Next Issue
Volume 3, March
Previous Issue
Volume 2, September
 
 

Zoonotic Dis., Volume 2, Issue 4 (December 2022) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
10 pages, 300 KiB  
Review
Viral Zoonotic Diseases of Public Health Importance and Their Effect on Male Reproduction
by Olabisi Lateef Okeleji, Lydia Oluwatoyin Ajayi, Aduragbemi Noah Odeyemi, Victor Amos, Hezekiah Oluwatobi Ajayi, Amos Olalekan Akinyemi, Chibueze Samuel Nzekwe, Johnson Wale Adeyemi and Ayodeji Folorunsho Ajayi
Zoonotic Dis. 2022, 2(4), 291-300; https://doi.org/10.3390/zoonoticdis2040023 - 17 Dec 2022
Cited by 1 | Viewed by 2997
Abstract
Zoonotic diseases occur as a result of human interactions with animals with the inadvertent transmission of pathogens from one to another. Zoonoses remain a major cause of morbidity and mortality among human populations, as they have been a source of pandemics in human [...] Read more.
Zoonotic diseases occur as a result of human interactions with animals with the inadvertent transmission of pathogens from one to another. Zoonoses remain a major cause of morbidity and mortality among human populations, as they have been a source of pandemics in human history. Viral zoonoses account for a significant percentage of pathogens of zoonotic sources, posing a huge risk to men’s general health and fertility. This review identifies the existing knowledge on the effects of viral zoonotic diseases on male fertility. Evidence from reviewed articles showed that viral zoonotic diseases elicit an immune reaction that induces inflammatory mediators and impairs testicular functions such as spermatogenesis and steroidogenesis, leading to abnormal semen parameters that lead to subfertility/infertility. Although most zoonotic viruses linger in semen long after recovery, their presence in semen does not directly translate to sexual transmission. There is a need to further delineate the possible risk of the sexual transmission of these diseases. While a few of the viral zoonotic diseases discussed have been well-studied, there is a need to place attention on others so as to fully understand their effects on male reproduction and therefore take the right steps towards preserving male fertility. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
24 pages, 6074 KiB  
Article
A New Methodology to Comprehend the Effect of El Niño and La Niña Oscillation in Early Warning of Anthrax Epidemic Among Livestock
by Kuralayanapalya Puttahonnappa Suresh, Sushma Bylaiah, Sharanagouda Patil, Mohan Kumar, Uma Bharathi Indrabalan, Bhavya Anenahalli Panduranga, Palya Thimmaiah Srinivas, Chandan Shivamallu, Shiva Prasad Kollur, Charley A. Cull and Raghavendra G. Amachawadi
Zoonotic Dis. 2022, 2(4), 267-290; https://doi.org/10.3390/zoonoticdis2040022 - 16 Dec 2022
Cited by 2 | Viewed by 2215
Abstract
Anthrax is a highly fatal zoonotic disease that affects all species of livestock. The study aims to develop an early warning of epidemiological anthrax using machine learning (ML) models and to study the effect of El Niño and La Niña oscillation, as well [...] Read more.
Anthrax is a highly fatal zoonotic disease that affects all species of livestock. The study aims to develop an early warning of epidemiological anthrax using machine learning (ML) models and to study the effect of El Niño and La Niña oscillation, as well as the climate–disease relationship concerning the spatial occurrence and outbreaks in Karnataka. The disease incidence data are divided based on El Niño and La Niña events from 2004–2019 and subjected to climate-disease modeling to understand the disease pattern over the years. Machine learning models were implemented using R statistical software version 3.1.3 with Livestock density, soil profile, and meteorological and remote sensing variables as risk factors associated with anthrax incidence. Model evaluation is performed using statistical indices, viz., Cohen’s kappa, receiver operating characteristic (ROC) curve, true skill statistics (TSS), etc. Models with good predictive power were combined to develop an average prediction model. The predicted results were mapped onto the Risk maps, and the Basic reproduction numbers (R0) for the districts that are significantly clustered were calculated. Early warning or risk prediction developed with a layer of R0 superimposed on a risk map helps in the preparedness for the disease occurrence, and precautionary measures before the spread of the disease. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
Show Figures

Figure 1

9 pages, 1378 KiB  
Article
Detection of Trematodes from the Host Exotic Aquatic Snail Melanoides tuberculata in an Urban Stormwater System
by Jason M. Post, Rachael J. Reasch and Emily S. Bailey
Zoonotic Dis. 2022, 2(4), 258-266; https://doi.org/10.3390/zoonoticdis2040021 - 02 Dec 2022
Viewed by 1461
Abstract
The red-rimmed melania or Malaysian Trumpet Snail, Melanoides tuberculata, is a common exotic freshwater snail that has been invading an increasing number of water bodies in North America. As a well-known host for trematodes causing human and animal diseases, the pattern of [...] Read more.
The red-rimmed melania or Malaysian Trumpet Snail, Melanoides tuberculata, is a common exotic freshwater snail that has been invading an increasing number of water bodies in North America. As a well-known host for trematodes causing human and animal diseases, the pattern of invasion and parasitic infection for this species is of great concern. Snail specimens were collected from an urban stream in Los Angeles that drains into a fragile, protected wetland ecosystem. Molecular analysis identified four trematode species: Haplorchis pumilio, Fasciola jacksoni, Parorchis sp. TH-2019, and an unclassified trematode species, Trematoda distomecercaria WN-2016. H. pumilio is responsible for haplorchiasis infections, previously considered endemic to Asia. F. jacksoni infection is a significant cause of mortality in Asian elephants. This study represents the first occurrence of F. jacksoni in North America and a novel occurrence of that trematode in association with M. tuberculata. This study also represents new occurrences of Parorchis sp. TH-2019 and an unclassified trematode species, Trematoda distomecercaria WN-2016, within California and North America. Parorchis sp. TH-2019 has previously only been documented in a marine whelk. This identification of these trematodes in association with M. tuberculata further exemplifies the need for ongoing monitoring and detection, especially considering the significance of H. pumilio and haplorchiasis to public health. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
Show Figures

Figure 1

11 pages, 1112 KiB  
Article
Rickettsial Agents Associated with Ectoparasites in Attica, Greece
by Maria Liodaki, Emmanouil Angelakis, Gregory Spanakos, Ioanna Papadogiannaki, Michael Samarkos, George L. Daikos, Barbara Christopoulou and Evangelia-Theophano Piperaki
Zoonotic Dis. 2022, 2(4), 247-257; https://doi.org/10.3390/zoonoticdis2040020 - 30 Nov 2022
Viewed by 1388
Abstract
The bacteria of the families Rickettsiaceae and Anaplasmataceae, harbored by arthropod vectors, may cause disease in animals and humans. The aim of this study was to screen ectoparasites collected from cats and dogs in Attica, Greece for the bacteria of the Rickettsiales [...] Read more.
The bacteria of the families Rickettsiaceae and Anaplasmataceae, harbored by arthropod vectors, may cause disease in animals and humans. The aim of this study was to screen ectoparasites collected from cats and dogs in Attica, Greece for the bacteria of the Rickettsiales group, by molecular methods. The ectoparasites examined were Ctenocephalides felis fleas and Rhipicephalus sanguineus s.l., Rhipicephalus sp., and Ixodes sp. ticks. Rickettsia felis was detected in 4.8% of C. felis fleas, and Rickettsia conorii was detected in 7.3% of R. sanguineus s.l. ticks. Ehrlichia canis was found in one R. sanguineus s.l. tick, and Wolbachia pipientis was detected in the majority of fleas. Another endosymbiont, Cancidatus Midichloria mitochondrii (Cancidatus Midichloriaceae), was detected in one Ixodes sp.. This is the first report of R. conorii and E. canis in R. sanguineus s.l. ticks in this study area. Given the fact that Greece is considered endemic for spotted fever group rickettsioses, further investigation of these rickettsial pathogens’ distribution in their vectors and hosts could enhance our knowledge of their epidemiology, in order to assess their potential implications for public health in this metropolitan area. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
Show Figures

Figure 1

13 pages, 3428 KiB  
Review
Monkeypox: Re-Emerging Zoonotic Threat
by Rajeev Ranjan and Jitendra Kumar Biswal
Zoonotic Dis. 2022, 2(4), 234-246; https://doi.org/10.3390/zoonoticdis2040019 - 18 Oct 2022
Cited by 3 | Viewed by 3438
Abstract
Monkeypox (MPX) is a relatively unknown and minor resurgent viral zoonotic disease caused by the monkeypox virus (MPXV). The disease can spread from person to person or from animal to person. The disease is most prevalent in the tropical rainforests of West and [...] Read more.
Monkeypox (MPX) is a relatively unknown and minor resurgent viral zoonotic disease caused by the monkeypox virus (MPXV). The disease can spread from person to person or from animal to person. The disease is most prevalent in the tropical rainforests of West and Central Africa. The first MPXV outbreak was recorded in a monkey during 1958 as a small pox-like disease causing flu-like symptoms, such as chills and fever, as well as a rash, and the first MPXV case in a human was in a 9-month-old child in the Democratic Republic of the Congo on 1 September 1970. There were 16,016 laboratory confirmed cases of MPXV infection and five deaths reported in 75 countries/territories/areas across all six WHO Regions as of 22 July 2022. MPXV has a wide host range, including humans, squirrels, mice, rabbits, hamsters, porcupines, non-human primates (orangutans, chimps, sooty mangabeys, cynomolgus monkeys), black-tailed prairie dogs, African brush-tailed porcupines, rats, and shrews. MPXV replicates at the site of inoculation, the respiratory or oropharyngeal mucosa, and spreads to other organs, such as the skin, lungs, and gastrointestinal tract, where clinical signs and symptoms of the disease manifest. Before the rash appears, most patients have prominent lymphadenopathy, which distinguishes human MPX from small pox. This is followed by macules, papules, vesicles, pustules, umbilication, scabbing, and desquamation. Laboratory tools, such as virus isolation, PCR-based assays, haemagglutination inhibition assays, electron microscopy, ELISA, Western blotting, or immunohistochemistry, have been used to confirm diagnoses. Following a confirmatory diagnosis, tecovirimat, an FDA-approved antiviral drug, is currently available to treat severe cases of MPXV infection, along with symptomatic and supportive therapies. Physical and close contact activities, such as sleeping in the same room or on the same bed as the infected person, intimate contact with an infected partner, living in the same house as infected people, and sharing the same cups and plates, must be avoided to prevent the spread of the disease. Vaccination with vaccinia virus against monkeypox is approximately 85% effective and may protect against MPXV infection if administered within 4 days and up to 14 days (without showing any symptoms) after initial contact with a confirmed monkeypox case. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
Show Figures

Figure 1

6 pages, 265 KiB  
Brief Report
Lack of Evidence of Hepatitis E Virus Infections in a Cohort of Boars and Deer Species in a Game Reserve in Northern Germany
by Tim Westphal, Michel Delling, Maria Mader, Christin Ackermann, Thomas Horvatits, Marc Lütgehetmann, Julian Schulze zur Wiesch, Sven Pischke and Claudia Beisel
Zoonotic Dis. 2022, 2(4), 228-233; https://doi.org/10.3390/zoonoticdis2040018 - 17 Oct 2022
Viewed by 1511
Abstract
The risk of acquiring hepatitis E virus (HEV) infections by wild animals living in the European wild nature has previously been reported and high anti-HEV antibody detection rates were detected in several animal species. However, data on the HEV seroprevalence of wild boars [...] Read more.
The risk of acquiring hepatitis E virus (HEV) infections by wild animals living in the European wild nature has previously been reported and high anti-HEV antibody detection rates were detected in several animal species. However, data on the HEV seroprevalence of wild boars and deer held in game reserves are rare. In the present study, we investigated anti-HEV seroprevalence and HEV RNA in 38 deer and 15 wild boars living in a game reserve in Northern Germany. Surprisingly, none of the animals tested positive for HEV RNA in blood, liver, or muscle (diaphragm), and all animals (n = 53, 100%) were anti-HEV negative. In conclusion, HEV infections in enclosed areas, such as game reserves, in Germany are rare, and the risk of HEV transmission through meat from these animals to humans seems to be low. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
45 pages, 1126 KiB  
Review
Revenge of the Tick: Tick-Borne Diseases and the Eye in the Age of Climate Change and Globalisation
by Xin Le Ng, Berdjette Y. Y. Lau, Cassandra X. C. Chan, Dawn K. A. Lim, Blanche X. H. Lim and Chris H. L. Lim
Zoonotic Dis. 2022, 2(4), 183-227; https://doi.org/10.3390/zoonoticdis2040017 - 09 Oct 2022
Viewed by 4236
Abstract
Climate change has contributed to changes in disease transmission. In particular, zoonoses such as tick-borne diseases are occurring in areas previously unsuitable for tick survival, with spread to non-endemic areas rising. Ophthalmic manifestations of tick-borne diseases are rare. Often overlooked, diagnosis requires awareness [...] Read more.
Climate change has contributed to changes in disease transmission. In particular, zoonoses such as tick-borne diseases are occurring in areas previously unsuitable for tick survival, with spread to non-endemic areas rising. Ophthalmic manifestations of tick-borne diseases are rare. Often overlooked, diagnosis requires awareness and a high level of suspicion, which may delay treatment. This review provides a comprehensive overview of ocular disease associated with ticks so that management protocols for patients can be designed and implemented. A narrative literature review was conducted. The current literature includes case series, case reports, and literature reviews. Ocular manifestations of tick-borne diseases include adnexal manifestations, conjunctivitis, keratitis, cranial nerve palsies, optic nerve disease, uveitis, exudative retinal detachment, and panophthalmitis, which may occur in isolation or as part of a systemic process. As there is no one constellation of ocular symptoms and signs diagnostic of tick-borne eye diseases, a systematic approach is recommended with particular attention to significant travel and exposure history. In this review, we identify significant risk factors and propose management strategies for afflicted patients to improve treatment outcomes while maintaining cost-effectiveness. Ophthalmologists and generalists will benefit from increased awareness of ocular manifestations of tick-borne diseases in the age of modern travel and climate change. Full article
(This article belongs to the Special Issue Advance in Tick and Tick-Borne Diseases Research)
Show Figures

Figure 1

11 pages, 309 KiB  
Review
Preventing Laboratory-Acquired Brucellosis in the Era of MALDI-TOF Technology and Molecular Tests: A Narrative Review
by Pablo Yagupsky
Zoonotic Dis. 2022, 2(4), 172-182; https://doi.org/10.3390/zoonoticdis2040016 - 02 Oct 2022
Cited by 5 | Viewed by 1599
Abstract
Brucellosis is one of the most common etiologies of laboratory-acquired infections worldwide, and handling of living brucellae should be performed in a Class II biological safety cabinet. The low infecting dose, multiple portals of entry to the body, the wide variety of potentially [...] Read more.
Brucellosis is one of the most common etiologies of laboratory-acquired infections worldwide, and handling of living brucellae should be performed in a Class II biological safety cabinet. The low infecting dose, multiple portals of entry to the body, the wide variety of potentially contaminated specimens, and the unspecific clinical manifestations of human infections facilitate the unintentional transmission of brucellae to laboratory personnel. Work accidents such as spillage of culture media cause only a small minority of exposures, whereas >80% of events result from unfamiliarity with the phenotypic features of the genus, misidentification of isolates, and unsafe laboratory practices such as working on an open bench without protective goggles or gloves or the aerosolization of bacteria. The bacteriological diagnosis of brucellae by traditional methods is simple and straightforward but requires extensive manipulation of the isolates, and, nowadays, many laboratory technicians are not familiar with the genotypic features of the genus, resulting in inadvertent exposure and contagion. Detection of brucellar infections by culture-independent molecular methods is safe, but the identification of the organism using MALDI-TOF technology is not hazard-free, requiring an initial bacterial inactivation step to avoid transmission. Unfortunately, these novel and safer methods are costly and frequently unavailable in resource-limited endemic countries. Full article
(This article belongs to the Special Issue Feature Papers of Zoonotic Diseases 2021–2022)
Previous Issue
Next Issue
Back to TopTop