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Abstract: Avian pathogenic Escherichia coli (APEC) causes colibacillosis in poultry, a leading cause
of poultry mortality worldwide. It is crucial to control APEC in broiler breeders as it is vertically
transferred to progeny via eggs. However, there is only limited knowledge on the current APEC
population in breeders. This study characterized 28 APEC strains isolated from broiler breeders
with colibacillosis. The genotypic-virulence characteristics as well as antimicrobial and heavy-metal
resistance patterns of the isolates were determined. Results showed that O88 is the most prevalent
serogroup and B2 is the predominant phylogenetic group. Among virulence genes, genes for iron
acquisition (iroN and iutA), protectins (iss and ompT), and toxin production (hlyF) exhibited the
highest prevalence. Further, 93% of the isolates carried at least one antimicrobial resistance gene
with highest prevalence for tetracycline gene tetA. Among the isolates, 10.71% exhibited multidrug
resistance. All isolates carried at least one heavy-metal resistance gene with the highest prevalence
for arsenic gene arsC and the highest resistance towards silver. Our findings provide insight into
the characteristics of current APEC populations in broiler breeders in Mississippi. This will help
future research on the pathogenesis of APEC and the development of effective prevention and control
strategies against APEC in broiler breeders.
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1. Introduction

Escherichia coli is a ubiquitous bacterium that typically predominates the gut microflora
of humans, animals, and birds [1,2]. Apart from commensal E. coli, there is a large variety
of pathogenic strains that cause intestinal and/or extraintestinal infections. Among them,
avian pathogenic E. coli (APEC) causes extraintestinal infections in poultry [3,4]. APEC in-
fections in poultry cause the disease, colibacillosis, manifested as perihepatitis, pericarditis,
airsacculitis, salpingitis, and peritonitis progressing to septicemia and death [5–7]. In fact,
this is one of the leading causes of mortality and morbidity in poultry that affects all stages
of production and is economically devastating to the industry [3,4,8]. It is estimated that at
least 30% of the commercial flocks in the United States are affected by colibacillosis at any
point of time, causing a multi-billion-dollar loss to the poultry industry annually [4,6,9].

APEC can infect poultry through different routes. Oral and respiratory routes enable
the bacteria to colonize the gastrointestinal and respiratory tracts, and in the presence of
stressors, they may migrate to different internal organs and cause infection. Further, the
infected birds can horizontally transmit the bacteria to other birds by contaminating feed
and water [3–5]. Another route of entry is the vaginal route leading to ascending infection
of the reproductive tract, causing salpingitis [10]. This can lead to a contamination of the
egg while it is formed in the oviduct, leading to vertical transmission from hens to chicks.
Sometimes the bacteria may not be pathogenic to the embryo during egg incubation, but the
chicks after hatching can act as a source of infection causing horizontal transmission to other
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chicks in the hatchery, leading to increased first-week mortality [11–13]. Previously, APEC
was considered as a secondary pathogen causing disease outbreaks due to concurrent virus
infections, inappropriate management practices, or insufficient egg hygiene. However,
recent research has identified its potential role as a primary pathogen that causes severe
disease and high mortality in the absence of stressors [14–16].

The pathogenic property of APEC is facilitated by multiple virulence factors such
as adhesins, invasins, protectins, iron acquisition mechanisms, toxins, and plasmids [15].
These factors facilitate the attachment, invasion, colonization, replication, and damage of
the host cells, as well as evasion from the host immune response [4,17,18]. These virulence
factors are encoded by a large array of virulence-associated genes. For instance, papC
(P-fimbriae) and tsh (temperature-sensitive hemagglutinin) code for adhesion, and ibeA
(invasion of the brain endothelium protein A) code for the invasion of the host system.
Genes like iutA (aerobactin siderophore receptor), along with iroN (salmochelin siderophore
receptor), enable iron acquisition from the body fluids, while iss (increased serum survival)
and ompT (outer membrane protease) provide protection against host immune response.
Further, astA (heat-stable enterotoxin) and hlyF (putative avian hemolysin) enable APEC
to produce toxins to damage the host’s tissues along with Colicin V (ColV) plasmid genes
like cva/cvi [15,19,20]. Several studies have identified combinations of different virulence
genes for predicting the disease-causing potential of APEC strains [6,21,22]. However, the
high diversity of APEC strains is challenging for ensuring the accuracy of these predictors
and, thus, hinders the effective diagnosis, treatment, and prevention of E. coli infections in
poultry [23].

The high diversity of APEC strains is further evident in the number of serotypes
established. Serotyping is vital for unraveling APEC-virulence mechanisms [5,24]. O
(lipopolysaccharide) and H types (flagellar antigen) have been widely used to classify E. coli
strains over decades. Currently, there are 188 O and 53 H groups of E. coli identified [25,26].
Some of the O serogroups associated with APEC strains causing disease in poultry are
O1, O2, O21, O35, O36, and O78 [16,27,28], while some of the H serogroups are H1, H2,
H4, H7, H23, and H10 [29–31]. Serotyping, along with phylogenetic grouping, is a better
predictor of the virulence potential of E. coli [32]. Most of the extraintestinal pathogenic
E. coli, including APEC, are typed under the phylogroups B2 and D, while most of the
commensal ones fall under phylogroups A and B1 [33–36].

Antimicrobial resistance is globally observed in APEC strains [4]. They have been
reported to exhibit resistance to a variety of antibiotics, such as tetracyclines, sulfonamides,
and aminoglycosides, which are commonly used in the poultry industry to treat APEC
infections [4]. The antimicrobial resistance genes, along with the virulence genes, are
often associated with plasmids that aid in their transmission between bacteria and, thus,
need to be continuously monitored [37]. Also, as the poultry industry is moving towards
antibiotic-free production, new effective intervention strategies for APEC control need to
be developed.

To develop alternative treatment strategies like vaccines, it is essential to understand
the changing properties of APEC and the effects it can have on a bird. Additionally, there
is only limited information available on APEC strains from broiler breeders. Over the
years, the control of APEC in broiler breeders have been highly neglected; however, recent
findings have emphasized the importance of its’ control in broiler breeders as they play a
key role in spreading APEC through contaminated eggs to broilers [11,13]. Therefore, the
objective of this study is to characterize the virulence properties as well as antimicrobial
and heavy-metal resistance patterns of APEC strains isolated from broiler breeders with
symptoms of colibacillosis in Mississippi.

2. Materials and Methods
2.1. E. coli Isolation and Identification

Twenty-eight APEC isolates were recovered from the lesions of twenty-eight broiler
breeder hens of 1 day to 57 weeks of age diagnosed with colibacillosis. Isolates were
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recovered from different tissues including the ovary, oviduct, peritoneum, heart, liver, bone
marrow, yolk sac, lung, air sac, and hock joint. The isolates were provided by Poultry
Research and Diagnostic Laboratory/Mississippi Veterinary Research and Diagnostic
Laboratory (PRDL/MVRDL) on blood-agar plates. Individual representative colonies
were selected, streaked onto MacConkey agar (Becton, Dickinson and Company, Sparks,
MD, USA), and incubated aerobically at 37 ◦C for 18 to 24 h. Pink lactose-positive colonies,
suspected as E. coli strains, were selected and further confirmed positive by real-time PCR
for the ybbW gene (Eurofins Genomics LLC, Louisville, KY), which is part of the E. coli core
genome [38]. The positive control was ATCC 25922, while DNA from Campylobacter jejuni
(ATCC 33560) was used as the negative control. The strains included in this study were
collected between 2019 and 2021.

2.2. DNA Isolation

DNA used as a template for PCR amplifications was extracted by boiling-lysis method
as described previously [39]. Briefly, an individual representative colony from MacConkey
agar was inoculated into Luria–Bertani (LB) broth (Becton, Dickinson and Company, Sparks,
MD, USA) and grown for 18 to 24 h at 37 ◦C with shaking. From this fresh overnight culture,
200 µL was centrifuged, the supernatant was discarded, and the bacterial pellet was
resuspended in 150 µL of nuclease-free water (Thermo Fisher Scientific, Vilnius, Lithuania)
and then boiled at 98 ◦C for 5 min. The resulting solution was allowed to cool, centrifuged,
and the supernatant was transferred into a new tube to serve as the DNA template and
was stored at −20 ◦C until further use.

2.3. Serotyping

All E. coli isolates were submitted to the College of Veterinary Medicine, University
of Georgia for multiplex PCR-based O and H serotyping. A total of 27 O-serogroups and
10 H-serogroups were tested using the primers and PCR conditions as described by Iguchi
et al. [40] for O-antigen encoding genes and Banjo et al. [41] for H-antigen encoding genes,
respectively (Eurofins Genomics LLC, Louisville, KY, USA). For O-grouping, the reactions
were carried out in a final volume of 25 µL under the PCR conditions: 94 ◦C for 5 min,
30 cycles of 94 ◦C for 30 s, 58 ◦C for 30 s, 72 ◦C for 2 min, and a final extension step of
72 ◦C for 10 min. For H-grouping, the PCR conditions were: 94 ◦C for 1 min, followed by
25 cycles at 94 ◦C for 30 s, 58 ◦C for 30 s, and 72 ◦C for 1 min, and then a final extension at
72 ◦C for 2 min. The positive control was E. coli ATCC 25922, while nuclease-free water
was used as the negative control. PCR products were separated and visualized using the
Kodak Gel Logic 200 imaging system (Eastman Kodak Co., Rochester, NY, USA) and SYBR
safe DNA gel stain (Invitrogen, Carlsbad, CA, USA).

2.4. Phylogenetic Classification

The phylogenetic group of the isolates were determined according to the E. coli
phylogenetic-typing method described by Clermont et al. [34] and based on the pres-
ence or absence of the genes chuA, yjaA, and DNA fragment TSPE4.C2 (Eurofins Genomics
LLC, Louisville, KY). The E. coli strains were then assigned to the phylogenetic groups
A, B1, B2, or D. The PCR conditions used were 94 ◦C for 2 min, followed by 30 cycles of
denaturation at 94 ◦C for 30 s, annealing at 59 ◦C for 30 s, extension at 72 ◦C for 45 s, and
a final cycle of amplification at 72 ◦C for 10 min. The positive control was E. coli ATCC
25922, while nuclease-free water was used as the negative control. PCR products were
separated and visualized using the Kodak Gel Logic 200 imaging system (Eastman Kodak
Co., Rochester, NY, USA) and SYBR safe DNA gel stain (Invitrogen, Carlsbad, CA, USA).

2.5. Screening for Virulence Genes

All isolates were investigated for the presence of ten genes that encode for different
virulence factors such as papC, tsh, ibeA, iutA, iroN, iss, ompT, astA, hlyF, and cva/cvi (Eurofins
Genomics LLC, Louisville, KY, USA). Of these virulence encoding genes, iroN, ompT, hlyF,
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iss, and iutA are described as the minimal APEC predictors, and a pentaplex PCR was
used for detecting them as described by Johnson et al. [6]. For amplifying the remaining
virulence genes, conventional PCR was used. The positive control was E. coli ATCC 25922,
while nuclease-free water was used as the negative control. The primer sequences and
annealing temperatures used are shown in Table 1. All PCR products were analyzed by
agarose-gel electrophoresis using 1% agarose gel (Bio-Rad Laboratories, Inc, Madrid, Spain),
stained with SYBR Safe DNA Gel Stain (Invitrogen, Carlsbad, CA, USA), and visualized
under UV light.

Table 1. Primer sequences and annealing temperatures used for the PCR analysis of virulence-
associated genes.

Gene Description Size (bp) Primer Sequence (5′-3′) Annealing
Temperature (◦C) References

Virulence genes

iroN
Iron acquisition

553 F: AATCCGGCAAAGAGACGAACCGCCT
R: GTTCGGGCAACCCCTGCTTTGACTTT 63 [6]

iutA 302 F: GGCTGGACATCATGGGAACTGG
R: CGTCGGGAACGGGTAGAATCG 63 [6]

ompT

Protectins

496 F: TCATCCCGGAAGCCTCCCTCACTACTAT
R: TAGCGTTTGCTGCACTGGCTTCTGATAC 63 [6]

iss 323 F: CAGCAACCCGAACCACTTGATG
R: AGCATTGCCAGAGCGGCAGAA 63 [6]

hlyF

Toxins

450 F: GGCCACAGTCGTTTAGGGTGCTTACC
R: GGCGGTTTAGGCATTCCGATACTCAG 63 [6]

astA 116 F: TGCCATCAACACAGTATATCC
R: TCAGGTCGCGAGTGACGGC 57 [42]

papC

Adhesins

501 F: TGATATCACGCAGTCAGTAGC
R: CCGGCCATATTCACATAA 60 [42]

tsh 824 F: ACTATTCTCTGCAGGAAGTC
R: CTTCCGATGTTCTGAACGT 60 [42]

ibeA Invasins 171 F: AGGCAGGTGTGCGCCGCGTAC
R: TGGTGCTCCGGCAAACCATGC 63 [39]

cva/cvi Colicin V operon 1181 F: TGGTAGAATGTGCCAGAGCAAG
R: GAGCTGTTTGTAGCGAAGCC 60 [42]

2.6. Antimicrobial Resistance (AMR) and Heavy-Metal Resistance Patterns
2.6.1. Screening for Antimicrobial and Heavy-Metal Resistance Genes

All isolates were screened by PCR for 11 AMR genes conferring resistance to β-
lactamase inhibitors (blaTEM), cephalosporins (blaCTX-M), aminoglycosides (aac3Vla,
aph3IA and aadA), tetracyclines (tetA), sulfonamides (dfr7, sul1), quinolones (qnr), phenicols
(cat1), and quaternary ammonium compounds (QAC; qacE∆); and for 11 heavy-metal resis-
tance genes conferring resistance to arsenic (arsC), copper (pcoA, pcoD, and pcoE), silver (silE,
silP), mercury (merA), and tellurite (terD, terF, terX, and terY3) (Eurofins Genomics LLC,
Louisville, KY, USA). Primer sequences and annealing temperatures used for AMR genes
and heavy-metal resistance genes are shown in Table 2 and the heavy-metal resistance
genes were previously described by Li et al. [43]. The positive control was ATCC 25922,
while nuclease-free water was used as the negative control.
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Table 2. Primer sequences and annealing temperatures used for PCR analysis of antimicrobial and
heavy-metal resistance genes.

Gene Description Size (bp) Primer Sequence (5′-3′) Annealing
Temperature (◦C) References

Antimicrobial Resistance Genes

blaTEM β-lactamase inhibitor 558 F: ATGTGCGCGGAACCCCTATTTGTTTA
R: AAAAAGCGGTTAGCTCCTTCGGTCCT 55 [44]

blaCTX-M
3rd Generation
Cephalosporins 585 F: CGATGTGCAGTACCAGTAA

R: TTAGTGACCAGAATCAGCGG 56 [45]

aac3Vla

Aminoglycosides

502 F: GGCACCCGCGACGCCCTGGTCCAAAAG
R: GGGCCCGGCGCCGATCGACAGGATTT 55 [44]

aph3IA 378 F: TCGGGCAATCAGGTGCGACAATCTA
R: TGCCAGCGCATCAACAATATTTTCACC 55 [44]

aadA 365 F: TAACGGCGCAGTGGCGGTTTTCA
R: AAGCTCGCCGCGTTGTTTCATCAAG 55 [6]

tetA Tetracyclines 372 F: CGGGGCGACTGGGGCGGTAGC
R: CAAAGCGCGGCCGGCACCTGT 55 [19]

dfr7

Sulfonamides

214 F: TCTTTAAAGCGCTCACATATAATCAGTG
R: ATTTGACCGCCACCAGAGACA 55 [44]

sul1 462 F: CGCCGCTCTTAGACGCCCTGTCC
R: CGCCGCTCTTAGACGCCCTGTCC 55 [19]

qnr Quinolones 440 F: TCGCCGCTGCCGCTTTTATCAGT
R: GCCAACAGTCGCGGGAGAAGGTG 55 [45]

cat1 Phenicols 547 F: AGTTGCTCAATGTACCTATAACC
R: TTGTAATTCATTAAGCATTCTGCC 56 [46]

Heavy-Metal Resistance Genes

terD

Tellurite

231 F: CCACTGCGCGGAATTTCCACTCACCAT
R: ACGCCGTCCCGTCTGATGTTGACAAG 55 [43]

terX 576 F: ATGCGCCGCCTGCCTGTTTACCTTGTTA
R: CGCGCTTGTGCTGCCGGAAGACA 55 [43]

terF 428 F: CCGACAAACTTCCAGAAGATGGGGTAGT
R: GAGGCAGCGGTTGCATTTGTACTTGACG 55 [43]

terY3 302 F: CCTGGGGCCGTCAGCGGACCTG
R: TCCTTGCTGGTGGCCGTTCATACTTCAT 55 [43]

pcoA

Copper

507 F: ATCCGGAAGGTCAGCACCGTCCATAGAC
R: GACCTCGCGGATGTCAGTGGCTACACCT 55 [43]

pcoD 502 F: GGCGCCCAGAATGATAATCGCAACA
R: GGGCGTGGCGCTGGCTACACTT 55 [43]

pcoE 385 F: GTGGGGCAGCTTTTGCTCAGTCCAGTGA
R: CGAAGCTTTCTTGCCTGCGTCTGATGTG 55 [43]

arsC Arsenic 268 F: ACCCGCTTCATCAACCACTT
R: TGCCGATATGGGGATTTCCG 55 [43]

silP Silver 603 F: ACACCCCGGCCTGGGCTCCTT
R: GTGCGGGCACGGGAACAAACCTC 55 [43]

merA Mercury 250 F: GATCCGCGCCGCCCATATCGCCCATCTG
R: CACGCGCTCGCCGCCGTCGTTGAGTTG 56 [43]

2.6.2. Antimicrobial and Heavy-Metal Susceptibility Testing
Antibiotic Susceptibility Testing

All isolates were tested for antibiotic susceptibility by the Kirby–Bauer disk-diffusion
method according to Clinical and Laboratory Standards Institute (CLSI) guidelines at
37 ◦C for 18–24 h [47]. The antibiotics used extensively for treating E. coli infections in
poultry, livestock, and humans were tested, including ampicillin/sulbactam (20/20 µg), ce-
fotaxime (30 µg), gentamicin (10 µg), kanamycin (30 µg), streptomycin (10 µg), tetracycline
(30 µg), trimethoprim/sulfamethoxazole (1.25/23.75 µg), nalidixic acid (30 µg), ciprofloxacin
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(5 µg), and chloramphenicol (30 µg) (Thermo Scientific, Waltham, MA, USA). E. coli ATCC
25922 was used as the reference strain.

QAC and Heavy-Metal Susceptibility Testing

The susceptibilities of the isolates to QAC and heavy metals were evaluated by de-
termining their respective inhibitory concentrations by a broth-microdilution method [48].
The QAC benzalkonium chloride (2 to 256 µg/mL; Sigma Aldrich, Burlington, MA, USA)
and the heavy metals, copper (CuSO4·5H2O, 32 to 8192 µg/mL; Sigma Aldrich, USA),
silver (AgNO3, 0.5 to 64 µg/mL; Honeywell Fluka, Muskegon, MI, USA), mercury (HgCl2,
0.84 to 54.4 µg/mL; Labchem, Zelienople, PA, USA), and tellurite (K2TeO3, 0.025 to
512 µg/mL; Sigma Aldrich, USA), were tested [48–50]. A working solution was prepared
in sterile, deionized water, and subsequent concentrations were achieved by two-fold serial
dilutions. For all of the E. coli isolates, an inoculum was prepared from fresh overnight cul-
ture, adjusted to the turbidity standard of 0.5 McFarland, and diluted 1:200 with LB broth.
A volume of 50 µL of the dilutions of QAC/metals and 50 µL of the diluted suspension of
bacteria was added to each well of the microtiter plate and incubated for 18 to 24 h at 37 ◦C.
A strain was considered tolerant when it was able to grow at a QAC/metal concentration
that inhibits the growth of the E. coli reference strain ATCC 25922 [51].

3. Results
3.1. Serotyping

We were able to identify the O and H-types of 60.7% and 67.9% of the isolates, respec-
tively, using the PCR–based method (Figure 1a,b). O88:H7 was the most prevalent serotype
among the typed isolates (19%), followed by O8:H32 and O115:H34 (13%). The other types
identified were O88:H21, O166:H21, O8:H9, O55:H9, O25:H4, and O25:H9.
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Figure 1. Pie charts showing the prevalence of O and H serogroups among the broiler breeder APEC
isolates. (a) The O-serogroups identified among the typed isolates were O88, O8, O25, O115, O166,
O161, and O1. (b) The H serogroups identified among the typed isolates were H4, H7, H8, H9, H21,
H32, and H34. Data represented as the percentage of prevalence.

Regarding the O serogroups, the most prevalent among the typed isolates were O88
(31%), followed by O8 and O25 (19%), and O115 (13%). The serogroups O166, O161, O1,
and O55 were distributed equally (6%) among the typed isolates. Following H-typing, H9
and H21 (21%) were found to be the most prevalent among the isolates. Other H serogroups
found were H4 and H7 (16%), H32 and H34 (10%), and H8 (5%).
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3.2. Phylogenetic Classification

Figure 2 shows the distribution of phylogenetic groups identified among the isolates
of this study. We were able to type all 28 isolates into different phylogroups. The majority
of the isolates were of the phylogenetic group B2 (71.4%). Lower prevalence was observed
for the phylogenetic groups D and B1 with 25% and 3.6%, respectively. Of interest, none of
the isolates were classified under the phylogenetic group A.
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3.3. Screening for Virulence Genes

Figure 3 represents the overall prevalence of virulence-associated genes detected
among the 28 APEC isolates. Interestingly, 96.4% of the isolates harbored at least one
virulence-associated gene. The genes encoding for iron acquisition (iroN and iutA), pro-
tectins (iss and ompT), and toxin production (hlyF) exhibited the highest prevalence, with
iroN, ompT, hylF, and iss present in 78.6% and iutA in 68% of the isolates. This is followed
by the genes coding for adhesins papC (42.9%) and tsh (39.3%) as well as the colicin V
plasmid-operon gene cva/cvi (28.6%). The gene encoding for invasin, ibeA (14.3%), showed
the least prevalence among the virulence-associated genes tested.

3.4. AMR and Heavy-Metal Resistance Patterns
3.4.1. Screening for Antimicrobial and Heavy-Metal Resistance Genes

The presence of antimicrobial and heavy-metal resistance genes identified in the
28 isolates are represented in Figure 4a,b. Screening for AMR genes showed the high-
est prevalence for tetA (68%) followed by aph3IA (50%), aadA (25%), qacE∆ (21.4%), and
blaTEM (17.9%). Further, blaCTX-M and sul1 exhibited an equal prevalence of 14.3%
among the isolates. On the other hand, qnr, aac3Vla, cat1, and dfr7 were absent among the
isolates analyzed.

Among the heavy-metal resistance genes, arsC (100%) was present in all the isolates.
The genes silE and silP were present among 35.7 and 21.4% of the isolates, respectively.
Further, pcoA, pcoD, and pcoE were present in 14.3, 25, and 17.9% of the isolates, respectively.
The mercury-resistance gene, merA, showed 10.7% prevalence among the isolates. In the
case of tellurite-resistance genes, terF showed 21.4% and terD showed 14.3% prevalence
among the isolates, while terX and terY3 showed the least prevalence among all heavy
metal resistance genes, at 7.1%.
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Pearson correlation analysis using SAS 9.4 was performed to identify the relationship
of AMR genes with virulence and heavy-metal resistance genes as well as serotypes and
phylogenetic groups, but no significant correlations were observed.
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Figure 3. Prevalence of virulence-associated genes among broiler breeder APEC isolates. papC and
tsh code for adhesins; ibeA for invasin; iutA and iroN indicate iron acquisition systems; iss and ompT
for protectins; astA and hylF indicate toxins; and cva/cvi is part of the colicin V plasmid.
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Figure 4. Prevalence of antimicrobial and heavy-metal resistance genes among broiler breeder
APEC isolates. (a) Antimicrobial resistance genes tested in the 28 isolates. tetA confers resistance
to tetracycline; aac3Vla, aph3IA, and aadA to aminoglycosides; qacE∆ to quaternary ammonium
compounds; blaTEM to β-lactamase; blaCTX-M to cephalosporins; dfr7 and sul1 to sulfonamides; qnr
to quinolones; and cat1 to phenicols. (b) arsC confers resistance to arsenic; pcoA, pcoD, pcoE to copper;
silE, silP to silver; merA to mercury; and terD, terF, terX, and terY3 to tellurium.



Poultry 2023, 2 32

3.4.2. Antimicrobial and Heavy-Metal Susceptibility Testing
Antibiotic-Susceptibility Testing

Of the 28 isolates tested (Figure 5a), the highest resistance was exhibited towards
tetracycline (28.6%) followed by streptomycin (18%), kanamycin (14.3%), and gentamicin
(7.1%), with the least resistance exhibited towards sulfamethoxazole-trimethoprim (3.6%).
Interestingly, 10.7% of the isolates were multidrug-resistant (resistant to three or more
antibiotic classes), and 42.9% of isolates demonstrated intermediate or complete resistance
to at least one antibiotic tested. However, 100% isolates were susceptible to ampicillin/
sulbactam, cefotaxime, ciprofloxacin, chloramphenicol, and nalidixic acid.
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Figure 5. Results of phenotypic antimicrobial and heavy-metal resistance pattern of broiler breeder
APEC isolates. (a) Antibiotic-resistance patterns towards ten antibiotics were tested using Kirby–
Bauer disk diffusion assay. TET: tetracycline, STM: streptomycin, KAN: kanamycin, GEN: gentamicin,
SXT: sulphamethoxazole-trimethoprim, AMP/SUL: ampicillin/ sulbactam, CTX: cefotaxime, CPFX:
ciprofloxacin, CAP: chloramphenicol, NAL: nalidixic acid, MDR: multi- drug resistance (b) Quater-
nary ammonium compound (QAC) and heavy-metal resistance patterns were tested using a broth
microdilution assay.

QAC and Heavy-Metal Susceptibility Testing

Following the broth-microdilution assay (Figure 5b), 14.3% of the isolates were found
to be resistant towards QAC. Among the five metals tested, the isolates demonstrated
highest resistance towards silver (92.8%), followed by tellurium (21.4%), and mercury
(14.3%). Furthermore, 96.4% of the isolates were resistant to at least one of the five metals
tested. In contrast, all isolates were susceptible to copper, and all isolates were susceptible
to at least two metals tested.

4. Discussion

There is a multitude of data on the characteristics of APEC isolates from broilers
and layers worldwide [52–54]. However, there is only limited information about the iso-
lates from broiler breeders. Recent studies have emphasized the importance of broiler
breeders as reservoirs for APEC infection through vertical transmission to chicks and
subsequent horizontal transmission between chicks [11,13,55]. Moreover, the constantly
evolving genetic diversity of APEC strains requires their continuous monitoring in all
species of poultry [23,56]. To our knowledge, this is the first study to characterize APEC
isolates from broiler breeders with colibacillosis in Mississippi, and it provides informa-
tion on their genotypic-virulence properties as well as antimicrobial and heavy-metal
resistance patterns.

Serotyping revealed that O88:H7 was the most prevalent serotype among the APEC
isolates typed in this study. Among the O serogroups, O88 was most prevalent, followed
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by O8, O25, O115, O166, O161, O1, and O55. Historically, in poultry, O1, O2, and O78
were most often correlated with disease-causing APEC worldwide [7]. Specifically, in
broiler breeders, O2, O78, and O5 have been reported to be the most prevalent among
APEC population [57]. Whereas, in the current study, all of the dominant serogroups
detected were new serogroups. A recent study on layers with colibacillosis reported higher
prevalence of the O88 serogroup [58]. Furthermore, the new serogroups, O25 and O8,
were also observed to be dominant among E. coli isolated from turkeys with cellulitis [4]
and poultry with colibacillosis in the United States [16]. Awad et al. [59] found O115 was
the most prevalent serogroup among broilers, and none of the historic serogroups were
detected. Among the H serogroups, H9 and H21 were highly prevalent among our isolates.
The same pattern of prevalence for H9 was found in a study conducted among broilers
with colibacillosis in Spain [53]. Previously, Nolan et al. [60] emphasized the diverse nature
of APEC possible according to geographical location and disease; thus, it is not surprising
to see newly evolving serogroups. Current data, along with findings from recent studies
across globe, indicate the changing trend among APEC serotypes causing disease, and this
warrants continuous monitoring.

Results of phylogenetic classification revealed a higher prevalence of phylogroup
B2, followed by D and B1. Many studies have reported that extraintestinal pathogenic E.
coli belongs to phylogroups B2 and D [27,44]. Also, this is consistent with APEC strains
isolated from broiler breeders with salpingitis and peritonitis [35]. Similarly, a study on
free-range chickens further supports our findings, with majority of APEC isolates belonging
to phylogroups B2 and D [61]. Interestingly, in commercial broiler breeders vaccinated
using the autogenous E. coli vaccine, the repression of most phylogroups present in the
vaccine and a phylogenetic shift to B2 group have been observed among APEC isolates [62].
This, in fact, indicates the opportunistic nature of APEC and its ability to evolve.

The prevalence of virulence genes tested in the present study are highly variable,
ranging from 14.3% to 78.6%. The genes encoding for iron acquisition (iroN and iutA),
protectins (iss and ompT), and toxin production (hlyF) were found to exhibit the highest
prevalence among the isolates. In fact, these five genes are associated with the ColV
plasmid [63] and have been identified as genes more predominantly associated with highly
pathogenic APEC (APEC minimal predictors) by Johnson et al. [6]. A similarly high
prevalence of these five genes was observed in E. coli isolated from broilers and broiler
breeders with colibacillosis from different geographical locations, such as Canada [64],
Brazil [65,66], Egypt [67], Korea [37], and the United States [16]. On the other hand, the
gene cva/cvi, which is also part of the ColV plasmid, was found to have a lower prevalence
compared to these five ColV plasmid genes. This was unexpected but was also reported
by de Oliveira et al. [39] in turkeys with cellulitis and warrants further investigation.
Similarly, the occurrence of other virulence genes analyzed, papC, astA, and tsh, was also
less compared to the minimal predictors and was similar to that reported in APEC from
broilers in Nepal [42]. The gene encoding the mechanism for invasion, ibeA, was the lowest
among the isolates and was comparable to that observed in E. coli isolated from cellulitis
lesions in turkeys from Iowa, United States [39]. In general, the current results indicate
the virulence-defining nature of the APEC minimal-predictor genes in E. coli isolated from
broiler breeders with colibacillosis.

The widespread use of antimicrobials in poultry over the years against multiple
pathogens has resulted in antimicrobial resistance [68]. Moreover, the extensive use of
antibiotics as growth-promoters in feed over the past 60 years made this a big issue
for the poultry industry worldwide [68]. Furthermore, the spread of AMR genes has
affected the genetics and mechanisms of resistance of bacteria to combat other antimicrobial
agents [69]. In this study, tetA (68%), which encodes for tetracycline resistance, showed
the highest prevalence among all of the antibiotic resistance genes tested. This genotypic
characteristic was expressed phenotypically following disk-diffusion assay, where the
highest resistance was noted towards tetracycline among the isolates. Tetracycline is one of
the most widely used antibiotics in poultry and animals [70] and that might be the reason for
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the high resistance towards this antibiotic among the isolates. Furthermore, our results were
consistent with that reported in E. coli isolated from broiler breeders from different parts
of the world [64,71–73]. Also, similar findings were reported among APEC isolates from
broilers in Mississippi [43], Jordan [74], and Egypt [67]. Besides tetA, our isolates showed a
high prevalence of genes encoding for aminoglycoside resistance, aph3IA and aadA, and
sulfonamide resistance, sul1, and this might be the reason for high kanamycin, streptomycin,
and sulfamethoxazole-trimethoprim resistance among the isolates, respectively. On the
other hand, the gene coding for resistance to gentamicin, aac3Vla, was absent, but resistance
towards this antibiotic was noted among the isolates. There are six clusters of genes that
code for gentamicin resistance [75] and some of these genes that we have not tested might
be present in our isolates and could be the plausible reason for this resistance among the
isolates. A similar resistance pattern towards these antibiotics was previously reported in
APEC isolated from broilers and broiler breeders in Canada [64].

Our study also identified the genes encoding for β-lactamase inhibitor blaTEM (Ampi-
cillin and Sulbactam) and third generation cephalosporin blaCTX-M (Cefotaxime) resistance
among our isolates. However, no isolates were completely resistant to these antibiotics fol-
lowing disk-diffusion assay. A recent study from Algeria reported the occurrence of blaTEM
in E. coli isolated from the ovaries of healthy broiler breeders and that it co-harbored with
blaCTX-M. This in fact indicates the vertical-transmission potential of extended-spectrum
β-lactamases in the poultry-production pyramid [76]. Additionally, vertical transmission of
extended-spectrum β-lactamases-producing E. coli from broiler breeders down the produc-
tion pyramid was previously reported in Switzerland [77], Finland [78], and Sweden [79].
This is definitely a rising concern that seeks our attention because controlling APEC colo-
nization and infections in broiler breeders might be one of the ways to control the increasing
antibiotic resistance in poultry.

Of interest, 10.7% of our isolates were multidrug-resistant, which is a concern con-
sidering the control of various bacterial diseases in broiler breeders. A majority of the
isolates exhibited multidrug resistance towards tetracycline, kanamycin, streptomycin, and
gentamicin. A similar pattern of multidrug resistance was previously reported in broiler
breeder APEC isolates from Algeria [76]. Also, several recent studies globally from different
poultry species have reported multidrug resistance of APEC to different combinations of
antibiotics [43,80,81]. The potential reason for this multidrug resistance is the spread of
mobile genetic elements or plasmids carrying genes encoding the antibiotic resistance
phenotype and promoting their co-selection, co-resistance, and co-expression [76,82].

The antimicrobial-resistance gene, qacE∆ (QAC), was also identified in our isolates
(21.4%). Further, following broth microdilution assay, 14.3% of the isolates exhibited
resistance to QAC benzalkonium chloride. Similar results on the prevalence of genes
encoding for QAC resistance were found in E. coli collected from omphalitis-affected
baby chicks [83] and broilers [43,74]. QAC-based disinfectants are widely used in poultry
facilities for cleaning and sanitation. Their inappropriate use, such as long-term exposure
of bacteria to subinhibitory concentrations, may lead to the development of resistance [84].

Among 11 heavy-metal resistance genes tested, arsC (100%) was present in all isolates.
Even though FDA has currently banned the use of arsenic-based products in poultry feed,
this could be the effect of the long-term use of poultry feed supplemented with arsenicals-
based antimicrobials for disease control and growth promotion [85]. A similarly high
prevalence was also reported in E. coli from broilers in Mississippi [43]. The prevalence of
arsC was followed by silver resistance genes, silE (35.7%) and silP (21.4%), in our isolates.
Phenotypically, 92.8% of the isolates showed resistance towards silver, which was the
highest among all of the heavy metals tested. One possible reason for this difference is that,
apart from the two genes tested, there are other genes responsible for silver resistance in
E. coli [86]. This is the first report of such high resistance towards silver in broiler breeder
APEC isolates. Besides, the genes for tellurite (terF, terD, terY3, and terX) and mercury
(merA) resistance were identified in our isolates. These genes were also reported in poultry
from China [86], broilers from Mississippi [43], and turkeys from Iowa [39]. Further, genes
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for copper resistance (pcoA, pcoD, and pcoE) were also identified in the isolates; however,
all of the isolates were susceptible to copper. At the moment, copper might be a possible
solution for controlling APEC in broiler breeders in Mississippi, however, the presence
of these genes is quite concerning, and further studies on the extent of their vertical and
horizontal transmission potentials are required.

5. Conclusions

Broiler breeders are critical in the vertical transmission of APEC to progeny and, thus,
controlling the disease in breeder flock is crucial to lowering the occurrence of colibacillosis
in broilers [11]. Hence, continuous monitoring of APEC isolates from broiler breeders is
imperative. To our knowledge, this is the first time APEC isolates were specifically collected
and characterized from broiler breeders with colibacillosis in Mississippi. In this study,
we identified the serogroup pattern, phylogenetic groups, and the presence of virulence
genes, as well as the antimicrobial and metal resistance patterns among the APEC isolates.
Results showed that O88 is the most prevalent serogroup, and B2 is the predominant
phylogenetic group. Among virulence genes, iroN, iutA, iss, ompT, and hlyF exhibited the
highest prevalence. Multidrug resistance and resistance towards heavy metals were also
observed among the isolates. These findings provide a reference basis for future research
on the pathogenesis of APEC as well as to develop effective intervention strategies in the
prevention and control of APEC in broiler breeders.
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