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Abstract: Angular leaf spot of cashew tree in Brazil has been attributed to pigmented and nonpig-
mented strains of Xanthomonas citri pv. anacardii. Due to the possibility of dissemination of the
disease by propagating material, it is necessary to understand the survival mechanisms of the causal
agent. Thus, the present study aimed to characterize the behavior of viable but non-cultivable cells
(VBNC) in two pigmented strains (CCRMTAQ13 and CCRMTAQ18) and one nonpigmented strain
(IBSBF2579) of X. citri pv. anacardii, integrating in silico, in vitro, and in vivo studies. Thirteen genes
associated with the VBNC phase were identified in the genomes of these strains. The log phase was
observed at 24, 48, and 120 h for CCRMTAQ13, CCRMTAQ18, and IBSBF2579 strains, respectively.
The death phase was observed at 96 h for both pigmented strains and 168 h for the nonpigmented
strain. Using qPCR analyses, it was possible to characterize the occurrence of VBNC for the three
strains. When inoculated, the strains showed 100% incidence during the VBNC phase, with the
IBSBF2579 strain having the longest incubation period (IP). The strains did not differ concerning final
severity (FS) in the VBNC phase. To our knowledge, this is the first report of the occurrence of the
VBNC mechanism in X. citri pv. anacardii strains. Furthermore, it has been demonstrated that X. citri
pv. anacardii in the VBNC state is potentially infective when they meet their host’s apoplast, which
points to the need to use integrated practices to detect this bacterium in cashew seedlings.

Keywords: qPCR; angular leaf spot; infectivity; Anacardium occidentale

1. Introduction

The cashew tree (Anacardium occidentale L.) is a tropical plant from Brazil, and it is
dispersed throughout almost the entire national territory [1], where it stands out for its
domestication and high economic use [2]. The cashew nuts are the main product of this
crop, and the Northeast is the main producing region of the country, with more than 137
thousand tons produced in 2019 [3]. Among the several plant pathogens which can infect
cashew trees, the bacterium Xanthomonas citri pv. anacardii stands out due to its capacity
to cause angular spots and dark lesions surrounding the veins of the leaves, dieback,
branches’ death, and water-soaked lesions in fruits [4,5]. From these lesions, pigmented
and nonpigmented strains have been obtained, which are equally aggressive to cashew
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trees [6]. In addition, X. citri pv. anacardii appears to be a bacterium spread only within
Brazil, where it has spread between states, possibly through contaminated seedlings [4].

So far, there are four genomes of X. citri pv. anacardii available from Genbank/NCBI [7],
which contain important information about genes involved in bacterial metabolism and can
help the study of the survival of this bacterium, such as genes related to the mechanism of
viable but non-cultivable cells (VBNC) [8,9]. The term VBNC has been used to refer to cells
unable to grow in a culture medium, but which remain alive and able to resume metabolic
activities under favorable conditions [10], such as nutritionally rich environments [11] or in
case of contact with components extracted from the host [12].

VBNC have been reported in several phytobacteria [9,10,13–19]. In X. campestris pv.
campestris [8] and X. citri subsp. citri [9], the VBNC status has been induced by contacting
the bacterial suspension with copper sulfate (CuSO4). In some studies, cell viability has
been associated with genes related to motility [20], responsible for the biosynthesis of
metabolites [11], involved in protection against oxidative stress [21], biofilm formation [22],
adaptation to environmental stresses, energy generation, and cell wall composition [16].

Regarding the ability to reestablish an active metabolism from the state of VBNC, these
cells have been characterized as potential inoculum sources for new infections [23]. Thus,
given that bacteria in the VBNC state do not produce cultivable colonies, it may be necessary
to combine molecular techniques with traditional microbiological isolation methods for
more accurate detection of the pathogen [10], which could prevent the introduction of
X. citri pv. anacardii into disease-free areas and avoid disease spread. Therefore, the present
study aimed to verify the occurrence of VBNC using quantitative polymerase chain reaction
(qPCR) in X. citri pv. anacardii and assess the capacity of these cells to initiate an infectious
process in a leaf of cashew seedlings.

2. Results
2.1. In Vitro Growth Phases

The three strains of X. citri pv. anacardii showed the apex of the exponential phase at 24,
48, and 120 h, reaching concentrations of 1.15, 0.36, and 0.95 × 108 CFU/mL, for the strains
CCRMTAQ13, CCRMTAQ18, and IBSBF2579, respectively (Figure 1a). For the death phase,
the absence of bacterial growth was observed at 96, 96, and 168 h for strains CCRMTAQ13,
CCRMTAQ18, and IBSBF2579, respectively. In turn, the growth curves obtained from the
absorbance of the suspension of the three strains showed progressive increases up to 168 h
(Figure 1b).
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2.2. Genomic Annotation, Comparative Analysis, and Primer Construction for VBNC
Status Assessment

Four thousand five hundred ninety-six and 4917 coding sequences were annotated,
genomic content of 5,084,712 and 5,183,683 base pairs, 64.4% and 64.1% of GC for CCRM-
TAQ13 and CCRMTAQ18 strains, respectively.

In the literature, 60 genes were found upregulated during the state of VBNC in bacteria.
From the in silico genomic analyses, 13 different genes were present in a single copy in the
bacterial genome of the three strains of X. citri pv. anacardii (Table 1). Among them, the
relA gene was detected in silico in the three genomes analyzed, and it was selected for the
primer design.

Table 1. Genes differentially expressed during the stage of viable but not cultivable cells (VBNC)
reported in bacteria and found in genomes of the strains pigmented (CRMTAQ13 and CCRMTAQ18)
and nonpigmented (IBSBF2579) of Xanthomonas citri pv. anacardii.

Gene Product Gene Size (bp) Reference

fliG FliG flagellar protein 975
[20]

relA (P)ppGpp synthase 2163

omp Outer membrane protein 1515

[21]rps 30S Ribossomal protein 789

dps DNA-binding ferritin-like protein
(Oxidative damage protectant) 540

mobA Molybdenum cofactor guanylyltransferase 570 [24]

soxR Transcriptional regulator soxR family 451
[25]

katG Catalase-peroxidase 2249

gltB Glutamate synthase alfa subunit 4470

[22]gltD Glutamate synthase beta subunit 1410

pilM Type IV pilus assembly protein 1086

hfq RNA Hfq binding protein 282 [26]

murG

UDP-N-acetylglucosamine–N-
acetylmuramyl-(pentapeptide)
pyrophosphoryl-undecaprenol

N-acetylglucosamine transferase

1290 [16]

2.3. VBNC State Evaluation

The data obtained through qPCR show that the FXCA and RXCA primers constructed
based on the relA gene efficiently amplified all the samples used, demonstrating specificity
in the melting curve and uniformity of peaks for all samples (Figure 2).

Considering the amplification of the relA gene, no significant differences were observed
between the exponential and death phases, which presented 1.10 and 1.68, 0.47 and 0.33,
1.17 and 4.32 × 1014 copies/mL for CCRMTAQ13, CCRMTAQ18, and IBSBF2579 strains,
respectively (Figure 3a). Considering the bacterial concentration in these phases, significant
differences were observed between the exponential and death phases of all strains, with
concentrations of 1.15, 0.36, and 0.95 × 108 CFU/mL for CCRMTAQ13, CCRMTAQ18, and
IBSBF2579 (Figure 3b) in the exponential phase, while in the death phase growth was not
observed.

The VBNC status was induced by the time of cultivation during 96, 96, and 168 h for
the strains CCRMTAQ13, CCRMTAQ18, and IBSBF2579, which presented a high number
of copies/mL of the relA gene and bacterial concentration equal to zero.
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Figure 2. Melting curve of qPCR obtained from samples of strains CCRMTAQ13, CCRMTAQ18, and
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F5–G8—Diluted samples of CCRMTAQ18. G9–H12—Diluted samples of IBSBF 2579.
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Figure 3. Comparative qPCR amplification and cell formation units of the strains pigmented (CCRM-
TAQ13 and CCRMTAQ18) and nonpigmented (IBSBF2579) of Xanthomonas citri pv. anacardii in
exponential and death phases. (a), Numbers of copy of the relA gene. (b), cell formation units.
Asterisk indicates statistical difference between exponential and death phases.

2.4. VBNC State Cell Infectivity

An incidence of 100% was observed for the three strains evaluated in the exponen-
tial and VBNC phases. For IP and FS, a significant interaction (p ≤ 0.05) was observed
between strains and bacterial growth phases (Table 2). The IP of the strains IBSBF2579 and
CCRMTAQ13 were lower than the strain CCRMTAQ18 in the exponential phase, while the
strains CCRMTAQ18 and CCRMTAQ13 showed an IP lower in the VBNC state. The strains
IBSBF2579 and CCRMTAQ18 showed a difference between the IP of the exponential phase
and the state of VBNC. Regarding FS, the three strains showed differences among them-
selves in the exponential phase, while in the state of VBNC no differences were observed
among the strains. Higher values of FS were observed in the exponential phase of strains
CCRMTAQ13 and IBSBF2579 than in the state of VBNC, while in strain CCRMTAQ18 the
values between these phases did not differ.

Table 2. Infectivity of the pigmented (CCRMTAQ13 and CCRMTAQ18) and nonpigmented (IB-
SBF2579) strains of Xanthomonas citri pv. anacardii in cashew seedlings inoculated with cells in the
exponential growth phase and on VBNC (viable but nonculturable cells) state.

Incubation Period (Days) Final Severity (mm2)

Strain Exponential VBNC Exponential VBNC

CCRMTAQ13 2.44 bA 1 2.66 bA 6.91 aA 5.43 aB

CCRMTAQ18 3.13 aA 2.69 bA 4.72 cA 5.09 aA

IBSBF2579 2.27 bB 3.41 aA 5.98 bA 5.12 aB

VC 2 (%) 24.9 15.71
1 Average of nine replicates. Averages followed by the same lowercase letter in columns and uppercase letter in
rows are not significantly different, as measured by LSD test (p ≤ 0.05); 2 Variation coefficient.

3. Materials and Methods
3.1. Bacterial Strains and Growth Conditions

We used two pigmented strains (CCRMTAQ13 and CRMTAQ18) and one nonpig-
mented strain (IBSBF2579) of X. citri pv. anacardii. The genomes of these strains were
sequenced in other studies [6,27] and deposited in the database of the GenBank/NCBI
(https://www.ncbi.nlm.nih.gov/genome, accessed on 17 May 2021), with the assemblies:

https://www.ncbi.nlm.nih.gov/genome
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GCA_002898475.1 (CCRMTAQ13), GCA_002898415.1 (CRMTAQ18), and GCA_002837255.1
(IBSBF2579). The strains CCRMTAQ13 and CCRMTAQ18 are deposited in Rosa Mariano
Culture Collection from the Phytobacteriology Laboratory (LAFIBAC) of Universidade
Federal Rural de Pernambuco (UFRPE), and the strain IBSBF2579 is deposited in the Phy-
tobacteria Culture Collection from the Instituto Biológico of the São Paulo state. In the
different assays carried out in this study, the strains were cultivated in Petri dishes contain-
ing NYDA medium (20 g L−1 agar, 10 g L−1 dextrose, 5 g L−1 yeast extract, 3 g L−1 meat
extract, and 5 g L−1 peptone) at 29 ◦C for 36 h.

3.2. Determination of Exponential and Death Phases In Vitro

From the growth of each strain, a suspension in sterilized distilled water (SDW) was
prepared to adjust the concentration to A570 = 0.06, corresponding to 108 colony-forming
units (CFU) mL−1. Subsequently, 1.0 mL of bacterial suspension was added to test tubes
containing 9.0 mL of NYD liquid medium (NYDA, without agar), with subsequent incuba-
tion at 29 ◦C. Every 24 h, for seven days, the suspension concentration in the tubes was
determined by removing 5 mL aliquots of the suspension to read the absorbance using
a spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) at 570 nm. Simulta-
neously, serial dilutions were performed by removing 1.0 mL aliquots of the suspension,
diluting in SDW up to 10−7, and plating 0.1 mL of the last three dilutions (10−5, 10−6, and
10−7) in Petri dishes containing NYDA medium, spreading the suspension with the aid
of a Drigalski loop. The colonies formed were counted 48 h after plating to determine
the concentration of the bacterial suspension using the formula CFU mL−1 = average
number of colonies x sample dilution factor x correction factor, where the dilution factor
corresponds to the potency of base 10 in which the dilution was plated, and the correction
factor corresponds to 10, which refers to the fact that only 0.1 mL of suspension was plated.
After counting the colonies, concentrations were standardized to 108 CFU mL−1 to make
easy comparisons among the curves built for the three strains.

The experiment was performed in a completely randomized design, with eight repli-
cates per strain, and each replicate was characterized by a tube. For each day of absorbance
reading, a tube has been randomly selected. From each test tube, bacterial concentration
quantifications were performed by plating on six Petri dishes for each quantified dilution.
The data were used to build growth curves to determine the exponential and death phases.
The experiment was carried out twice.

3.3. Genomic Annotation and Design of Primers for Evaluation of VBNC State

The automatic annotation was performed using the Rapid Annotation using Subsys-
tem Technology (RAST) Server [28]. Then, there was a manual curation of each of these
genes of the VBNC state in the Artemis program [26].

A bibliographic survey was carried out in scientific articles contained in the database
of the PubMed, Web of Science, and SCOPUS platforms, aiming to identify candidate genes
previously reported as expressed during the state of VBNC in bacteria. The genomes of
X. citri pv. anacardii were analyzed for the presence of these genes in a single copy using
the Artemis program [29], and the detected genes were selected to design primers.

The alignment of genes expressed during the VBNC state was performed using the
BLASTn database [30,31]. The primers FXCA F’ GATCGAAATCCAGATCCGTACC and
RXCA R’ TGCCGCCTTCCTTGTATTT were designed based on the relA using the Primer-
BLAST platform [32]. These primers were verified using the Geneious Prime 2021.1.1
program (https://www.geneoius.com, accessed on 25 June 2021). Subsequently, the primers
were synthesized by IDT (Integrated DNA Technologies Inc., San Diego, CA, USA) for
evaluation using qPCR.

3.4. Assessment of VBNC Status via Quantitative PCR (qPCR)

DNA extraction from the strains used in this study was performed using the MiniPrep
kit for bacterial genomic DNA extraction (Axygen Biosciences, Union City, CA, USA)

https://www.geneoius.com
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following the manufacturer’s recommendations. The genomic DNA was quantified as
previously described [4]. Six samples were extracted from bacterial growth cultivated in
NYD medium at 29 ◦C until the exponential and death phases, which corresponded to 24
and 96 h, 24 and 96 h, and 24 and 168 h, for the strains CCRMTAQ13, CCRMTAQ18, and
IBSBF2579, respectively. Collections were carried out in triplicate.

Each qPCR reaction was composed of 1× GoTaq qPCR Master Mix (2×), 2.5 nM of
each primer and 3 µL of DNA. For the qPCR reaction, QuantStudio 5 Real-Time PCR
System from Thermo Fischer Scientific (Waltham, MA, USA) was used, starting the am-
plification with 2 min at 95 ◦C, and 45 cycles of 15 min at 98 ◦C, 1 min at 60 ◦C. For
DNA quantification, a standard curve was developed based on a 10× serial dilution from
1000 ng/µL. Aiming to quantify the number of cells in the exponential and death phases in
the samples, the calculation of the total number of copies/mL was determined from the
ratio of the number of base pairs of the relA gene x number of base pairs in the genome and
the DNA concentration in ng/µL per sample. The cycle limit was determined after man-
ually adjusting the limit number of the linear part of the qPCR logarithmic amplification
curves [33]. Procedures were performed in triplicate for all samples. Samples without the
presence of DNA were used to verify the reliability of the data obtained. To determine the
VBNC state, the strains were cultured in NYD medium at 29 ◦C until the exponential and
death phases, and the concentrations in CFU/mL were estimated as described above. The
VBNC status was determined by comparing the number of copies/mL of the relA gene in
the exponential and death phases with the concentration of total cells in CFU/mL in the
suspensions of the strains in the respective phases [33], and the values were standardized to
1014 to make possible comparisons among the concentrations obtained. The VBNC status
was considered active when the number of copies of the relA gene/mL remained high, and
the concentration of CFU/mL was equal to zero.

Student’s t test (p < 0.05) was used to assess significant differences between the
exponential and death phases for the number of copies/mL of the relA gene and the
bacterial concentration in CFU/mL using the STATISTIX software 9 (Tallahassee, FL, USA).

3.5. VBNC Cell Infectivity in Cashew Seedlings

The strains CCRMTAQ13, CCRMTAQ18, and IBSBF2579 were cultivated in 10 mL
of NYD medium at 29 ◦C until reaching the exponential and death phases. Bacterial
suspensions were obtained by centrifugation of NYD medium at 12,000 rpm, followed by
removal of the supernatant. The concentration of the bacterial growth precipitated was
adjusted in SDW to 108 CFU/mL. The strains were inoculated on the four apical leaves
of CCP 76 cashew tree seedlings grown in a greenhouse using the infiltration method of
100 µL of suspension on the abaxial surface of the leaf blade with the aid of a needleless
syringe. Leaves similarly treated with SDW were used as a control. After inoculations,
the plants were incubated in a greenhouse (28 ± 2 ◦C, 65% RH) for 23 days, evaluating
the disease incidence, the incubation period (IP), and the final disease severity (FS), as
described by Gama et al. [4].

The experiment was carried out twice, using five and four repetitions per treatment in
the first and second experiment, respectively. Each repetition consisted of a leaf containing
four inoculation points along the leaf surface. The experiment was carried out in a com-
pletely randomized design in a factorial arrangement (3 strains × 2 growth phases). The
means were submitted to analysis of variance (ANOVA) and compared by the LSD test
(p < 0.05) using the STATISTIX 9 software (Analytical Software, Tallahassee, FL, USA).

4. Discussion

The in vitro growth curve performed with pigmented (CCRMTAQ13 and CCRM-
TAQ18) and nonpigmented (IBSBF2579) strains of X. citri pv. anacardii satisfactorily allowed
the determination of the exponential and death phases (Figure 1a), which were used to
assess the state of VBNC together with the values obtained by qPCR. The growth behavior
of all strains was variable until reaching the apex of the exponential phase.
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Regarding the duration of the stationary phase and, consequently, the beginning of the
death phase, it was observed that the pigmented strains (CCRMTAQ13 and CCRMTAQ18)
presented similar behavior to other X. citri strains [34], with no growth being observed
at 96 h, while the nonpigmented strain (IBSBF2579) showed no growth only at 168 h.
Although the bacterial concentration decreased and reached zero for all strains, the optical
density curve of the bacterial suspensions kept growing until 168 h (Figure 1b), when the
experience was completed. Thus, the VBNC was determined when the concentration of the
suspension reached zero, and the optical density value continued to be high. These data
indicated for the first time the occurrence of VBNC status in pigmented and nonpigmented
strains of X. citri pv. anacardii and the ability of this bacterium to enter this state stimulated
by the time of cultivation of its cells. A similar result was observed for X. campestris pv.
campestris, which reached the VBNC status through liquid microcosms and sterile soil [8]
and X. citri subsp. citri, with induction through low nutrient availability and copper
stress [12].

Although they have been sequenced in another study [6], the genomes of pigmented
strains of X. citri pv. anacardii (CCRMTAQ13 and CCRMTAQ18) had not yet been annotated.
The annotations performed in this study showed a smaller number of base pairs (5,084,712
and 5,183,683 bp) and N50 (109,779 and 128,886 bp) and a higher number of coding se-
quences (4,761 and 4,917) and GC content (64.4 and 64.1%) for the strains CCRMTAQ13 and
CCRMTAQ18, when compared to the number of base pairs (5,348,596 bp), N50 (418,068 bp),
coding sequences (4,427) and GC content (63.84%) observed in the strain IBSBF2579 [27].

To prove the occurrence of the VBNC state in X. citri pv. anacardii, the genomes of the
three strains used in the present study were analyzed for genes reported to be expressed
during this state. Thirteen genes were detected in the genomes of X. citri pv. anacardii as
upregulated in the VBNC state, which showed functions related to motility (fliG), hydrogen
peroxide metabolism (katG), glutamate metabolism (gltB and gltD), bacterial conjugation
pili (pilM), ribosomal metabolism (rps), transcriptional (soxR) and translational regulation
(hfq), protection against oxidative stress (dps), peptidoglycan metabolism (murG), outer
membrane composition (omp), molybdenum metabolism (mobA), and protection against
amino acid deprivation (relA) (Table 1). This last gene was selected for the design of the
primers because it is a gene previously successfully used to detect the VBNC phase in Vibrio
cholerae strains [35], being responsible for both the synthesis and degradation of guanosine
pentaphosphate synthetase ((p)ppGpp), as well as the regulation of this molecule, which
is related to adaptation to environmental changes, such as nutritional deficit and low
temperatures [36]. In addition, (p)ppGpp also promotes resistance to adverse conditions
such as nutritional stress, antibiotics, and metabolic inhibitors [20,37].

All samples from the exponential and death phases were amplified with the FXCA
and RXCA primers, used to assess the amplification of the relA gene (Figure 2). Analyses
via qPCR showed a high number of copies/mL in the exponential and death phases, with
no significant differences (p < 0.05) between these phases being observed for the three
strains, demonstrating an adaptation in the stationary phase [38] concerning other phases
of bacterial growth. Furthermore, the concentration of cells in the exponential phase ranged
from 0.36 to 1.15 × 108 CFU/mL, while in the death phase the concentration was equal to
zero. These results indicate an active cell multiplication even after the estimated time for
cell death, demonstrating for the first time the occurrence of this mechanism in X. citri pv.
anacardii. However, in the genus Xanthomonas, the occurrence of VBNC has been previously
reported in X. citri subsp. citri [9,12] and in X. campestris pv. campestris [8], indicating that
this survival mechanism may be consistently present in this genus.

Artificial inoculations in cashew seedlings with strains CCRMTAQ13, CCRMTAQ18,
and IBSBF2579, both in the exponential phase and in the VBNC state, indicated a high
capacity for infection, as demonstrated by the incidence of disease in 100% of inoculations.
The significant interaction (p ≤ 0.05) among strains and growth states (exponential and
VBNC) revealed that depending on the strain, lower IP values and higher FS values can be
induced in each phase (Table 2). These results demonstrate a high pathogenic capacity of
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X. citri pv. anacardii in the VBNC state. The pathogenicity of phytopathogenic bacteria in the
VBNC state has also been shown in X. citri subsp. citri, which causes symptoms typical of a
citrus canker at this stage, similarly to the inoculation of exponential stage strains [9]. In this
context, survival in the VBNC state and its high capacity to cause disease to suggest that
infected organs can fully function as a source of inoculum [23]. Therefore, the application of
conventional and molecular techniques for detection of X. citri pv. anacardii in propagation
material is essential since detection accuracy is a highly relevant factor for the integrated
management of diseases caused by Xanthomonas species and pathovars [39].

The high number of copies/mL of the relA gene in the death phase of the bacte-
rial growth curve demonstrated the occurrence of the VBNC state in pigmented and
non-pigmented strains of X. citri pv. anacardii. In this phase, the strains CCRMTAQ13,
CCRMTAQ18, and IBSBF2579 showed high infectiousness in cashew leaves, indicating
the possibility of dissemination of the pathogen in propagation materials. These results
indicate that when used in isolation, traditional methods of diagnosis may underestimate
the viability of the bacteria to be detected or even not detect the presence of the pathogen.
Therefore, the results obtained in this study point to the need to integrate conventional and
molecular approaches for more accurate detection of the presence of X. citri pv. anacardii in
cashew seedlings.
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