The Benefits of Exogenous Xylanase in Wheat–Soy Based Broiler Chicken Diets, Consisting of Different Soluble Non-Starch Polysaccharides Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wheat Samples and Experimental Diets
2.2. Birds, Management and Sample Collection
2.3. Laboratory Analysis
2.4. Calculations
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bedford, M.R. The evolution and application of enzymes in the animal feed industry: The role of data interpretation. Brit. Poult. Sci. 2018, 59, 486–493. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bedford, M.R.; Classen, H.L. Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is effected through changes in the carbohydrate-composition of the intestinal aqueous phase and results in improved growth-rate and food conversion efficiency of broiler chicks. J. Nutr. 1992, 122, 560–569. [Google Scholar]
- Choct, M.; Hughes, R.J.; Wang, J.; Bedford, M.R.; Morgan, A.J.; Annison, G. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br. Poult. Sci. 1996, 37, 609–621. [Google Scholar] [CrossRef]
- Muszyński, S.; Kasperek, K.; Świątkiewicz, S.; Arczewska-Włosek, A.; Wiącek, D.; Donaldson, J.; Dobrowolski, P.; Arciszewski, M.B.; Valverde Piedra, J.L.; Krakowiak, D.; et al. Assessing bone health status and eggshell quality of laying hens at the End of a production cycle in response to inclusion of a hybrid Rye to a wheat-corn diet. Vet. Sci. 2022, 9, 683. [Google Scholar] [CrossRef] [PubMed]
- Masey O’Neill, H.V.; Singh, M.; Cowieson, A.J. Effects of exogenous xylanase on performance, nutrient digestibility, volatile fatty acid production and digestive tract thermal profiles of broilers fed on wheat- or maize-based diet. Br. Poult. Sci. 2014, 55, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef][Green Version]
- Singh, A.K.; Mandal, R.K.; Bedford, M.R.; Jha, R. Xylanase improves growth performance, enhances cecal short-chain fatty acids production, and increases the relative abundance of fiber fermenting cecal microbiota in broilers. Anim. Feed. Sci. Technol. 2021, 277, 114956. [Google Scholar] [CrossRef]
- Kiarie, E.; Romero, L.F.; Ravindran, V. Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poult. Sci. 2014, 93, 1186–1196. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Rose, S.P.; Pellny, T.; Amerah, A.M.; Wickramasinghe, M.; Ulker, M.; Rakszegi, M.; Bedo, Z.; Shewry, P.R.; Lovegrove, A. Energy utilization and growth performance of chickens fed novel wheat inbred lines selected for different pentosan levels with and without xylanase supplementation. Poult. Sci. 2015, 94, 232–239. [Google Scholar] [CrossRef][Green Version]
- Pirgozliev, V.R.; Birch, C.L.; Rose, S.P.; Kettlewell, P.S.; Bedford, M.R. Chemical composition and the nutritive quality of different wheat cultivars for broiler chickens. Br. Poult. Sci. 2003, 44, 464–475. [Google Scholar] [CrossRef]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G. Influence of insoluble fibre and whole wheat inclusion on the performance, digestive tract development and ileal microbiota profile of broiler chickens. Br. Poult. Sci. 2009, 50, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Ball, M.E.E.; Owens, B.; McCracken, K.J. Chemical and Physical Predictors of the Nutritive Value of Wheat in Broiler Diets. Asian Australas. J. Anim. Sci. 2013, 26, 97–107. [Google Scholar] [CrossRef]
- Engberg, R.M.; Hedemann, M.S.; Steenfeldt, S.; Jensen, B.B. Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult. Sci. 2004, 83, 925–938. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.B.; Ravindran, V.; Thomas, D.G.; Birtles, M.J.; Hendriks, W.H. Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. Br. Poult. Sci. 2004, 45, 76–84. [Google Scholar] [CrossRef]
- Barekatain, M.R.; Choct, M.; Iji, P.A. Xylanase supplementation improves the nutritive value of diets containing high levels of sorghum distillers’ dried grains with solubles for broiler chickens. J. Sci. Food Agric. 2013, 93, 1552–1559. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Whiting, I.M.; Mansbridge, S.C.; Enchev, S.; Rose, S.P.; Kljak, K.; Johnson, A.E.; Drijfhout, F.; Orczewska-Dudek, S.; Atanasov, A.G. Effect of rearing temperature on physiological measures and antioxidant status of broiler chickens fed stevia (Stevia rebaudiana B.) leaf meal and exogenous xylanase. Curr. Res. Biotechnol. 2021, 3, 173–181. [Google Scholar] [CrossRef]
- AOAC (Association of Analytical Communities). Official Method of Analysis, 934.01, Vacuum Oven, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AOAC (Association of Analytical Communities). Official Method of Analysis, 990.03, Protein (Crude) in Animal Feed, Combustion Method, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AOAC (Association of Analytical Communities). Official Method of Analysis, 945.16, Oil in Cereal Adjuncts, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Englyst, H.N.; Quigley, M.E.; Hudson, G.J. Determination of dietary fibre as nonstarch polysaccharides with gas-liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars. Analyst 1994, 119, 1497–1509. [Google Scholar] [CrossRef]
- Englyst, K.N.; Hudson, G.J.; Englyst, H.N. Starch Analysis in Food. In Encyclopaedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley and Sons: Chichester, UK, 2000; pp. 4246–4262. [Google Scholar]
- Short, F.J.; Wiseman, J.; Boorman, K.N. Application of a method to determine ileal digestibility in broilers of amino acids in wheat. Anim. Feed Sci. Technol. 1999, 79, 195–209. [Google Scholar] [CrossRef]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Karadas, F.; Pirgozliev, V.; Acamovic, T.; Bedford, M.R. The effects of dietary phytase activity on the concentration of Coenzyme Q10 in the liver of young turkeys and broilers. In British Poultry Abstracts; Taylor & Francis Group: Abingdon, UK, 2005; Volume 1, pp. 1–74. [Google Scholar]
- Karadas, F.; Pirgozliev, V.; Pappas, A.C.; Acamovic, T.; Bedford, M.R. Effects of different dietary phytase activities on the concentration of antioxidants in the liver of growing broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, 519–526. [Google Scholar] [CrossRef]
- Hill, F.W.; Anderson, D.L. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 1958, 64, 587–603. [Google Scholar] [CrossRef]
- Almirall, M.; Esteve-Garcia, E. Rate of passage of barley diets with chromium oxide: Influence of age and poultry strain and effect of beta-glucanase supplementation. Poult. Sci. 1994, 73, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, J.M.; Rose, S.P.; Mackenzie, A.M.; Ivanova, S.G.; Staykova, G.P.; Pirgozliev, V.R. Nutritional value of raw and micronised field beans (Vicia faba L. var. minor) with and without enzyme supplementation containing tannase for growing chickens. Arch. Anim. Nutr. 2016, 70, 350–363. [Google Scholar]
- Whiting, I.M.; Pirgozliev, V.; Rose, S.P.; Wilson, J.; Amerah, A.M.; Ivanova, S.G.; Staykova, G.P.; Oluwatosin, O.O.; Oso, A.O. Nutrient availability of different batches of wheat distillers dried grains with solubles with and without exogenous enzymes for broiler chickens. Poult. Sci. 2017, 96, 574–580. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yang, Z.; Pirgozliev, V.R.; Rose, S.P.; Woods, S.; Yang, H.M.; Wang, Z.Y.; Bedford, M.R. Effect of age on the relationship between metabolizable energy and digestible energy for broiler chickens. Poult. Sci. 2020, 99, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Berrocoso, J.F.D.; Dersjant-Li, Y.; Awati, A.; Jha, R. Effect of a combination of xylanase, amylase and protease on growth performance of broilers fed low and high fiber diets. Anim. Feed Sci. Technol. 2017, 232, 16–20. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Bedford, M.R.; Ravindran, V. Interactions between xylanase and glucanase in maize-soy-based diets for broilers. Br. Poult. Sci. 2010, 51, 246–257. [Google Scholar] [CrossRef]
- Masey O’Neill, H.V.; Mathis, G.; Lumpkins, B.S.; Bedford, M.R. The effect of reduced calorie diets, with and without fat, and the use of xylanase on performance characteristics of broilers between 0 and 42 days. Poult. Sci. 2012, 91, 1356–1360. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Bedford, M.R.; Morgan, N.K. Importance of considering non-starch polysaccharide content of poultry diets. World’s Poult. Sci. J. 2021, 77, 619–637. [Google Scholar] [CrossRef]
- Bedford, M.R. Effect of non-starch polysaccharidases on avian gastrointestinal function. In Avian Gut Function in Health and Disease; Perry, G.C., Ed.; Carfax Publishing Company: Oxfordshire, UK, 2006; pp. 159–170. [Google Scholar]
- Raizner, A.E. Coenzyme Q10. Methodist Debakey Cardiovasc. J. 2019, 15, 185–191. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I. Nutritional modulation of the antioxidant capacities in poultry: The case of selenium. Poult. Sci. 2019, 98, 4231–4239. [Google Scholar] [CrossRef] [PubMed]
- Azhar, M.R.; Rose, S.P.; Mackenzie, A.M.; Mansbridge, S.C.; Bedford, M.R.; Lovegrove, A.; Pirgozliev, V.R. Wheat sample affects growth performance and the apparent metabolisable energy value for broiler chickens. Br. Poult. Sci. 2019, 60, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Karadas, K.; Karakeçili, M.; Rose, S.P.; Whiting, I.M.; Shewry, P.R.; Lovegrove, A.; Pellny, T.; Amerah, A. Effects of wheat pentosane content on hepatic antioxidants in growing broilers. In Sustainable Poultry Production in Europe; Burton, E., Gatcliffe, J., O’Neill, H.M., Scholey, D., Eds.; CABI: Wallingford, UK, 2016. [Google Scholar] [CrossRef]
- Woods, S.L.; Sobolewska, S.; Rose, S.P.; Whiting, I.M.; Blanchard, A.; Ionescu, C.; Bravo, D.; Pirgozliev, V. Effect of feeding different sources of selenium on growth performance and antioxidant status of broilers. Br. Poult. Sci. 2020, 61, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Woods, S.L.; Rose, S.P.; Whiting, I.M.; Yovchev, D.G.; Ionescu, C.; Blanchard, A.; Pirgozliev, V. The effect of selenium source on the oxidative status and performance of broilers reared at standard and high ambient temperatures. Br. Poult. Sci. 2021, 62, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Apajalahti, J.; Kettunnen, A.; Graham, H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World’s Poult. Sci. J. 2004, 60, 223–232. [Google Scholar] [CrossRef]
- Kiarie, E.; Nyachoti, C.M.; Slominski, B.A.; Blank, G. Growth performance, gastrointestinal microbial activity, and nutrient digestibility in early-weaned pigs fed diets containing flaxseed and carbohydrase enzyme. J. Anim. Sci. 2007, 85, 2982–2993. [Google Scholar] [CrossRef][Green Version]
- Kiarie, E.; Romero, L.F.; Nyachoti, C.M. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev. 2013, 26, 71–88. [Google Scholar] [CrossRef][Green Version]
- Rodriguez, M.L.; Rebole, A.; Velasco, S.; Ortiz, L.T.; Trevino, J.; Alzueta, C. Wheat- and barley-based diets with or without additives influence broiler chicken performance, nutrient digestibility and intestinal microflora. J. Sci. Food Agric. 2012, 92, 184. [Google Scholar] [CrossRef]
- Guilloteau, P.; Martin, L.; Eeckhaut, V.; Ducatelle, R.; Zabielski, R.; Van, I.F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr. Res. Rev. 2010, 23, 366–384. [Google Scholar] [CrossRef][Green Version]
- Voelkl, B.; Altman, N.S.; Forsman, A.; Forstmeier, W.; Gurevitch, J.; Jaric, I.; Karp, N.A.; Kas, M.J.; Schielzeth, H.; Van de Casteele, T.; et al. Reproducibility of animal research in light of biological variation. Nat. Rev. Neurosci. 2020, 21, 384–393. [Google Scholar] [CrossRef]
Item 1 | LV Wheat 2 | HV Wheat 3 |
---|---|---|
Dry matter (g/kg) | 887 | 885 |
Crude protein (g/kg) | 118 | 126 |
Fat (g/kg) | 15.4 | 9.8 |
Ash (g/kg) | 15.6 | 17.4 |
Starch (g/kg) | 718 | 674 |
NSPt (g/kg) | 85.5 | 106.8 |
NSPs (g/kg) | 13.0 | 33.5 |
NSPin (g/kg) | 72.5 | 73.3 |
Gross energy (MJ/kg) | 15.83 | 15.81 |
Ingredients 1, % | Control LV 2 | Control HV 3 |
---|---|---|
Low NSPs wheat | 67.00 | - |
High NSPs wheat | - | 67.00 |
Soybean meal (48% CP) | 21.97 | 21.97 |
Soybean meal (full fat) | 5.00 | 5.00 |
Vegetable oil | 2.00 | 2.00 |
Dicalcium phosphate | 1.45 | 1.45 |
Limestone | 1.25 | 1.25 |
Salt | 0.27 | 0.27 |
Lysine | 0.27 | 0.27 |
Methionine | 0.39 | 0.39 |
Vitamin and mineral premix | 0.40 | 0.40 |
100 | 100 | |
Calculated analysis (as fed): | ||
Crude protein, g/kg | 194 | 202 |
ME, MJ/kg | 12.05 | 12.05 |
Crude fat, g/kg | 40.1 | 41.8 |
Ca, g/kg | 8.9 | 8.8 |
Available P, g/kg | 4.6 | 4.6 |
Lysine, g/kg | 13.0 | 13.0 |
Methionine + Cysteine, g/kg | 9.3 | 9.3 |
Determined values (as fed): | ||
Dry matter, g/kg | 900 | 907 |
Gross energy, MJ/kg | 16.40 | 16.44 |
Crude protein, g/kg | 189 | 196 |
Crude fat, g/kg | 39.4 | 41.1 |
Item 1 Treatment 2 | BW (g/b 7 d) | BW (g/b 21 d) | FI (g/b/d) | WG (g/b/d) | FCR (g:g) | AMEn (MJ/kg DM) | AME:GE | DMR | NR |
---|---|---|---|---|---|---|---|---|---|
VIS | |||||||||
LV | 147 | 878 | 68.6 | 51.6 | 1.324 | 13.38 | 0.734 | 0.752 | 0.668 |
HV | 147 | 875 | 68.5 | 52.2 | 1.337 | 13.23 | 0.730 | 0.748 | 0.664 |
SEM | 0.9 | 9.8 | 0.68 | 0.66 | 0.0079 | 0.034 | 0.0019 | 0.0021 | 0.0051 |
XYL | |||||||||
No | 148 | 879 | 69.3 | 51.8 | 1.345 | 13.17 | 0.725 | 0.743 | 0.659 |
Yes | 146 | 874 | 67.9 | 51.9 | 1.317 | 13.44 | 0.739 | 0.756 | 0.673 |
SEM | 0.9 | 9.8 | 0.68 | 0.66 | 0.0079 | 0.034 | 0.0019 | 0.0021 | 0.0051 |
Probabilities | |||||||||
VIS | 0.871 | 0.857 | 0.948 | 0.544 | 0.252 | 0.002 | 0.079 | 0.220 | 0.524 |
XYL | 0.184 | 0.682 | 0.137 | 0.896 | 0.015 | <0.001 | <0.001 | <0.001 | 0.049 |
VIS × XYL | 0.797 | 0.281 | 0.121 | 0.113 | 0.529 | 0.911 | 0.923 | 0.858 | 0.154 |
Item 1 Treatment 2 | BW (g) | Spleen | Liver | PG | Pancreas | SI | Caeca |
---|---|---|---|---|---|---|---|
VIS | |||||||
LV | 1008 | 0.07 | 2.35 | 1.93 | 0.27 | 3.43 | 0.54 |
HV | 973 | 0.08 | 2.38 | 2.13 | 0.30 | 3.32 | 0.53 |
SEM | 0.004 | 0.064 | 0.045 | 0.007 | 0.078 | 0.021 | |
XYL | |||||||
No | 983 | 0.07 | 2.34 | 2.03 | 0.29 | 3.42 | 0.54 |
Yes | 997 | 0.07 | 2.39 | 2.03 | 0.28 | 3.33 | 0.54 |
SEM | 0.004 | 0.064 | 0.045 | 0.007 | 0.078 | 0.021 | |
Probabilities | |||||||
VIS | 0.140 | 0.783 | 0.004 | 0.014 | 0.350 | 0.608 | |
XYL | 0.512 | 0.544 | 0.997 | 0.450 | 0.424 | 0.916 | |
VIS × XYL | 0.457 | 0.809 | 0.814 | 0.450 | 0.485 | 0.218 |
Item 1 Treatment 2 | Dry Liver Weight (g) | Vit E (µg/g) | Co Q10 (µg/g) | Hb | GSH-Px (U/g Hb) |
---|---|---|---|---|---|
VIS | |||||
LV | 6.89 | 84 | 202 | 111 | 173 |
HV | 6.93 | 81 | 221 | 111 | 155 |
SEM | 0.208 | 4.5 | 9.4 | 2.5 | 4.8 |
XYL | |||||
No | 6.88 | 86 | 197 | 112 | 170 |
Yes | 6.93 | 80 | 226 | 109 | 158 |
SEM | 0.208 | 4.5 | 9.4 | 2.5 | 4.8 |
Probabilities | |||||
VIS | 0.903 | 0.652 | 0.169 | 0.891 | 0.010 |
XYL | 0.866 | 0.325 | 0.037 | 0.420 | 0.068 |
VIS × XYL | 0.363 | 0.601 | 0.899 | 0.121 | 0.885 |
Item 1 Treatment 2 | VFA Tot (ug/g) | AA (ug/g) | BA (ug/g) | PentA (ug/g) | PrA (ug/g) | AA:BA |
---|---|---|---|---|---|---|
VIS | ||||||
LV | 1148 | 856 | 223 | 10 | 60 | 0.249 |
HV | 1180 | 861 | 248 | 10 | 62 | 0.280 |
SEM | 95.5 | 70.1 | 25.5 | 0.8 | 6.0 | 0.0184 |
XYL | ||||||
No | 1082 | 807 | 197 | 10 | 67 | 0.243 |
Yes | 1246 | 909 | 274 | 9 | 55 | 0.285 |
SEM | 95.5 | 70.1 | 25.5 | 0.8 | 6.0 | 0.0184 |
Probabilities | ||||||
VIS | 0.816 | 0.961 | 0.487 | 0.916 | 0.853 | 0.246 |
XYL | 0.229 | 0.313 | 0.040 | 0.287 | 0.173 | 0.114 |
VIS × XYL | 0.489 | 0.556 | 0.377 | 0.788 | 0.687 | 0.660 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirgozliev, V.R.; Mansbridge, S.C.; Whiting, I.M.; Abdulla, J.M.; Rose, S.P.; Kljak, K.; Johnson, A.; Drijfhout, F.; Atanasov, A.G. The Benefits of Exogenous Xylanase in Wheat–Soy Based Broiler Chicken Diets, Consisting of Different Soluble Non-Starch Polysaccharides Content. Poultry 2023, 2, 123-133. https://doi.org/10.3390/poultry2020012
Pirgozliev VR, Mansbridge SC, Whiting IM, Abdulla JM, Rose SP, Kljak K, Johnson A, Drijfhout F, Atanasov AG. The Benefits of Exogenous Xylanase in Wheat–Soy Based Broiler Chicken Diets, Consisting of Different Soluble Non-Starch Polysaccharides Content. Poultry. 2023; 2(2):123-133. https://doi.org/10.3390/poultry2020012
Chicago/Turabian StylePirgozliev, Vasil Radoslavov, Stephen Charles Mansbridge, Isobel Margaret Whiting, Jalil Mahmwd Abdulla, Stephen Paul Rose, Kristina Kljak, Amy Johnson, Falko Drijfhout, and Atanas Georgiev Atanasov. 2023. "The Benefits of Exogenous Xylanase in Wheat–Soy Based Broiler Chicken Diets, Consisting of Different Soluble Non-Starch Polysaccharides Content" Poultry 2, no. 2: 123-133. https://doi.org/10.3390/poultry2020012