21–24 August 2016; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Lubbers, N.; Lookman, T.; Barros, K. Inferring low-dimensional microstructure representations using convolutional neural networks. Phys. Rev. E
**2017**, 96, 052111. [Google Scholar] [CrossRef][Green Version] - Napoletano, P.; Piccoli, F.; Schettini, R. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity. Sensors
**2018**, 18, 209. [Google Scholar] [CrossRef][Green Version] - Hwang, H.; Oh, J.; Lee, K.-H.; Cha, J.-H.; Choi, E.; Yoon, Y.; Hwang, J.-H. Synergistic approach to quantifying information on a crack-based network in loess/water material composites using deep learning and network science. Comp. Mat. Sci.
**2019**, 166, 240–250. [Google Scholar] [CrossRef] - Yang, Z.; Yabansu, Y.C.; Al-Bahrani, R.; Liao, W.; Choudhary, A.N.; Kalidindi, S.R.; Agrawal, A. Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. Comp. Mat. Sci.
**2018**, 151, 278–287. [Google Scholar] [CrossRef] - Cecen, A.; Dai, H.; Yabansu, Y.C.; Kalidindi, S.R.; Song, L. Material structure-property linkages using three-dimensional convolutional neural networks. Acta Materialia.
**2018**, 146, 76–84. [Google Scholar] [CrossRef] - Cang, R.; Li, H.; Yao, H.; Jiao, Y.; Ren, Y. Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model. Comp. Mat. Sci.
**2018**, 150, 212–221. [Google Scholar] [CrossRef][Green Version] - Frankel, A.L.; Jones, R.E.; Alleman, C.; Templeton, J.A. Predicting the mechanical response of oligocrystals with deep learning. Comp. Mat. Sci.
**2019**, 169, 109099. [Google Scholar] [CrossRef][Green Version] - Abueidda, D.W.; Almasri, M.; Ammourah, R.; Ravaioli, U.; Jasiuk, I.M.; Sobh, N.A. Prediction and optimization of mechanical properties of composites using convolutional neural networks. Comp. Struct.
**2019**, 227, 111264. [Google Scholar] [CrossRef][Green Version] - Bagherinia, M.; Bruggi, M.; Corigliano, A.; Mariani, S.; Lasalandra, E. Geometry optimization of a Lorentz force, resonating MEMS magnetometer. Micro. Rel.
**2014**, 54, 1192–1199. [Google Scholar] [CrossRef] - Bagherinia, M.; Mariani, S. Stochastic Effects on the Dynamics of the Resonant Structure of a Lorentz Force MEMS Magnetometer. Actuators
**2019**, 8, 36. [Google Scholar] [CrossRef][Green Version] - Mariani, S.; Martini, R.; Ghisi, A.; Corigliano, A.; Beghi, M. Overall elastic properties of polysilicon films: A statistical investigation of the effects of polycrystal morphology. Int. J. Mult. Comp. Eng.
**2011**, 9, 327–346. [Google Scholar] [CrossRef] - Mirzazadeh, R.; Mariani, S. Uncertainty Quantification of Microstructure-Governed Properties of Polysilicon MEMS. Micromachines
**2017**, 8, 248. [Google Scholar] [CrossRef][Green Version] - Mariani, S.; Ghisi, A.; Mirzazadeh, R.; Azam, S.E. On-Chip Testing: A Miniaturized Lab to Assess Sub-Micron Uncertainties in Polysilicon MEMS. Micro Nanosyst.
**2018**, 10, 84–93. [Google Scholar] [CrossRef] - Mirzazadeh, R.; Eftekhar Azam, S.; Mariani, S. Mechanical Characterization of Polysilicon MEMS: A Hybrid TMCMC/POD-Kriging Approach. Sensors
**2018**, 18, 1243. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ghisi, A.; Mariani, S. Effect of Imperfections Due to Material Heterogeneity on the Offset of Polysilicon MEMS Structures. Sensors
**2019**, 19, 3256. [Google Scholar] [CrossRef] [PubMed][Green Version] - Dassi, L.; Merola, M.; Riva, E.; Santalucia, A.; Venturelli, A.; Ghisi, A.; Mariani, S. A Stochastic Model to Describe the Scattering in the Response of Polysilicon MEMS. Eng. Proc.
**2021**, 2, 95. [Google Scholar] [CrossRef] - Herrera-May, A.; Soler-Balcazar, J.; Vázquez-Leal, H.; Martínez-Castillo, J.; Vigueras-Zuñiga, M.; Aguilera-Cortés, L. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges. Sensors
**2016**, 16, 1359. [Google Scholar] [CrossRef] [PubMed][Green Version] - Lenz, J.; Edelstein, S. Magnetic sensors and their applications. IEEE Sens. J.
**2006**, 6, 631–649. [Google Scholar] [CrossRef] - Hartzell, A.; Silva, M.; Shea, H. MEMs Reliability, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Hemker, K.J.; Sharpe, W.N., Jr. Microscale Characterization of Mechanical Properties. Annu. Rev. Mater. Res.
**2007**, 37, 93–126. [Google Scholar] [CrossRef] - Uhl, T.; Martowicz, A.; Codreanu, I.; Klepka, A. Analysis of uncertainties in MEMS and their influence on dynamic properties. Arch. Mech.
**2009**, 61, 349–370. [Google Scholar] - Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What is the Young’s Modulus of Silicon? J. Micro. Syst.
**2010**, 19, 229–238. [Google Scholar] [CrossRef][Green Version] - Quesada-Molina, J.P.; Rosafalco, L.; Mariani, S. Mechanical Characterization of Polysilicon MEMS Devices: A Stochastic, Deep Learning-based Approach. In Proceedings of the 2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Cracow, Poland, 5–8 July 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef][Green Version]

**Figure 5.**Parity plots for the model at the device level: (

**a**) Training set; (

**b**) Validation set; (

**c**) Test set.

**Table 1.**Statistical indicators characterizing $\overline{E}$ for different SVE sizes, obtained with uniform strain boundary conditions.

SVE Size | μ [GPa] | σ [GPa] |
---|---|---|

2$\mathsf{\mu}$m × 2$\mathsf{\mu}$m | 150.1 | 5.5 |

5$\mathsf{\mu}$m × 5$\mathsf{\mu}$m | 149.3 | 2.4 |

Size | SVEs | $\mathbf{Mean}\text{}{\mathit{\nu}}_{\mathit{m}\mathit{a}\mathit{x}}$$\text{}\left[\mathsf{\mu}m\right]$ | $\mathbf{Standard}\text{}\mathbf{Deviation}\text{}{\mathit{\nu}}_{\mathit{m}\mathit{a}\mathit{x}}$$\left[\mathsf{\mu}m\right]$ | |
---|---|---|---|---|

Training | 2$\text{}\mathsf{\mu}$m × 2$\text{}\mathsf{\mu}$m | 1898 | 0.028 | 0.004 |

5$\text{}\mathsf{\mu}$m × 5$\text{}\mathsf{\mu}$m | 800 | 0.01 | 0.002 | |

Validation | 2$\text{}\mathsf{\mu}$m × 2$\text{}\mathsf{\mu}$m | 400 | 0.028 | 0.004 |

5$\text{}\mathsf{\mu}$m × 5$\text{}\mathsf{\mu}$m | 200 | 0.01 | 0.002 | |

Test | 2$\text{}\mathsf{\mu}$m × 2$\text{}\mathsf{\mu}$m | 198 | 0.028 | 0.004 |

5$\text{}\mathsf{\mu}$m × 5$\text{}\mathsf{\mu}$m | 99 | 0.01 | 0.002 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Quesada-Molina, J.P.; Mariani, S.
Two-Scale Deep Learning Model for Polysilicon MEMS Sensors. *Comput. Sci. Math. Forum* **2022**, *2*, 12.
https://doi.org/10.3390/IOCA2021-10888

**AMA Style**

Quesada-Molina JP, Mariani S.
Two-Scale Deep Learning Model for Polysilicon MEMS Sensors. *Computer Sciences & Mathematics Forum*. 2022; 2(1):12.
https://doi.org/10.3390/IOCA2021-10888

**Chicago/Turabian Style**

Quesada-Molina, José Pablo, and Stefano Mariani.
2022. "Two-Scale Deep Learning Model for Polysilicon MEMS Sensors" *Computer Sciences & Mathematics Forum* 2, no. 1: 12.
https://doi.org/10.3390/IOCA2021-10888