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Abstract: African indigenous leafy vegetables (AILVs) are plants that have been part of the food
systems in Sub-Saharan Africa (SSA) for a long time and their leaves, young shoots, flowers, fruits
and seeds, stems, tubers, and roots are consumed. These vegetables are high in vitamins, miner-
als, protein, and secondary metabolites that promote health. This study aimed at isolating, char-
acterizing, and identifying dominant lactic acid bacteria (LAB) from naturally fermenting com-
monly consumed AILV in Kenya. A total of 57 LAB strains were isolated and identified based
on phenotypic and 16S rRNA gene analyses from three AILVs (23 nightshade leaves, 19 cow-
peas leaves, and 15 vegetable amaranth). The highest microbial counts were recorded between
48 h and 96 h of fermentation in all AILVs ranging from approximately log 8 to log 9 CFU/mL
with an average pH of 3.7. Fermentation of AILVs was dominated by twenty eight Lactobacillus
spp. [Lactiplantibacillus plantarum (22), Limosilactobacillus fermentum (3), Lactiplantibacillus pentosus
(2) and Lactiplantibacillus casei (1)], eleven Weissella spp. (Weissella cibaria (8), W. confusa (2), and
W. muntiaci) six Leuconostoc spp. [Leuconostoc mesenteroides (3), Leuc. citreum (2) and Leuc. lactis
(1)], six Pediococcus pentosaceus, four Enterococcus spp. [Enterococcus mundtii (2), E. faecalis (1) and
E. durans (1)] and, finally, two Lactococcus garvieae. These bacteria strains are commonly used in food
fermentation as starter cultures and as potential probiotics.

Keywords: lactic acid bacteria; African indigenous leafy vegetables; fermentation

1. Introduction

African indigenous leafy vegetables (AILVs) inhabit Sub-Saharan Africa (SSA) [1–3].
Their leaves, young shoots, flowers, fruits and seeds, stems, tubers, and roots are consum-
able and they have been part of the food systems for generations [1–3]. These vegetables
contain high levels of vitamins, minerals, protein, and health-promoting secondary metabo-
lites. This could be a valuable source of nutrition in rural areas, where they can help
alleviate malnutrition among poor populations [4].

In Kenya, the commonly consumed AILVs include cowpea leaves (Vigna unguiculata),
Jude mellow (Corchorus olitorius), moringa leaves (Moringa oleifera), sweet potato leaves
(Ipomoea batatas), cassava leaves (Manihot esculenta), slender leaves (Crotalaria ochroleuca),
African kale (Brassica carinata), some species of leaf amaranth (Amaranthus spp.), spi-
der plant (Cleome spp.), some species of nightshades (Solanum spp.), and pumpkins
(Cucurbita spp.) [5]. The availability of AILVs during the rainy season and their climate-
adaptability make them an attractive option for nutritional supplementation for those most
in need [6]. Therefore, they must be processed to maintain or improve their nutritional
content, organoleptic qualities, and long-term storage properties [2,7].
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Fermented foods in Africa contain a broad range of plant-based products derived from
maize, sorghum, millet, and cassava, among other sources [8]. Leafy vegetables are rarely
fermented in Africa with some recent studies showing that controlled fermentation of some
AILVs with well-characterized lactic acid bacteria (LAB) could provide microbiological
safety, and enhanced organoleptic and nutritional properties [3,9]. Traditionally, plant-
based fermented foods are very common in Asia, Europe, and America where vegetables
such as cabbage, radishes, cucumbers, turnips, and beets are commonly used [10].

There is little published data on the isolation and identification of indigenous LAB from
AILVs, although some reports indicate that the most common LAB genera that are associ-
ated with fermented African indigenous vegetables include Lactobacillus, Lactococcus, and
Weissella [11,12]. However, a previous study by Xiong et al. [13] showed that Lactococcus lactis,
Leuconostoc mesenteroides, Lactobacillus plantarum, and Lactobacillus casei dominated the nat-
ural fermentation of Chinese sauerkraut (fermented cabbage). The microbiota initially
present in lactic fermentation processes comes primarily from plant material [14].

Generally, LAB are described as Gram-positive rods or cocci, which are acid tolerant,
devoid of cytochromes and porphyrins and therefore are catalase- and oxidase-negative,
anaerobic or aero-tolerant, non-spore-forming, and are mostly non-motile bacteria [15–17].
Therefore, this study aimed at the isolation, characterization, and identification of dominant
LAB from naturally fermenting and commonly consumed AILVs in Kenya.

2. Results
2.1. Isolation of Lactic Acid Bacteria from African Indigenous Vegetables

The microbial counts varied across the three African indigenous leafy vegetables
(AILVs). The mean lactic acid bacteria (LAB) count from all AILVs was approximately
log 3 cfu/mL at 0 h which slightly increased to approximately log 8 cfu/mL for cowpea
and amaranth and log 7 for nightshade leaves after 24 h. The highest microbial counts were
recorded between 48–96 h in all AILVs ranging from approximately log 8 to log 9 cfu/mL
(Figure 1). The ability of the bacteria to acidify during fermentation is reflected in the pH
production. The mean pH during all AILVs fermentation showed a slow decrease over
time from pH 6.3 at 0 h to an approximate mean of pH 4.2 after 24 h. The pH decreased
slightly further to a mean of 3.8 after 48 h and stayed at this low level up to 168 h, reaching
a mean of 3.5 (Figure 1).

2.2. Phenotypic and Molecular Identification of Lactic Acid Bacteria Strains

A total of 57 strains were isolated and identified according to their phenotypic and
molecular characteristics from three African indigenous leafy vegetables (23 nightshade
leaves, 19 cowpeas leaves, and 15 amaranth leaves). Phenotypically, the isolates were
classified as Gram-positive and catalase-negative, and as either rods or cocci-shaped. Most
of the isolates were able to grow in 6.5% NaCl and at 45 ◦C with a few growing at 10 ◦C
(Tables 1 and 2. Out of 57 isolates, 20 produced gas from glucose fermentation; thus, they
were classified as heterofermentative and 37 isolates were homofermentative or did not
produce gas from glucose fermentation [18]. Out of these 20 heterofermentative isolates,
6 were coccus-shaped, produced gas from glucose metabolism, and thus were considered
either heterofermentative cocci belonging to the genera Leuconostoc or Weissella, whereas
14 strains were rod-shaped and produced gas from glucose metabolism and thus were
characterized as heterofermentative rods, which belonged to either the genus Lactobacillus
or Weissella.

Based on the 16S rRNA gene sequencing results, the GenBank databank showed the
six heterofermentative strains that were coccus-shaped and produced gas from glucose
fermentation that were identified as Leuconostoc mesenteroides (3 strains) with a sequence
similarity of 99%, Leuc citreum (2 strains) with a sequence similarity of 99%, and Leuc lactis
(1 strain) with a 99% sequence similarity (Table 1). The 14 strains that were rod-shaped
produced gas from glucose metabolism and were identified with 16S rRNA gene sequencing
such as Lactobacillus fermentum (now Limosilactobacillus fermentum) (3 strains), with a
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sequence similarity of 99%, and 11 strains were identified as Weissella with sequence
similarities of 98 to 100% [Weissella cibaria (8 strains), W. confusa (2 strains) and W. muntiaci
(1 strain)] (Tables 1 and 2).
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Figure 1. Lactic acid bacteria viable counts and pH determination from Kenya’s three commonly
consumed African indigenous vegetables. The counts and pH values were determined in duplicates;
the standard deviations are indicated.

Out of 37 homofermentative isolates, 22 isolates were Gram-positive, rod-shaped,
catalase negative, did not produce gas from glucose metabolism, and thus were considered
homofermentative rods belonging to the Lactiplantibacillus (Lactobacillus plantarum) group.
These strains were identified as Lactiplantibacillus plantarum with a 16S rRNA gene sequence
similarity of 97 to 100%. Two isolates were further identified as Lactiplantibacillus pentosus
(Lactobacillus pentosus), with a similarity of 97%, whereas 1 isolate was identified as
Lactiplantibacillus casei (Lactobacillus casei) with a sequence similarity of 97% (Table 1). Fur-
thermore, out of 37 homofermentative isolates, 12 were Gram-positive, cocci-shaped,
catalase negative, and did not produce gas from glucose fermentation. Based on the 16S
rRNA gene sequencing results, 6 isolates were identified as Pediococcus pentosaceus with a
sequence similarity of 98 to 100%. Additionally, 4 isolates were identified as Enterococcus,
among which 2 were Enterococcus mundtii with a 99% sequence similarity, and E. durans
and E. faecalis with percentage sequence similarities of 99% (Tables 1 and 2). Finally, 2 were
Gram-positive, cocci-shaped, catalase negative, did not produce gas from glucose fermen-
tation, grew in 6.5% NaCl, and did not grow either at 10 ◦C or 45 ◦C. The 16S rRNA
gene sequencing identified these isolates as Lactococcus garvieae with similarities of 98 to
100% (Table 1).
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Table 1. Phenotypic and molecular identification of lactic acid bacteria from cowpea and amaranth leaves.

Phenotypic Characterization Molecular Identification

Sample ID Cell Shape Gram
Status Catalase CO2 6.5% NaCl Growth at

10 ◦C
Growth at

45 ◦C Closest Relatives % Identity Accession No.

CPR243 Cocci + - + + - - Leuconostoc mesenteroides 99.90 MT597785.1
CPR245 Rods + - + + + + Weissella cibaria 100.00 MN559487.1
CPR482 Cocci + - + + - + Leuconostoc citreum 99.54 MT544678.1
CPR721 Cocci + - + + - - Leuconostoc mesenteroides 99.21 MH704135.1
CPR722 Rods + - + + - + Weissella cibaria 100.00 MT611777.1
CPR723 Cocci + - + + + + Leuconostoc citreum 91.35 MT544904.1
CPR961 Cocci + - + - - - Leuconostoc mesenteroides 99.61 MT597708.1
CPR963 Rods + - - + - + Lactobacillus plantarum 98.86 MT231806.1
CPR967 Rods + - + + + + Weissella cibaria 99.72 MT611777.1
CPR1448 Rods + - - + - - Lactobacillus casei 97.15 MH899355.1
CPR1449 Rods + - - + - + Lactobacillus pentosus 97.44 MH899343.1
CPR1682 Rods + - + + - + Weissella cibaria 98.47 MH899248.1
CPR1687 Rods + - - + + + Lactobacillus pentosus 97.01 MH899314.1

CPR14410 Rods + - - + + + Lactobacillus plantarum 97.57 MH899346.1
CPR0021 Cocci + - - + - + Enterococcus mundtii 99.71 MT116081.1
CPR0031 Cocci + - + - - - Leuconostoc lactis 99.26 MT604792.1
CPR2431 Cocci + - - - - + Enterococcus durans 99.37 MT585577.1
CPR4431 Rods + - - + - + Lactobacillus plantarum 100.00 OL587487.1
CPR4433 Rods + - - + - + Lactobacillus plantarum 99.52 MK611385.1

JK244 Cocci + - - + - - Lactococcus garvieae 98.22 MT611574.1
JK248A Rods + - - + + + Lactobacillus plantarum 98.94 MN640561.1
JK248B Rods + - - + + + Lactobacillus plantarum 98.13 MF992227.1
JK444A Rods + - - + - + Lactobacillus plantarum 100.00 KX649074.1
JK481 Rods + - + + - - Weissella cibaria 99.63 MT613505.1
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Table 1. Cont.

Phenotypic Characterization Molecular Identification

Sample ID Cell Shape Gram
Status Catalase CO2 6.5% NaCl Growth at

10 ◦C
Growth at

45 ◦C Closest Relatives % Identity Accession No.

JK482 Rods + - + + + + Weissella cibaria 100 MT613466.1
JK487 Rods + - + + - + Weissella cibaria 100 MT613505.1
JK721 Rods + - + + - + Weissella cibaria 99.82 MT613505.1
M444B Rods + - - + + + Lactobacillus plantarum 99.27 KX057551.1
M723B Rods + - - + - + Lactobacillus plantarum 99.06 MF992227.1
N8243 Rods + - - + + + Lactobacillus plantarum 99.72 MT613638.1
N8481 Rods + - - + - + Lactobacillus plantarum 96.75 MN420754.1
N8729 Cocci + - - + - + Lactococcus garvieae 100 MT604790.1

NS442B Rods + - - + + + Lactobacillus plantarum 98.67 MF992227.1
NS489A Rods + - - + + + Lactobacillus plantarum 99.76 MF992229.1

Table 2. Phenotypic and molecular identification of lactic acid bacteria from African nightshade leaves.

Phenotypic Characterization Molecular Identification

Sample ID Cell Shape Gram
Status Catalase CO2 6.5% NaCl Growth at

10 ◦C
Growth at

45 ◦C Closest Relatives % Identity Accession No.

NSR0012 Rods + - - + + + Lactiplantibacillus
plantarum 99.50 OL587487.1

NSR0021 Rods + - - + + + Lactobacillus plantarum 99.14 MT463848.1
NSR2411 Cocci + - - + - + Enterococcus mundtii 99.49 AP019810.1
NSR2412 Rods + - + + - + Lactobacillus fermentum 99.90 KJ872850.1
NSR2413 Rods + - + - - + Lactobacillus fermentum 99.07 MT505566.1
NSR4411 Rods + - - + + + Lactobacillus plantarum 99.61 MK611401.1
NSR4412 Rods + - - + + + Lactobacillus plantarum 100.00 OL587487.1
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Table 2. Cont.

Phenotypic Characterization Molecular Identification

Sample ID Cell Shape Gram
Status Catalase CO2 6.5% NaCl Growth at

10 ◦C
Growth at

45 ◦C Closest Relatives % Identity Accession No.

NSR4413 Rods + - + + - + Lactobacillus fermentum 99.65 KT633923.1
NSR4421 Rods + - - + + + Lactobacillus plantarum 99.50 MH473447.1

NSR4422 Rods + - - + + + Lactiplantibacillus
plantarum 100.00 OL518965.1

NSR4431 Rods + - - + - + Lactobacillus plantarum 99.25 MK611401.1
NSR4442 Cocci + - - + + + Pediococcus pentosaceus 99.90 MT510483.1
NSR4813 Cocci + - - + + + Pediococcus pentosaceus 98.67 EU080993.1
NSR4821 Cocci + - - + + + Pediococcus pentosaceus 99.90 MT604839.1
NSR4822 Cocci + - - + - + Enterococcus faecalis 99.88 OK392639.1
NSR4824 Rods + - + + + + Weissella confusa 100.00 OK326537.1
NSR4841 Rods + - + + + - Weissella muntiaci 99.71 NR_170492.1
NSR7222 Rods + - - + + + Lactobacillus plantarum 99.70 OL587487.1
NSR7223 Rods + - + + - - Weissella confusa 100.00 OK326231.1

NSR7224 Rods + - - + + + Lactiplantibacillus
plantarum 100.00 OL587487.1

NSR7241 Cocci + - - + + + Pediococcus pentosaceus 100.00 MT604838.1
NSR7242 Cocci + - - + + + Pediococcus pentosaceus 99.90 MT604839.1
NSR7243 Cocci + - - + + + Pediococcus pentosaceus 100.00 MT604839.1
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Based on 16S rRNA genes, fermentation of African indigenous leafy vegetables (AILVs)
was dominated by the genus Lactobacillus (Lactiplantibacillus and Limosilactobacillus). In
cowpea, for example, the genus Lactiplantibacillus (7) dominated followed by Leuconostoc (6),
then Weissella (4) and Enterococcus (2), respectively (Figure 2). Africa nightshade leaves were
dominated by the genera Lactiplantibacillus (9) and Limosilactobacillus (3), followed by the
genera Pediococcus (6), Weissella (3), and Enterococcus (2), respectively. Vegetable amaranth
was dominated by Lactiplantibacillus (9), Weissella (4), and Lactococcus (2), respectively
(Figure 2).
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Figure 2. Lactic acid bacteria isolated from three African indigenous leafy vegetables grouped at the
genus level.

The hierarchical profile among the bacterial species and AILVs revealed two ma-
jor clusters and three distinct clusters for the isolated bacteria and AILVs, respectively
(Figure 3). Amaranth and cowpeas were clustered separately from the African nightshade.
All three vegetables contained Lactiplantibacillus plantarum. Pediococcus pentosaceus was
isolated from African nightshades, whereas Weissella cibaria was isolated from cowpea and
amaranth (Figure 3).

Analysis of the relationship among the lactic acid bacteria species against different
fermentation times in cowpea showed three cluster groups of the bacterial species. Ad-
ditionally, there was a relationship between 24 h and 96 h and 48 h and 72 h. There was
no relationship at 0 h, 144 h, and 168 h. At 144 h, the highest number of bacterial species
was recorded compared to the rest of the time. The least number of bacterial species were
recorded at 48 h. Lactiplantibacillus plantarum dominated the fermentation at 96 h and
144 h whereas Weissella cibaria dominated at 24 h, 72 h, 96 h, and 168 h in the fermentation.
Leuconostoc mesenteroides dominated from 24 h to 96 h whereas Enterococcus was frequently
isolated at 0 h and 24 h (Figure 4).

Analysis of the relationship among the bacteria species against the different times of
fermentation in vegetable amaranth showed three cluster groups of the bacteria species.
Concerning time, there were three cluster groups at 0 h, 72 h, 96 h, and 168 h, 24 h, and
144 h were pressed together, and 48 h was independent. The highest number of bacterial
species were recorded at 48 h. Lactiplantibacillus plantarum dominated the fermentation at
24 h, 48 h, 72 h, and 144 h followed by Weissella cibaria, which dominated at 48 h and 72 h
and Lactococcus garvieae at 24 h and 72 h of fermentation (Figure 5).

Analysis of the relationship among the bacteria species against the different fermenta-
tion times of African nightshade leaves showed five cluster groups of the bacteria species.
The highest number of bacterial species was recorded at 144 h. Lactiplantibacillus plantarum domi-
nated nightshade fermentation at 0 h, 72 h, and 144 h. It was followed by Pediococcus pentosaceus,
which dominated 48 h, 72 h, and 144 h of fermentation then followed by Weissella muntiaci
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(48 h) and Weissella confusa (48 h and 72 h) and, finally, Enterococcus mundtii (24 h) and
Enterococcus faecalis (48 h) (Figure 6).
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Figure 3. Hierarchical clustering of lactic acid bacteria from three fermented African indigenous leafy
vegetables at the species level. Legend: Hierarchical clustergram generated using several bacteria
species at different types of African indigenous leaf vegetables. The heatmap (Euclidean matric)
shows the relationship between selected bacteria species and varied African vegetables. The colored
scale bar indicates the significant quantified strength of the various African vegetables. The red color
in the heatmap indicates the highest, and pink indicates the lowest significance at p ≤ 0.05 for the
assayed treatments.

Phylogenetically, lactic acid bacteria isolated from nightshade and cowpea leaves
had five distinct clusters corresponding to genera Lactiplantibacillus, Limosilactobacillus,
Pediococcus, Enterococcus, and Weissella/Leuconostoc. In the phylogenetic group of genus
Lactiplantibacillus strains, NSR4433, CPR4431, NSR0012, NSR0021, NSR4411, NSR4421,
NSR4421, NSR4431, NSR7224 and NSR7222 were associated with Lactiplantibacillus plantarum
(OL587487.1, OL518965.1 and MH473447.1). Strains NSR2412, NSR4413, and NSR2413
were associated with Limosilactobacillus fermentum (Lactobacillus fermentum) (MT505566.1
and KJ872850.1), strains NSR4813, NSR7243, NSR 7241, NSR4821, and NSR4442 were asso-
ciated with Pediococcus pentosaceus (MT604839.1 and EU080993.1) whereas strains NSR2411,
NSR2431, and CPR 0021 formed a cluster associated with Enterococcus sp. (MT585577.1 and
MT116081.1). In the cluster, Weissella/Leuconostoc group strains NSR7223 and NSR4824 were
clustered with Weissella confusa (OK326537.1) whereas strain NSR4841 was associated with
Weissella muntiaci (NR170492.1). One strain, CPR 0031, formed a separate sub-cluster within
the Weissella/Leuconostoc group associating with Leuconostoc lactis (MT604792.1) (Figure 7).
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Figure 4. Hierarchical clustering of lactic acid bacteria at the species from fermented cowpea leaves
at different fermentation times. Legend: Hierarchical clustergram generated using several bacterial
species from cowpeas at different times. The heatmap (Euclidean matric) shows the relationship
between selected bacteria species and varied times. The colored scale bar indicates the significant
quantified strength of the various times. The red color in the heatmap indicates the highest and
orange indicates the lowest significance at p ≤ 0.05 for the assayed treatments.

Three unique clusters were found in the phylogenetic grouping of lactic acid bacteria
that were isolated from fermented cowpea and amaranth leaves and correspond to the
genera Weissella/Leuconostoc, Lactococcus, and Lactiplantibacillus. In the cluster of Weissella/
Leuconostoc, two distinct sub-clusters were reported; for instance, strains CPR1682, CPR967,
CPR722, CPR245, JK721, JK487, JK482, and JK481 clustered with Weissella cibaria (MT611777.1
and MT613505.1), and the other sub-cluster was associated with Leuconostoc spp. For in-
stance, strains CPR723 and CPR 482 were clustered together with Leuc. Citreum (MT544904.1
and MT544678.1); additionally, strains CPR243, CPR721, and CPR961 were associated
with Leuc. mesenteroides (MT597708.1). Strains JK244 and N8729 formed a separate clus-
ter associated with Lactococcus garvieae (MT604790.1). The final cluster included strains
such as CPR1448, N8243, CPR1449, N8442B, CPR963, N8481, JK444A, JK248A, JK248B,
M444B, M723B, NS489A, CPR1687, and CPR1441 that clustered with Lactobacillus plantarum
(Lactiplantibacillus plantarum) (Figure 8).
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Figure 7. A phylogenetic tree based on 16S rRNA gene sequences shows the relationship between
lactic acid bacteria isolated from nightshade/cowpea leaves and representatives of other related taxa.
The scale bar indicates 0.05 substitutions per nucleotide position. The red arrows indicate isolates
from nightshade and blue arrows indicate isolates from cowpea. The number beside the node is the
statistical bootstrap value. In brackets are the GenBank accession numbers. The gene sequence of
E. coli (X80725.1) was used as an out-group.
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Figure 8. A phylogenetic tree based on 16S rRNA gene sequences shows the relationship between
lactic acid bacteria isolated from cowpea/amaranth and representatives of other related taxa. The
scale bar indicates 0.05 substitutions per nucleotide position. The red arrows indicate isolates from
amaranth and blue arrows indicate isolates from cowpea. The number beside the node is the
statistical bootstrap value. In brackets are the GenBank accession numbers. The gene sequence of
E. coli (X80725.1) was used as an out-group.
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3. Discussion

Fermentation is a biotechnological process with a long history of application. In
Africa, there is little information on leafy vegetable fermentation, as opposed to typical
fermentations based on animal or plant protein or starchy plant substrates [5]. In natural or
spontaneous fermentation, the conditions are set to encourage the growth of the desirable
and most adaptable microorganisms, which produce by-products that aid in outgrowing
others and dominating the fermentation [19]. Food fermentation offers numerous benefits,
several of which are vital for survival and safe nutrition of populations; for example, it
enhances food organoleptic properties, aids in food preservation due to the accumulation
of organic acids, CO2 and bacteriocins from fermenting microbes and reduction of food
spoilage, and it also improves food nutritional value through the production of vitamins,
essential amino acids, proteins, and fatty acids. It also improves the toxicological safety
of products by degradation of antinutritive factors [16,20]. In this study, three commonly
consumed African indigenous leafy vegetables (AILVs) in Kenya, i.e., amaranth, cowpeas,
and African nightshade leaves were spontaneously fermented in a brine solution of 3% salt
and 3% sugar. AILVs are rich in micronutrients, are widely accessible, and are affordable;
hence, they were selected for this investigation [6].

The results showed that the spontaneous fermentation of three AILVs was dominated
by six distinct populations of lactic acid bacteria (LAB) genera: Lactobacillus (Lactiplantibacillus
and Limosilactobacillus), Pediococcus, Weissella, Leuconostoc, Enterococcus, and Lactococcus
(Figure 2). Studies show that plant materials harbor different groups of LAB micro-
biota, such as Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc mesenteroides,
Lactobacillus acidophilus, and Lactococcus lactis strains [5,21]. The participation of LAB in the
spontaneous fermentation of various plant materials has already been demonstrated by
Kostinek et al. [22], who found several LAB involved in the natural fermentation of cassava.
Spontaneous fermentation of kimchi, a Korean fermented vegetable is commonly carried
out by the genera Lactobacillus and Leuconostoc [23,24]. Sauerkraut is also produced by the
spontaneous fermentation of cabbage by LAB [25,26].

Among the genera, Weissella, Lactococcus, Enterococcus, and Leuconostoc were abundant
at the early stages of all three AILVs fermentation (0–72 h). Previous studies reported
that these groups of LAB initiate the fermentation when the pH is low and later a more
acid-tolerant group, i.e., Lactobacillus, takes over the fermentation. These results agree with
our findings where the pH went below 4.0 after 48 h because of LAB growth (Figure 1). In
kimchi fermentation, it was reported that Leuconostoc and other less acid-tolerant bacteria
dominate the early stages of fermentation [27], but were later replaced by species of the
genera Lactobacillus and Weissella, which are better adapted to grow at high acidity and low
pH conditions [28,29].

The genera Lactococcus (Lactococcus garvieae) and Enterococcus (Enterococcus mundtii/
Enterococcus faecalis) were among the most abundant LAB bacteria present at 0–48 h. These
bacteria belong to a homofermentative group that only produced lactic acid from sugar
metabolism [30]. They occur in a wide range of habitats, e.g., on the skin and in the milk
and feces of animals, from saliva, breast milk, and the vagina of humans, from plants
and vegetables, as well as from a variety of fermented foods [31]. Lactococcus garvieae is
commonly used in the manufacture of meat, cheese, and other fermented milk products. It is
a good producer of bacteriocins and is hence used in the food industry as a biopreservative
agent against various foodborne pathogens [32].

As fermentation progresses, the results showed that members of the genera Lactobacillus,
Weissella, and Pediococcus predominated at 24–168 h. Among the LAB isolated, Lactiplantibacillus
plantarum (formerly L. plantarum) was the most isolated from 0–144 h (Figures 4–6).
Lactiplantibacillus plantarum has been previously isolated from different African fermented
foods [20,33,34] and it is known to produce plantaricin [35] with acid-tolerant and probiotic
properties. Lactiplantibacillus pentosus (formerly L. pentosus) and Lactiplantibacillus casei (for-
merly L. casei) are phylogenetically clustered with Lactiplantibacillus plantarum, which were
isolated from cowpea leaves at 144 h. Lactiplantibacillus pentosus is used as a starter culture
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in the fermentation of Spanish-style green olives, contributing not only to the organoleptic
properties of the final product but also acting as a biopreservative agent of the fermented
olives [36]. Lactiplantibacillus casei is frequently isolated from fermented vegetables, milk,
dairy products, and the human intestinal tract. It is generally recognized as safe with a
long history of use as a probiotic strain and immune system modulator [37].

Limosilactobacillus fermentum (formerly Lactobacillus fermentum) was isolated from night-
shade leaves at 24 h and 144 h, and it is obligately heterofermentative rod-shaped, produc-
ing CO2 from sugar metabolism. It occurs in diverse habitats, including the human gut,
milk products, fermenting plant material, and animals [38]. This species is considered a
good probiotic candidate because of its ability to withstand gastrointestinal conditions [39].
It was reported to have the potential for the prevention of community-acquired infections,
modulation of the immune systems, and production of antimicrobial compounds [40].
Strains belonging to the genus Weissella were isolated at 48 to 72 h, and they included
W. cibaria, W. confuse, and W. muntiaci. Members of this genus are Gram-positive, coccoid,
or have a rod-shaped morphology [41]. They are obligately heterofermentative, producing
CO2 from sugar metabolism [31]. They occur in a wide range of habitats, e.g., on the skin
and in the milk and feces of animals, from saliva, breast milk, feces, and the vagina of
humans, from plants and vegetables, as well as from a variety of fermented foods [31].
W. cibaria and W. confusa are linked to the formation of the exopolysaccharide (EPS) dex-
tran, which has prospective applications as a replacement for commercial hydrocolloids in
bakery products, as well as health benefits as a prebiotic fiber [42]. Furthermore, members
of the genus Leuconostoc were frequently isolated from cowpea leaves at 0–96 h, and they
included Leuc. mesenteroides, Leuc. lactis, and Leuc. citreum. Members of this genus are
Gram-positive, coccoid, or have a rod-shaped morphology and produced CO2 from sugar
fermentation. Leuconostoc species are involved in several food fermentation processes; for
example, Leuc. mesenteroides sub sp. mesenteroides are regular aroma-producing starter
cultures in the dairy industry and are involved in vegetable and coffee bean fermentations
as well as Leuc. mesenteroides and Leuc. citreum are the dominant species in kimchi fermen-
tation [43]. Additionally, Leuc. lactis is a good producer of EPS with potential applications
in the food industry [44]. Pediococcus pentosaceus dominated the fermentation of African
nightshade leaves between 48 to 144 h. It is an obligate homofermentative, Gram-positive
coccus-shaped LAB [45]. It is frequently utilized in the fermentation of fruits, vegetables,
dairy products, meat, and silage [46]. It is known to produce pediocins with broad an-
timicrobial activity against food pathogens [47] and is crucial in the production of various
commercial probiotic feeds [48].

4. Materials and Methods
4.1. Growth and Preparation of Plant Materials

The African indigenous leafy vegetables nightshade (Solanum scarbrum), cowpea
(Vigna unguiculata), and amaranth (Amaranthus retroflexus) (Figure 9) were cultivated at
Jomo Kenyatta University of Agriculture and Technology (JKUAT) in Kenya in open fields
for six to eight weeks (17–28 ◦C, 40–50% relative humidity). The vegetables were cultivated
during the dry seasons of December to April. The used soil was supplemented with
composite farmyard manure with application of drip-line irrigation 12 h a day. The leafy
vegetables were harvested by hand-picking and delivered to the laboratory for processing.
The leaves were washed with tap water and dried with paper towels.

4.2. Fermentation of African Indigenous Leafy Vegetables

Fermentation was performed in 5. L stainless steel buckets. For each vegetable, 1 kg
of leaves and 3 L of salt and sugar brine solution were used. The solution consisted of a
combination of salt and sugar, 3.0% each. Common table salt (Kensalt ltd, Nairobi, Kenya)
and retail sugar (Kabras sugar company ltd, Kakamega, Kenya) were purchased at local
stores in Kenya. The brine solution was sterilized by autoclaving for 15 min at 121 ◦C.
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Weights were used to hold all plant material below the surface of the liquid. Sampling was
done in a sterile setting (Figure 10). The fermentations were done in duplicates at 25 ◦C.
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4.3. Microbiological Testing

The progress of the fermentation was determined by microbial enumeration and pH
determination. The buckets were carefully swirled to mix the fermentation brine and
materials followed by collecting 7 mL of brine samples for pH determination and 5 mL
for microbiological enumeration in sterile test tubes at 0 h, 24 h, 48 h, 72 h, 144 h, and
168 h. The fermentation samples were mixed by vortexing, and then 1 mL of the mixture
was transferred to a 9 mL test tube containing sterile quarter-strength ringer’s solution to
make serial 10-fold dilutions of 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, and 10−9.
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These preparations were further mixed by vortexing. Then, 100 µL of the aliquots from
different dilutions were spread-plated onto MRS agar (De Man, Rogosa, and Sharpe), M641,
Himedia (Mumbai, India) and M17 agar (M929 Himedia (Mumbai, India). The plates were
incubated aerobically at 30 ◦C for 24–48 h. The incubated plates were counted daily for
up to 6 days to determine the bacterial colony forming unit (CFU) as described by Wafula
and Murunga [49]. For further characterization, colonies were selected at random from the
highest dilution agar plates. The isolates were then grown aerobically in MRS broth at 30 ◦C
and streaked to ensure purity. The isolates stock cultures were cryopreserved in MRS broth
with 20% glycerol at −75 ◦C. The isolates were divided into groups based on phenotypic
characteristics, and their identity was confirmed through 16S rRNA gene sequencing.

4.4. Phenotypic Characterization

Presumptive lactic acid bacteria isolated from cowpea, nightshade, and vegetable
amaranth leaves were further characterized. Cell morphology was determined using phase-
contrast microscopy at 100× magnification (Shimadzu CX41, Tokyo, Japan). Standardized
tests including Gram reaction and catalase activity [50,51], gas (CO2) output from glucose
in MRS broth, growth at 6.5% NaCl concentration, and growth at 15 ◦C and 45 ◦C were also
determined [12]. The strains were classified into three groups based on their phenotypic
characteristics: obligately heterofermentative rods, facultatively heterofermentative and
obligately homofermentative rods, and obligately heterofermentative cocci.

4.5. Genotypic Characterization

Genomic DNA was extracted from overnight cell cultures grown in an MRS broth
at 30 ◦C using a BioWorld Bacterial Miniprep Kit (GeneLink International, Inc., Dublin,
OH, USA) according to the manufacturer’s instructions. DNA was quantified using a
NanoDrop spectrophotometer (PCRmax, Staffordshire, UK). Amplification was performed
in a Primus 96 advanced Peqlab, thermal cycler (PEQLAB, Erlangen, Germany) in relation
to positions 8–27 and 1511–1491 of the corresponding 16S rRNA gene of Escherichia coli,
respectively [52]. The 16S rRNA gene amplification was performed using the universal
primers 27F (5′-AGA GTT TGA TCC TGG CTC AG-3′) and 1492R (5′-GGT TAC CTT GTT
ACG ACT T-3′).

PCR was performed in a 50 µL mixture containing 25 µL OneTaq® 2X Master Mix (New
England BioLabs, Hertfordshire, UK), 1 µL of each primer, 1 µL of DNA template (10 ng),
and 22 µL RNase free water. The reaction mixtures were subjected to the PCR conditions
as described by Wafula and Murunga [49]. The amplified PCR products were resolved
in 1.2% agarose gel stained with ethidium bromide (1 µg/mL) and visualized using a
Uvitec Cambridge gel documentation system (Uvitec, Cambridge, UK). PCR products were
purified using the QIAquick PCR purification kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. The purified amplicons were Sanger-sequenced at Human
Genomics Macrogen Europe (Macrogen Europe B.V, Amsterdam, The Netherlands).

4.6. Phylogenetic Analysis

The 16S rRNA gene sequences of the bacterial isolates were viewed for quality checks
and edited using the ChromasPro 2.1.8 software package (http://technelysium.com.au/
wp/, accessed on 13 January 2022). They were then compared with available standard
sequences of bacteria lineages in the public nucleotide sequence databases in the National
Center for Biotechnology Information (NCBI) using nucleotide blast (https://blast.ncbi.
nlm.nih.gov/Blast.cgi, accessed on 13 January 2022) to find closely related bacterial 16S
rRNA gene sequences. The 16S rRNA gene sequences of the isolates and those of the
unknown closely related bacteria strains were aligned using Clustal W software, and
phylogenetic trees were constructed using the Kimura 2-parameter model with MEGA
(Molecular Evolutionary Genetics analysis) 7.0 software package [53]. The trees’ topologies
were evaluated using the bootstrap resampling method [54] based on 1000 replicates. The
sequence of Escherichia coli (X80725.1) was used as control.

http://technelysium.com.au/wp/
http://technelysium.com.au/wp/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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4.7. Data Analysis

The microbial enumeration and pH results were expressed as the mean and standard
deviation of duplicate experiments using Microsoft excel 2021. The hierarchical clustering
of LAB vs fermentation and the vegetable type were analyzed using Anaconda-Python
version 3.0.

5. Conclusions

Based on 16S rRNA genes, fermentation of African indigenous leafy vegetables was
dominated by genera Lactobacillus, Weissella, Leuconostoc, Pediococcus, and Lactococcus. This
study revealed that fermented AILVs harbor diverse LAB with Lactiplantibacillus plantarum,
Weissella cibaria, and Pediococcus pentosaceus as the dominant species. These bacterial strains
could be used in a variety of industrial and commercial settings. Hence, further studies
are required to evaluate the isolates’ functional properties as potential probiotics and
starter cultures. Molecular and metagenomic techniques might be used to thoroughly
investigate how the LAB functions during fermentation and microbial variation throughout
vegetable fermentation.
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