
Citation: Murazvu, G.; Parkinson, S.;

Khan, S.; Liu, N.; Allen, G. A Survey

on Factors Preventing the Adoption of

Automated Software Testing: A

Principal Component Analysis

Approach. Software 2024, 3, 1–27.

https://doi.org/10.3390/

software3010001

Academic Editor: Andreas L.

Symeonidis

Received: 28 October 2023

Revised: 23 November 2023

Accepted: 25 December 2023

Published: 2 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Survey on Factors Preventing the Adoption of Automated
Software Testing: A Principal Component Analysis Approach
George Murazvu 1,2, Simon Parkinson 2,* , Saad Khan 2 , Na Liu 3 and Gary Allen 2

1 Axia Digital, Unit 57, Batley Business Park, Batley WF17 6ER, UK; u1766085@pgr.hud.ac.uk
2 Department of Computer Science, University of Huddersfield, Huddersfield HD1 3DH, UK;

saad.khan@hud.ac.uk (S.K.); g.allen@hud.ac.uk (G.A.)
3 Department of Logistics, Marketing, Hospitality and Analytics, University of Huddersfield,

Huddersfield HD1 3DH, UK; n.liu2@hud.ac.uk
* Correspondence: s.parkinson@hud.ac.uk; Tel.: +44-1484-256244

Abstract: Automated software testing is a crucial yet resource-intensive aspect of software devel-
opment. This burden on resources affects widespread adoption, with expertise and cost being the
primary challenges preventing adoption. This paper focuses on automated testing driven by manu-
ally created test cases, acknowledging its advantages while critically analysing its implications across
various development stages that are affecting its adoption. Additionally, it analyses the differences in
perception between those in nontechnical and technical roles, where nontechnical roles (e.g., manage-
ment) predominantly strive to reduce costs and delivery time, whereas technical roles are often driven
by quality and completeness. This study investigates the difference in attitudes toward automated
testing (AtAT), specifically focusing on why it is not adopted. This article presents a survey conducted
among software industry professionals that spans various roles to determine common trends and
draw conclusions. A two-stage approach is presented, comprising a comprehensive descriptive
analysis and the use of Principal Component Analysis. In total, 81 participants received a series
of 22 questions, and their responses were compared against job role types and experience levels.
In summary, six key findings are presented that cover expertise, time, cost, tools and techniques,
utilisation, organisation, and capacity.

Keywords: software testing; automated testing; attitudes; principal component analysis

1. Introduction

The development of computer science and software engineering and the increasing use
of artificial intelligence and data mining technologies have led to the development of a wide
range of applications that are critical to operations in business, healthcare, and education.
Software development is a complex and expensive process, prone to errors and subsequent
failure to meet user requirements [1]. Organisations, therefore, invest significant resources
to ensure that software products are tested against set criteria, ensuring that they are of
the best quality before being released to their clients and users [2]. Traditionally, testing
has been a manual process, involving humans executing applications and comparing their
behaviour against certain benchmarks. However, advances in technology and the constant
desire to improve quality have introduced and increased the use of automated testing,
which uses computer algorithms to detect bugs in software applications [3]. Automated
testing can generally be categorised into two types: those in which automated testing tools
write and use manual test cases and frameworks in which the testing tools automatically
generate test cases. In this study, we focus on the first type in which test cases are created
manually. The phrase automated testing is used throughout the rest of the paper to refer
to instances of automated testing that involve the manual creation and automated use of
test cases.

Software 2024, 3, 1–27. https://doi.org/10.3390/software3010001 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software3010001
https://doi.org/10.3390/software3010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0000-0002-1747-9914
https://orcid.org/0000-0001-8613-8200
https://orcid.org/0000-0002-1178-6454
https://orcid.org/0000-0003-4911-1492
https://doi.org/10.3390/software3010001
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software3010001?type=check_update&version=1

Software 2024, 3 2

A key aspect of all software development processes is that they each have testing
phases at different points in the development cycle. For example, the Waterfall development
process has a distinct test phase after development has taken place [4]. Another example
is Agile, which is an iterative development process and has repetitive testing phases [5].
Although there are processes involving iterative and concurrent testing, many development
processes assume users can specify a finished set of requirements in advance, ignoring
the fact that they develop as the project progresses and change depending on the client’s
circumstances. Manual testing and correction of errors, as well as the integration of
changes, is feasible in small projects, as the code size is easy to manage. However, as client
requirements change or more requirements are added, the projects grow in complexity,
yielding more lines of code and a higher probability of software faults occurring (commonly
named bugs). This results in the need for an increased frequency of manual software testing.
Consequently, there has been a shift to more flexible methodologies that combine testing
with the completion of each phase to identify software problems before progressing to the
next phase.

Automated software testing has many well-established benefits [6,7]; however, several
organisations are still not using automation techniques due to the requirement of knowl-
edge, legacy challenges, and reluctance to change [8,9]. The results of the 2018 SmartBear
State of Testing Report survey on test automation identified that automation is not yet as
common as organisations desire [10]. There are still many factors that hinder the update
and use, such as challenges in acquiring and maintaining expertise, cost, and the use of
the correct testing tools and frameworks. Although previous studies present the reasons
why automated testing may not be used, there is an absence of literature focusing on
different job roles and experiences and how they relate to factors preventing the adoption
of automated testing. There is also ongoing research and debate among academics and
professionals as to the merits of automated testing over traditional manual testing meth-
ods [9,11–14]. This research paper presents an empirical study to gain an understanding of
the different attitudes of employees working in the software industry. The particular focus
of this research is to understand whether there are common patterns surrounding different
roles and levels of experience. Furthermore, this research aims to identify common reasons
why automation is not being used.

At the end of this research, the following question will be answered: Do common
themes emerge when investigating opinions on why automated testing is not used, with the focus
being on the job role and level of experience? To answer this research question, a twenty-two-
question survey has been created to collect attitudes toward automated testing (AtAT) from
employees working in the software testing industry. The data are then thoroughly analysed
by using quantitative techniques to determine key patterns and themes.

This paper is structured as follows. Section 2 presents and discusses existing work,
grounding this study in the relevant literature. Section 3 describes and justifies the process
adopted in this paper, which includes using a two-stage analysis approach. This section
also presents and discusses the results of the study in detail, identifying common themes
relevant to the objective of this study. Section 4 provides a summary of key findings and
discusses how these findings motivate future work. Finally, in Section 5, a conclusion of
the work is provided. The full set of participant responses is available in Appendix A.

2. Related Work

The purpose of this paper is to identify the attitudes of those working in software
testing. This section surveys academic works that tackle this question, comparing any
existing approaches and methodologies. In one recent study, the authors defined manual
testing as a procedure to test the product to find software bugs [2]. Software is erroneous if
it deviates from the system requirements and/or implements any requirement incorrectly.
Taipale et al. agree by stating that manual software testing is the procedure of physically
testing software for imperfections, and it requires a tester to assume the job of an end-
user, whereby they use the application’s features to ensure correct functionality [11]. This

Software 2024, 3 3

view is shared by many researchers [9,13]. There are several types of software testing that
target different objectives, such as effectiveness, efficiency, user satisfaction, completeness,
defect types, etc. For example, two recent works focus on testing and detecting specific
memory issues in Android devices [15] and object replication in Java applications [16].
Following the different testing objectives mentioned by Hynninen et al. [17], one area
that has received significant attention lately is that of testing software to examine if there
are security vulnerabilities that can be exploited by an attacker [18]. In another study,
the authors examine how the objective of usability testing is performed in industry [19].
Software quality is commonly discussed as a testing objective, with recent work discussing
the role of Artificial Intelligence [20]. In other work, the authors propose a methodological
framework as a set of guidelines and checklists on the type of testing that should be applied
to achieve a certain objective based on a given case study [21].

Although software testing usually identifies errors and hence reduces associated costs
and maintains quality, evidence suggests that its proportion of the aggregated costs of total
development is high. A research study has determined that it contributes between 40% and
80% of total development costs [22]. This could be regarded as contrary to business strategy
for profit maximisation, and hence software manufacturers are increasingly looking for
ways to reduce their testing costs in order to reduce their overall development costs. In
a recent report, process efficiency is described as the ability of a process to produce the
desired result with the optimal number of resources [23]. Although automated testing is
commonly agreed upon to help identify software faults faster compared to manual testing,
the literature questions whether it is capable of significantly reducing the overall costs of
a project [24]. Automated software testing is defined as a process where software testing
frameworks (such as the Selenium web testing suite [25]) are utilised to conduct prescripted
software tests to confirm whether all functionality is working appropriately [26].

2.1. Requirement for Automated Software Testing

There is strong evidence to suggest that expenditure can be reduced using test au-
tomation. A report by Infosys [23] states that the manual testing of product features and
performance is an expensive, lengthy, and tedious task. A recent survey [27] claims that
the cost of software testing is between 30% and 50% of the entire budget, and there is an
undeniable requirement for testing methods that can decrease the duration required to
guarantee software quality and reliability. In another work, the authors discovered a set of
factors that influence the cost of test automation, all of which provide positive outcomes
on cost, quality, and time to market [24]. Another research study presented an experiment
on an automated test generation tool and proposed a methodology named ‘TestDescriber’,
which creates comprehensive documentation for each individual test, thereby improving
and aiding the reduction of expert knowledge required to perform the tests [28]. This
is an extension of previous work [29] that developed a toolkit to facilitate the automatic
generation of test data for structural testing cases. In relation to the financial impacts of
automated testing, a study discovered that the cost increases from 1:5 (from requirements to
after release) for simple systems to as high as 1:100 for complex systems [30]. This statement
confirms that once the bug is found in production, it will cost more to rectify, as the system
might need to be taken out of operation in order for the bug to be fixed, which will result in
the company losing revenue or even customers migrating to competitors because of lack of
confidence with their software systems. A similar study confirms that the longer a software
fault is left undetected, the more expensive it will be to fix once it is discovered [31].

A recent research work examined the relative proficiencies of both random and organ-
ised methods in automated software testing and identified that proficiency is an imperative
property of software testing, conceivably significantly more essential than adequacy [32].
Test automation can provide benefits in many ways, such as test reusability, repeatability,
test inclusion, and exertion spared in test executions. Another work added that since
complex software faults exist even in basic software systems, engineers are searching for
automated systems to identify software faults, resulting in greater trust and accuracy [33].

Software 2024, 3 4

A similar study states that automated testing is a productive method to gain trust in the
accuracy of the software [34]. This observation is well argued and is based on the premise
that automated software testing removes the element of human error and is faster to run
regression tests, which can take days if they are to be performed manually. Furthermore,
another article claimed that when comparing automated software testing versus manual
software testing, the impacts and advantages of automated testing are provided in the
long term when compared to manual testing [35]. This is because an automated testing
tool can consider and process all factors holistically, in an efficient manner, as compared to
manual testing.

A research study examined different methods of software testing and concluded that
performing manual testing is wasteful and error prone; using automated tests is efficient
in reducing software release time [36]. The experiment was based on a mathematical
procedure with the intention of increasing the chances of having a resource-effective test
automation process. Another paper investigated techniques for enhancing the effectiveness
of software test automation. This point is supported by the declaration that automated
testing frees testing staff to perform other testing duties [37]. This paper also explored
the challenges and best practices related to quality within software development and
determined that completing software testing can reduce financial expenditure by catching
issues before they progress too far through the product development process.

Another paper reports that the main issue for a tester and/or organisation that wants to
automate their software testing process is how much the testing tools cost [38]. Furthermore,
the concern is whether it will satisfy the testing requirements. Open-source testing tools
are available and free to use, which is seen as a positive aspect and helps organisations
automate software testing. Another research study conducted an experiment to investigate
the benefits of automated testing techniques using the open-source Ball Aviation Universe
testing framework. It concluded that automated testing yields numerous advantages,
such as mitigation against client input errors, faster execution times, and decreased client
oversight during execution [39].

2.2. Current Limitations of Automated Testing

A study states that during the investigation of the current situation and possible
improvements in software test automation, it was observed that the main advantages of
test automation were quality improvement, the likelihood of executing more tests in less
time, and the familiar reuse of testware [40]. However, other work identified that when
investigating the present condition of test automation in software testing, by surveying the
perspectives and perceptions of supervisors, testers, and developers in every company, it
was concluded that the biggest burdens were the expenses related to implementing test
automation, particularly under unique altered conditions [11]. Another paper conducted an
experiment using the AutoTest tool, which is a fully automated testing framework running
on the Linux system. After combining automated and manual testing, it was realised
that software can be tested manually or automatically, and these two methodologies can
complement each other [41].

Similarly, another experimental framework is presented to compare testing procedures
based on efficiency, effectiveness, and applicability [22]. It employed 70 distinct test design
techniques and concluded that automated testing cannot be applied in all cases due to
a lack of ability to determine issues and/or increased difficulty in implementation. This
agrees with the observations and lessons learnt from automated testing [6] that the use of
automated test tools does not improve fault detection when compared to manual testing.
Furthermore, it was found that 80% of professionals disagreed with the suggestion that
automation testing would serve as a complete replacement for manual testing. This issue
seems to be well known, as another paper determined that automated tests found only
26% (on average) of the faults [40]. Furthermore, they state that when an automated test
suite has been configured and integrated, it is usually reused in future tests. This makes
testing substantially less likely to uncover defects in the product during the next iteration.

Software 2024, 3 5

Regarding open-source software testing tools, a paper investigated several such tools and
concluded that they are not maintained regularly and are difficult to use [42]. In addition,
organisations are still likely to use commercial tools due to the level of support available,
which can help them fully use the technology. Therefore, due to the aforementioned reasons,
automated software testing is not used in some organisations.

The existing literature highlights that there is a known gap between academic and
practitioner opinions on automated software testing, and there is a need to close the gap by
exploring attitudes about the benefits and restrictions of test automation [43]. However,
the appreciation for test automation is unbalanced, as the achievement rate is low and
the impediments are always high at the beginning for acquiring the resources to set up
automation testing and training tools. Moreover, the automated tests are not well suited for
every organisation and are varied in terms of accuracy, applicability, and usefulness factors.

2.3. Survey-Based Research

There are many examples of recent research that involves surveying practitioners
in the software industry. A recent survey was conducted to determine the importance
of automated bug report management [44]. This research consulted 327 practitioners to
gain their insights into automated bug report management techniques. Their study con-
cluded that practitioners value automated bug report management techniques, but many
recommendations were identified. In another recent survey, 3000 industry professionals
were invited to rate the relevance of research published at leading conferences [45]. Re-
search was carried out to understand how practitioners perceive software engineering
research, helping conference organisers and academics understand software engineering
research priorities and what elements of their research are favourably perceived, and thus
have a stronger end-user impact. Another recent research study focused on acquiring
the perception of productivity by software developers [46]. In this survey, the authors
consulted 379 software developers, eliciting themes around tasks, activities, and workflow.
The authors have also conducted literature-based surveys on impediments to software
test automation, identifying the benefits and challenges; however, the authors state that
empirical work is needed for further understanding [9], which further motivates the need
for the research presented in this article.

3. Materials and Methods

In this work, we used a two-stage analysis to address the research question. In the
first phase, a comprehensive yet basic analysis is performed to provide the foundation for
understanding individuals’ attitudes towards the reasons why automated testing is not
used and also to illuminate patterns specific to individuals performing different roles and
of different experiences.

Next, we conduct a principal component factor analysis (principal component extrac-
tion). This is a standardised and widely used approach, which provides the opportunity to
further examine the relationships between the participants’ opinions on automated testing
as a whole while looking for clustering of certain variables [47]. In particular, we examine
the dimensionality of individual responses to investigate whether or not automated testing
attitudes comprise a distinct attitudinal dimension. Principal component factor analysis is
a standard and widely used technique for data analysis [48].

3.1. Questions and Process

To measure attitudes toward automated testing (AtAT), a scale was constructed based
on twenty items asking respondents about their broad feelings relating to automated
software functionality, as well as about its adoption. The questionnaire was created in a
way that develops a comprehensive analysis of common reasons why automated software
testing is not used. To understand this and what facilitates the development of techno-
logical mechanisms, practitioners’ attitudes and concerns must first be investigated. The
questionnaire is mostly derived with the help of existing frameworks and methodologies.

Software 2024, 3 6

The survey was distributed through professional and social media channels to acquire
participants. Groups such as the following will be targeted: Quality Assurance (QA) testers,
Software Developers in Test (SDIT), Software Testing Managers, and Automation Engineers.
The questionnaire that has been designed consists of 22 questions.

The questions are grouped into the constructs of biographic, time, cost, tools and
techniques, utilisation, organisation, and capability. We selected these construct themes as
they were repeatedly presented in related research and represent a natural divide between
the individual, the technology, and the environment within which both operate. Table 1
provides the mapping of the questions to each construct, including a citation to the literature
presented in related work that motivates their inclusion in the questionnaire. A question
number is provided, as is used in later discussions. The numbering is provided in the
order that they were asked to the participants, and it is evident that the questions for each
construct are diversely distributed. The purpose of this is to extract more information from
participants on their AtAT to enable a stronger analysis. As this questionnaire aims to
deduce the reasons for not accepting automated testing, all items are negatively worded.
There is also an open-ended section for the participant to provide further comments. Note
that the questions are not asked in a grouped order to try to introduce variation within
the questions being asked, making the participant revisit the theme after changing to a
different theme. For each question, the participant will be presented with a statement
with which they can either agree or disagree. The participant will receive responses based
on the Likert scale [49], which are either strongly disagree, disagree, neutral, agree, or
strongly agree. Furthermore, free text input is made possible at two points in the survey to
acquire additional information. The purpose of these inputs is to acquire comments from
the participant that might rationalise their answer or provide further information. The first
appears approximately halfway through the survey at Question 10 and the second at the
end of the survey at Question 22.

Table 1. Questions and construct.

Construct Questions Sources

Biographic
q1 What is your job title?
q2 How many years of experience in the IT sector do

you have?
[32]

Time

q4 Individuals not having enough time prevents the use
of test automation.

q15 Automated testing techniques are time-consuming
to learn.

[24,36,40]

Cost

q11 Commercial tools are too expensive, which prevents
their use.

q19 Expensive to generate test cases/test scripts.
q20 They require high maintenance costs for test cases, test

scripts and test data.

[22,27,30,31,38]

Tools and
Techniques

q6 Not having the right automation tools and
frameworks is preventing use.

q16 Automated testing tools and techniques lack the
necessary functionality.

q17 They are not reliable enough to make them suitable
for use.

q18 They lack support for testing non-functional
requirements (usability, safety, security, etc.).

q21 Automated testing tools and techniques change too
often, introducing problems that need fixing.

[6,39,44]

Software 2024, 3 7

Table 1. Cont.

Construct Questions Sources

Utilisation

q5 Difficulties in preparing test data and environments
prevent their use.

q7 Difficulty in integrating different automation
tools/frameworks together is preventing their use.

q8 Requirements change too often in software projects
resulting in them being too time-consuming when
required to quickly react to change.

q12 Open-source tools are not easy to use.
q22 Difficult to reuse test scripts and data across stages

of testing.

[34,35,37]

Organisation
and Capability

q3 Lack of skilled resources prevents automated testing
from being used.

q9 Not realising and understanding the benefits of test
automation is preventing their use.

q10 A lack of support from senior management is
preventing their use.

q13 Test automation tools require a high level of expertise,
which is often not available.

q14 Automated testing requires strong programming skills.

[11,28]

As all questions were multiple choice, the responses provided in Appendix A are
their numerical versions (strongly agree = 5, agree = 4, neutral = 3, disagree = 2, strongly
disagree = 1). Furthermore, the graphs provided in Figures 3 and 4 use a character abbrevi-
ation (strongly agree = SA, agree = A, neutral = N, disagree = D, strongly disagree = SD).
Because all items are negatively worded, score reverses were not needed.

The survey was created as a digital survey and distributed through special interest
groups. More specifically, we used Google Forms to create and host special interest groups
in software engineering and testing on LinkedIn. The survey uses a suitable convenient
sampling approach [50], where the survey is open to responses from all professionals
working in software testing, regardless of whether they are employed or have experience
working within an organisation where test automation is applied. This is done to ensure
that responses are captured from respondents with different experiences to represent the
diversity within the software test community. This is important, as all individuals working
in the software lifecycle are in some way influential to the adoption of automated software
testing within their organisation. It is also worth noting that we do not ask participants to
disclose information regarding organisations they work within. The purpose is to maintain
anonymity and follow the survey style used in practitioner-based surveys in the discipline
of software engineering [44–46]. The questionnaire took approximately 10 min to complete.

3.2. Participants

Figure 1 illustrates the experience of the participants. Years of experience are used to
measure how long a participant has been involved in automated testing, which is also a
measure used in other academic work [51]. It is important to make the distinction that the
authors are not assuming that years of experience relate to an individual’s skill level; rather,
an assumption is made that they will have had more interaction with automated testing
tools and techniques, therefore forming stronger attitudes. The duration of the experience
ranges from 0.5 to 33 years, and as evident in the table, a good variation was surveyed.
However, the majority of participants are in the range between 1 and 20 years of age. This
is of significant importance as it demonstrates that the survey will not be overly biased
toward IT professionals with short or long experience. Table 2 illustrates the variation of
roles and the number of respondents. Note that the role title was entered by the user and
resulted in a wide variation of roles. It is worth noting that the roles have been placed in
themes for ease of comparison. The themes adopted are the same as those of the State of

Software 2024, 3 8

Testing Report (2018), as discussed in Section 1. In the table, it is evident that the majority
of job role themes are Quality Assurance, Software Testing, and then senior versions of each
role. Outside of technical roles, there are three Chief Executive Officers, four consultants,
seven managers, and one student. Although it can be seen that, in general, the majority of
respondents are performing more technical roles, the 15 nontechnical responses account for
18% of the total responses and are not insignificant.

0 5 10 15 20 25 30

0–1

1–5

5–10

10–15

15–20

20–25

25–30

30–35

Number of respondents

Ye
ar

s
of

ex
pe

ri
en

ce

Figure 1. Respondent experience in the IT sector.

Table 2. Participant roles in the IT sector.

Job Role # of Participants

CEO 3
Consultant 3
Senior Consultant 1
Manager 7
Student 1
QA 7
Senior QA 8
Tester/Engineer/Analyst/Architect/Automation 27
Senior Tester/Engineer/Analyst/Architect/Automation 24
Total 81

3.3. Results: Stage 1

In this section, the responses from the questionnaire are analysed and discussed.
Figure 2 provides the numbers of responses for each available response (strongly disagree,
disagree, neutral, agree, strongly agree). All response data are available from the authors
upon request. Figure 3 provides bar charts for each response in relation to the response
choices whilst also showing the response split between different job roles, as provided in
Table 2. Furthermore, Figure 4 provides information on how many years of experience the
participants have with the responses. The discussion is grouped according to the constructs
presented in Table 1, except for the biographic, which is discussed in Section 3.2.

Software 2024, 3 9

q3 q4 q5 q6 q7 q8 q9
q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22

0

20

40

60

80

#
of

Pa
rt

ic
ip

an
ts

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 2. Response to questions.

(a)

0 5 10 15 20 25 30

SA
A
N
D

SD

of participants

(b)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(c)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(d)

0 5 10 15 20 25 30 35

SA
A
N
D

SD

of participants

(e)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(f)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(g)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(h)

0 5 10 15 20

SA
A
N
D

SD

of participants

Figure 3. Cont.

Software 2024, 3 10

(i)

0 10 20 30

SA
A
N
D

SD

of participants

(j)

0 5 10 15 20 25 30 35

SA
A
N
D

SD

of participants

(k)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(l)

0 10 20 30 40

SA
A
N
D

SD

of participants

(m)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(n)

0 5 10 15 20 25 30

SA
A
N
D

SD

of participants

(o)

0 10 20 30

SA
A
N
D

SD

of participants

(p)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(q)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(r)

0 5 10 15 20 25 30 35

SA
A
N
D

SD

of participants

(s)

0 10 20 30 40

SA
A
N
D

SD

of participants

Figure 3. Cont.

Software 2024, 3 11

(t)

0 5 10 15 20 25 30 35

SA
A
N
D

SD

of participants

CEO
Consultant

Student
Senior Consultant

Manager
QA

Senior QA
Tester

Senior Tester
Automation

Senior Automation

Figure 3. Responses for each survey by question, illustrating the distribution of answers based on job
role. (a) Q3 Lack of skilled resources prevents automated testing from being used; (b) Q4 Individuals
not having enough time prevents the use of test automation; (c) Q5 Difficulties in preparing test data
and environments prevents their use; (d) Q6 Not having the right automation tools and frameworks
is preventing use; (e) Q7 Difficult to integrate different automation tools/frameworks together is
preventing their use; (f) Q8 Requirements change too often in software projects resulting in them
being too time-consuming when required to quickly react to change; (g) Q9 Not realising and
understanding the benefits of test automation is preventing their use; (h) Q10 A lack of support
from senior management is preventing their use; (i) Q11 Commercial tools are too expensive, which
prevents their use; (j) Q12 Open-source tools are not easy to use; (k) Q13 Test automation tools
require a high level of expertise, which is often not available; (l) Q14 Automated testing requires
strong programming skills; (m) Q15 Automated testing techniques are time-consuming to learn;
(n) Q16 Automated testing tools and techniques lack the necessary functionality; (o) Q17 They
are not reliable enough to make them suitable for use; (p) Q18 They lack support for testing non-
functional requirements (usability, safety, security, etc.); (q) Q19 Expensive to generate test cases/test
scripts; (r) Q20 They require high maintenance costs for test cases, test scripts and test data; (s) Q21
Automated testing tools and techniques change too often, introducing problems that need fixing;
(t) Q22 Difficult to reuse test scripts and data across stages of testing.

(a)

0 5 10 15 20 25 30

SA
A
N
D

SD

of participants

(b)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(c)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(d)

0 5 10 15 20 25 30 35

SA
A
N
D

SD

of participants

(e)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(f)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

Figure 4. Cont.

Software 2024, 3 12

(g)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(h)

0 5 10 15 20

SA
A
N
D

SD

of participants

(i)

0 10 20 30

SA
A
N
D

SD

of participants

(j)

0 5 10 15 20 25 30 35

SA
A
N
D

SD

of participants

(k)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(l)

0 10 20 30 40

SA
A
N
D

SD

of participants

(m)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(n)

0 5 10 15 20 25 30

SA
A
N
D

SD

of participants

(o)

0 10 20 30

SA
A
N
D

SD

of participants

(p)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(q)

0 5 10 15 20 25

SA
A
N
D

SD

of participants

(r)

0 5 10 15 20 25 30 35

SA
A
N
D

SD

of participants

Figure 4. Cont.

Software 2024, 3 13

(s)

0 10 20 30 40

SA
A
N
D

SD

of participants

(t)

0 5 10 15 20 25 30 35

SA
A
N
D

SD

of participants

<1
1 to 5

5 to 10
10 to 15
15 to 20
20 to 25
25 to 30
30 to 35

Figure 4. Responses for each survey by question, illustrating the distribution of answers based
on number of years of experience. (a) Q3 Lack of skilled resources prevents automated testing
from being used; (b) Q4 Individuals not having enough time prevents the use of test automation;
(c) Q5 Difficulties in preparing test data and environments prevents their use; (d) Q6 Not having
the right automation tools and frameworks is preventing use; (e) Q7 Difficult to integrate different
automation tools/frameworks together is preventing their use; (f) Q8 Requirements change too often
in software projects resulting in them being too time-consuming when required to quickly react to
change; (g) Q9 Not realising and understanding the benefits of test automation is preventing their
use; (h) Q10 A lack of support from senior management is preventing their use; (i) Q11 Commercial
tools are too expensive, which prevents their use; (j) Q12 Open-source tools are not easy to use;
(k) Q13 Test automation tools require a high level of expertise, which is often not available; (l) Q14
Automated testing requires strong programming skills; (m) Q15 Automated testing techniques
are time-consuming to learn; (n) Q16 Automated testing tools and techniques lack the necessary
functionality; (o) Q17 They are not reliable enough to make them suitable for use; (p) Q18 They lack
support for testing non-functional requirements (usability, safety, security, etc.); (q) Q19 Expensive
to generate test cases/test scripts; (r) Q20 They require high maintenance costs for test cases, test
scripts and test data; (s) Q21 Automated testing tools and techniques change too often, introducing
problems that need fixing.; (t) Q22 Difficult to reuse test scripts and data across stages of testing.

3.3.1. Time

Question 4 asks the participants if they believe that an individual not having enough
time prevents the use of automated testing. The response to the question is well balanced
with only a small majority stating that they agree. As demonstrated in Figure 3b, the
distribution of the job roles among the responses is balanced, with both technical and
nontechnical roles agreeing and disagreeing. One identified trend is that participants who
strongly disagree have identified themselves as performing a technical role, with only two
of the ten responses occupying a senior role. This indicates that more junior roles disagree
more strongly with the statement presented. It can also be established from Figure 4b that
there is an even distribution of years of experience between the responses.

Question 15 then asked the participants if they think automated testing techniques are
time consuming to learn. The responses to this question are also quite evenly distributed.
The low percentage of participants who strongly agree with this statement results in an
average between neutral and disagreement. Figure 3m demonstrates the distribution of job
roles amongst response categories, and it is worth noting that, in general, nontechnical roles
are responding more closely with agree and neutral replies, which could perhaps be down
to their lack of experience with the technology. All CEO responses are in the agreed category.

Software 2024, 3 14

Figure 4m demonstrates the years of experience for each response category. Interestingly,
there is an even distribution apart from agreement, whereby there is the highest quantity of
participants with the lowest number of years of experience, which could demonstrate that
those with a lower amount of experience could believe that automated testing takes more
time to learn, which would most likely originate from the fact that they will have more to
learn during earlier years of employment.

3.3.2. Cost

Question 11 asked whether the participant agreed or disagreed that commercial tools
are too expensive, thus preventing their use. Most of the participants agreed with this
statement. Figure 3i illustrates the number of responses in relation to each job role. It is
observed that most of the senior management, consultants, and QA and senior QA roles
agree with the statement, whereas the CEOs are neutral or disagree. Figure 4i shows how
years of experience are evenly distributed among the available responses.

Question 19 asked the participants whether they believed that automated test scripts
and cases are expensive to generate. The responses to this question are balanced, with
only a slight emphasis on disagreement. Figure 3q illustrates that the general trend is that
managerial roles are more likely to agree with this statement. It is also worth noting from
Figure 4q that the small number of responses that strongly agree and disagree have more
than 5 years of experience, while the other categories have an even distribution. This could
indicate that the views of experienced employees are on average neutral, with a minority
having polarised views.

Question 20 asked the participants whether they agreed that automated testing re-
quires high maintenance costs. Overall, the participants agreed with this statement, but
Figure 3r illustrates that, in general, nontechnical roles are more likely to agree with this
statement, which is perhaps to be expected considering their daily interaction with fi-
nancial operations. There is a slight emphasis on technical staff not agreeing with this
statement, which is perhaps down to their lack of involvement with the financial side of
their employer’s activities. Furthermore, Figure 4r shows that those strongly agreeing or
disagreeing have a higher number of years of experience.

3.3.3. Tools and Techniques

Question 6 asks the participants if they believe that not having the right automation
tools and frameworks is preventing use. It is evident that, in general, the majority of
participants do not believe the use of automated testing is prohibited by the inability to
identify and use the correct tools. Interestingly, Figure 4d illustrates that participants who
are strongly agreeing have 10 to 15 and 30 to 35 years of experience. However, overall,
there is an even distribution of years of experience among the responses.

Question 16 asked participants whether they believed that automated testing tools and
techniques lack the necessary functionality. In general, most of the participants disagree
with this statement. Figure 4n shows that there is a slight increase in the portion of responses
from participants with an increased number of years of experience in the categories agree
and strongly agree. This could perhaps indicate that more experienced employees have a
stronger belief that current techniques and tools lack functionality, which could be down to
the fact that they have in-depth experience and knowledge of missing functionality.

Question 17 asked the participants whether they believed that automated testing tools
and techniques were not reliable enough, making them unsuitable for use. Respondents
overwhelmingly disagreed with this statement. Figure 3o illustrates that there is a diverse
distribution of job roles between each response category. It is worth noting that only one
participant strongly agreed and that they are performing a technical role, which could
indicate that their dissatisfaction originates from working closely with automated testing
tools and techniques. Furthermore, as evident in Figure 4o, there is no relationship between
years of experience and response, except for the observation that there is a higher proportion
of participants with a lower number of years of experience agreeing or strongly agreeing.

Software 2024, 3 15

This could indicate that they have not yet mastered their craft and utilised the full potential
of automated tools, or even their dissatisfaction with their chosen career.

Question 18 asked the participants whether they agreed that automated testing lacks
support for testing nonfunctional requirements (usability, safety, security.) The responses
to this statement are close, but the majority agree with this statement. Figures 3p and 4p
show that there is an even distribution between roles and length of experience within the
response categories.

Question 21 asked the participants whether they agree that automated testing tools
and techniques change too often, introducing problems that need fixing. Most of the
responses agree with this statement. Figure 3s illustrates that nontechnical employees are
more likely to agree with the statement, with only management roles submitted as strong
accept. Interestingly, it also illustrates that QA and senior QA roles only responded as
agreed. The majority of technical testing, engineering, and automation roles are neutral or
disagree, and they are also the only roles that strongly disagree. Furthermore, Figure 4s
also shows that, in general, participants with a higher number of years of experience are
more likely to respond with a neutral or disagreeing response. This indicates a different
point of view between nontechnical and technical roles, as well as the number of years of
experience that an individual has. Experienced individuals may have gained sufficient
experience in how to maintain their scripts and keep them up-to-date with new versions of
testing tools.

3.3.4. Utilisation

Question 5 asks participants if they believe that difficulties in preparing test data
and environments are responsible for preventing the use of automated testing. In general,
most of the responses agree with this statement. Figure 3c presents the breakdown of
responses versus job roles. Interestingly, the results demonstrate that nontechnical roles
(CEO, consultant, management) mostly agree with this statement and there is only one
response from a manager that disagrees.

Question 7 asked the participants whether they agreed with the statement that dif-
ficulties in integrating different tools/frameworks together prevent their use. A small
majority were in favour of disagreeing with the statement. Figure 3e illustrates that the
majority of nontechnical roles agree with this statement and the balance based on technical
roles is almost even, with a slight emphasis on disagreeing with the statement. Figure 4e
shows an even distribution of years of experience among responses, although the responses
with a higher number of years of experience are, in balance, more in agreement than
in disagreement.

Question 8 asks the participants whether they agree or not with the statement that
frequent requirement changes often prevent the use of automated testing. The responses
provided agree in general with the statement. In Figure 3f, it is evident that the job role
distribution is mostly even with the majority of respondents operating as a(n) software
tester, engineer, analyst, and test architect, whereas respondents with quality assurance
roles are majority agreeing. Interestingly, nontechnical positions, such as CEOs, are either
neutral or disagree with this statement, which could indicate a misalignment between both
nontechnical and technical employee experiences with automated testing when it comes to
the impact of changing software requirements.

Question 12 asked the participants whether they think that open-source automation
tools are difficult to use, and the majority of the participants disagreed. As illustrated in
Figure 3j, the number of nonsenior and technical roles is low for both agreeing and strongly
agreeing. In relation to years of experience, Figure 4j illustrates that a higher number
of individuals with a lower number of years of experience disagree with the statement,
which could be due to the fact that those with fewer years of experience received dedicated
training on the tools they are using, that is, they could be recent graduates who have
received training specifically on the technology used.

Software 2024, 3 16

Question 22 is the final question and asked participants if they agree that it is difficult
to reuse test scripts and data at different stages of testing. Responses in general agree with
this statement. The lower number of neutral responses indicates polarised views on this
statement. From the analysis of the different roles presented in Figure 3t, it is evident that
nontechnical employees are more likely to agree with the statement; however, this is a
weak correlation, as some nontechnical staff disagree. In addition, technical personnel are
distributed across all categories. However, only those who perform QA and technical roles
strongly disagree. Figure 4t illustrates that of the users who strongly agree, all have a large
number of years of experience. The different categories of experience are evenly distributed
among the different response categories, apart from those that strongly disagree and have
between 5 and 10 years of experience only.

3.3.5. Organisation and Capabilities

Question 3 asked the participants whether they agreed with the statement that a lack
of skilled resources prevents automated testing from being adopted within an organisation.
This demonstrates that the majority of the responses agree that the lack of skilled resources
is a problem. Furthermore, as demonstrated in Figure 3a, most of those who agree with
this statement perform nontechnical roles, while most of those who disagree perform more
technical roles. This is important because it highlights the different points of view when
considering whether there is a resourcing issue. In addition, Figure 4a highlights that the
majority of the responses provided by participants with more than 20 years of experience
agree or strongly agree. However, it is also worth noting that participants who strongly
disagree are only in the 15–20 years of experience category.

Question 9 asked whether people believed that automated testing is often not used
because people do not realise and understand the potential benefits. The overall trend is
that a majority disagree with this statement.

Question 10 asked the participant whether they believed that lack of support from
senior management was preventing their use. The results from this question are well
balanced, with the number of participants agreeing with the statement being slightly higher
than those disagreeing. In Figure 3h, it is evident that there is an even distribution of job
roles among the responses; however, the role of consultant only appears in the neutral,
agreeing, and strongly agreeing responses, whereas managers and CEOs on average dis-
agree with the statement. The difference with consultants could be due to the fact that they
are not directly employed by an organisation and provide independent observation.

Question 13 asked the participants whether they agreed or disagreed with the state-
ment that test automation requires a high level of expertise, which is often not available.
Overall, the trend is that the respondents disagree. Figure 3k illustrates how different roles
selected their answers. It is evident that there is an even distribution of roles. It is therefore
a fair assumption to state that only those with good technical understanding disagree with
the statement. Figure 4k illustrates that the number of years of experience within each
category is well distributed; however, strongly disagree has the highest average years of
experience when compared to the other categories.

Question 14 asked if participants believed that automated testing requires strong
programming skills. Overall, the responses strongly agreed with this statement. Figure 3l
shows that there is an even distribution of roles that provide responses within each response
category, and Figure 4l illustrates that there is an even distribution of years of experience
within each response category.

3.4. Results: Stage 2

In this stage, the Principal Component Analysis (PCA) is performed using SPSS
(version 24) on the responses (Q3-Q22). Best-practice guidance informs that ideally a
minimum of five cases (participant responses) per each question is a good ‘rule of thumb’
but that a minimum of four is also sufficient [52]. However, it should be noted that this
can reduce the quality of the analysis, and this section presents appropriate measures

Software 2024, 3 17

to establish adequacy and reliability. All responses are on the same Likert scale and do
not require normalisation. PCA is a statistical analysis technique that uses linear algebra
techniques (specifically orthogonal transformation) to convert a data set believed to contain
correlations into subsets of correlated data, known as principal components. In this process,
the twenty items (questions) were used, and these comprised the final attitude scale. When
performing PCA, the level of variance (known as Cohen’s alpha) is calculated and used as a
measure of how suitable the data are for identifying principal components. Nunnally and
Bernstein [53] state that 0.70 is an acceptable minimum for a scale that is newly developed.
In our results, the reliability of these 20 items in the sample produced a Cronbach alpha
of 0.86 and is presented in Table 3. It is important to note that the alpha coefficient did
not increase when items were eliminated. Ferketich [54] recommended that the corrected
item-total correlations should range between 0.30 and 0.70 for a very good scale [55]. In our
result, the 20 questions had significant corrected item-total correlations and were retained
(ranging from 0.24 to 0.60). Although some of the questions provided a correlation of 0.24,
values between 0.2 and 0.39 are often regarded as indicating good discrimination [56].

Table 3. Reliability statistics.

Cronbach’s Alpha Number of Items

0.860 20

Table 4 presents the results using the Kaiser–Meyer–Olkin (KMO) and Bartlett’s mea-
sure of sampling adequacy. As is evident in the results, the KMO value is very close to 0.8,
which is generally considered to determine whether the sample is adequate. A value below
0.6 determines that the sampling would be inadequate, but anything above 0.7 is accept-
able [53,57]. Furthermore, Bartlett’s test of sphericity is used to measure the correlation
between the questions within a theme. In our results, we obtain a value of 553.333. The
closer the value is to 0, the higher the correlation between two variables [58].

Table 4. KMO and Bartlett’s test.

Test Technique Result

Kaiser–Meyer–Olkin Measure of Sampling Adequacy 0.778

Bartlett’s Test of Sphericity Approx. Chi-Square 553.333

Significance 0.000

AtAT with oblique rotation (nonorthogonal) was used to investigate the components
that prevent people from adopting automated testing. Analysis of the scree plot and
eigenvalues led to the extraction of two components, which together represented 39% of the
variance in the data. In Table 5, the individual items and their relationship to the two factors
can be seen. The table shows the item loadings for each of the two factors. We termed
component one nonsoftware factors, which comprises items relating to finance, expertise, and
time. The second component that we call software factors, which comprises ten items related
to effectiveness, efficiency, completeness, and adaptability, was called the software factor.

Our analyses of the twenty items reveal a two-component structure (Table 5). The
nonsoftware component consists of ten items explaining 29% of the variance and yields an
eigenvalue of 5.8. Eigenvalues are a measure of the magnitude of a component. The com-
ponent of nonsoftware factors is highly correlated with high internal consistency (Cronbach
alpha = 0.813). The software factors consist of ten items explaining 10% of the variance and
yield an eigenvalue of 2.0. The software factors also highly correlate (Cronbach’s alpha =
0.790). The results present the commonality scores, indicating how well each item fits the
components. Furthermore, all existing theoretical guarantees for PCA assume that the data
and the corrupting components (all items grouped together into one theme) are mutually
independent (uncorrelated).

Software 2024, 3 18

Table 5. Pattern matrix. Rotation method: Oblimin with Kaiser normalization. The rotation converged
in 8 iterations.

Question Nonsoftware Factors Software Factors Commonalities

Q20 0.786 0.606
Q19 0.708 0.568
Q13 0.688 0.499
Q14 0.623 0.384
Q21 0.608 0.375
Q8 0.572 0.294
Q15 0.515 0.347
Q11 0.492 0.217
Q18 0.483 0.397
Q4 0.447 0.278
Q22 0.419 0.362 0.404
Q6 0.741 0.496
Q3 0.662 0.401
Q9 0.618 0.371
Q7 0.617 0.452
Q10 0.504 0.243
Q5 0.500 0.386
Q16 0.487 0.419
Q17 0.469 0.303
Q12 0.343 0.380 0.346

Eigenvalues 5.815 1.971

Percent variance
explained 29.076 9.857

Table 6 presents the average percentage response grouped by role type and also by
identified components from the analysis of the main component factor. It is evident that
based on the identified factor, participants undertaking a technical role more strongly
agree that nonsoftware reasons are preventing their use, and they more strongly disagree
that software reasons are preventing their use. It is also evident that they more strongly
agree with the nonsoftware factor being responsible for not adopting automated testing.
Participants undertaking a nontechnical role more strongly agree that both nonsoftware
and software factors are preventing the use of automated testing.

Table 6. Average % responses to questions, grouped by role type and factor.

Technical Role Nontechnical Role

Component % Disagree % Neutral % Agree % Disagree % Neutral % Agree

Nonsoftware 35 25 41 22 23 55
Software 50 21 29 31 24 45

4. Discussion and Findings

The purpose of this study was to identify key themes when investigating opinions
on why automated testing is not used. Through this two-stage study, the nature of the
relationship between a set of predictors including software characteristics, nonsoftware
issues, and those reasons relating to practitioner support and opposition to AT adoption
were investigated. In this spirit, scholars have found that AT characteristics, e.g., func-
tionality, usability, and adaptability, can have a strong effect on practitioners’ support or
opposition. In particular, we sought to test these predictors in different scenarios to gain
an understanding of how perceptions of individuals operating in different roles and with
different levels of experience differ. To that end, it has been established that there are key
identifiable patterns surrounding attitudes toward automated testing from employees who

Software 2024, 3 19

assume different roles and have different levels of experience. These key findings can
be used by employers in the software industry to better understand the viewpoints of
their employees.

Based on the values in Table 6, the responses for technical roles are asymmetric,
as technical roles believe that the reasons for not adopting AT are due to nonsoftware
factors. However, the responses for nontechnical roles are symmetric and agree that both
nonsoftware and software reasons are the factors preventing adoption. We deduce that this
could be down to the following reasons: (1) questions in nonsoftware factors related to cost
that all (i.e., not just nontechnical) employees agree with; (2) based on common practice in
the IT sector, technical employees are often promoted to nontechnical (managerial) roles,
meaning that they have both technical and nontechnical attitudes; and (3) nontechnical
might have less understanding of how capable technical people are, i.e., management lacks
understanding of their employees’ skills.

Based on the combination of the comprehensive basic analysis and the principal
component analysis, we draw the key findings presented in the remainder of this section.
Throughout this section, the original questions and their responses are cross-referenced
by adding the question number in parentheses (e.g., q3 for question 3). In this section,
optional free-text responses provided by the user are analysed alongside the previously
discussed quantitative information. The complete free-text responses provided by 19 of
the participants can be seen in Table A1, and since this section is trying to establish key
findings from the data, they are used to support the quantitative patterns. A summary of
the key themes of the free-text submissions can be seen in Table A1.

Summary Point 1. Although technical employees are more likely to believe that testers require a
high level of expertise and that open-source tools are challenging, this is not identified as a factor
preventing their adoption. However, on the contrary, nontechnical roles agree that an absence of
expertise is preventing the use of automated testing.

When asking participants if they believe that a lack of skilled resources is preventing
automated testing from being used, it is evident that management staff believe this to be
true, while those with more technical expertise do not (q3). This is an interesting finding,
as it confirms that there is a different perception between technical and nontechnical
staff in regard to whether a lack of skilled resources is a prevention factor. This could
be because nontechnical staff are unable to determine the requirements of expertise and
match them with the capabilities within their organisation. Furthermore, it could also
be because technical staff overstate their ability without having significant experience in
automated testing.

It is also evident that people do not believe that automated testing is not fully utilised
because people do not realise its benefits (q9). Furthermore, technical roles do not believe
that there is an issue with open-source tools; however, less technical roles are more likely
to support this argument (q12). Additionally, there is a weak indication that those with
technical expertise believe that a high level of expertise is required (q13). It is, however,
evident that the majority of the participants believe that strong programming skills are
required to undertake automated testing (q14). However, when relating this to the results
of the analysis of the principal components, it is evident that the technical staff do not
believe that technical reasons prevent the use of automated testing.

It is perhaps not too surprising that technical roles are more likely to believe that a
high level of expertise is required. This is because they are working closely with technology
and will have a comprehensive understanding of what knowledge is required. However, as
demonstrated, technical roles are less likely to believe that skilled resources are preventing
the use of automated testing, as they have already gone through the learning process
and become competent testers. On the contrary, management is more likely to view the
capability within their organisation versus what is to be delivered, and therefore, a lack
of skilled resources might refer to there being insufficient resources available to deliver a

Software 2024, 3 20

project on time, rather than the absence of expertise, from preventing thorough software
testing. In contrast, it is possible for those in technical roles to report that they have the
expertise required to utilise automated testing tools; however, this raises the question of
why they are not always used if the necessary expertise is available.

In terms of comments provided by the participants, 7 of the 19 responses were directed
at the necessity and lack of expertise. All of these 7 responses, shown in Table A1, are
provided by individuals performing technical roles. Interestingly, all responses agree that
technical knowledge is important, but an interesting observation is that some responses
draw attention to the fact that there is a lack of training and mentorship within testing
roles. One response even highlights the importance of individuals being able to learn the
necessary skills independently. It is also interesting that a couple of responses directly
state that the management of people is extremely important to help remove any skill and
expertise gaps, resulting in a more thorough and robust testing process.

Summary Point 2. Those with less experience are more likely to agree that individuals do not
have enough time to participate in automated tests. Furthermore, employees with less technical
experience with automated testing and greater management responsibilities do not agree that they
are time consuming to learn.

Whether individuals have enough time to perform automated testing is polarised,
with an even split agreeing and disagreeing. However, it has been identified that those
with more junior roles are more likely to agree with this statement (q4). Furthermore, when
considering how difficult they are to learn, the majority of people disagree that they are
time consuming to learn. However, in general, the least experienced employees tend to
agree, and so do managers and CEOs (q15). This agrees with the results of the principal
component analysis, whereby technical staff are identified to agree that nontechnical
reasons are behind not adopting automated testing.

This finding agrees with the fact that work levels and deadline pressures will be
different in different organisations, and, furthermore, people will respond to and handle
these pressures differently. The fact that junior employees are more likely to state that they
do not have sufficient time to perform automated testing duties is explained by the fact
that junior employees might take longer to perform testing duties. This could also be due
to a lack of experience as a result of the employee learning new skills necessary for their
role, which could slow down testing. It is also possible that those with less experience are
burdened with learning the necessary knowledge and expertise to perform their entire role
and therefore have little capacity to take on improvement activities. This may change as an
individual gains more experience, becoming more efficient in their role and creating more
space for learning and improvement.

Summary Point 3. Most of the participants agree that automated testing is expensive, with
nontechnical roles more likely to agree that they are expensive to use and maintain.

Most of the participants agree that commercial tools are expensive to use, but there
is no discernible pattern (q11). However, there is a weak correlation that management
roles are more likely to agree with the statement that test scripts are more expensive to
generate (q19). This is further compounded when nontechnical roles agree that there are
high maintenance costs for test cases and scripts (q20). This agrees with the presented
principal component analysis, as both technical employees agree with nontechnical reasons
being responsible for not adopting automated testing. Furthermore, nontechnical roles
are split between believing that software and nonsoftware factors are responsible for not
adopting automated testing.

It is not surprising that most of the users agree that the costs of automated testing are
expensive. Furthermore, the pattern that management staff more strongly agree with this
statement is explainable through their closeness to the financial operations of the business.
It is, however, quite surprising that managerial staff believe that automated testing has

Software 2024, 3 21

high maintenance costs. A fundamental aspect of automated testing is its reuse and ease of
maintenance. This difference in perspective is likely to originate from management’s lack
of understanding when it comes to fundamental aspects of automated testing.

The comments provided by the participants also reflect the fact that automated testing
is expensive to perform and maintain, largely due to the cost of the testing team. One
participant (# 75) states that management does not see the wasted amount of time in
automated software testing, and this could provide justification as to why nontechnical
roles agree that they are expensive to maintain. If they saw the amount of wasted time,
they might have a better understanding of the true cost.

Summary Point 4. All but the most experienced employees disagree that automated testing tools
and techniques lack functionality. Furthermore, experienced employees are more likely to disagree
that problems arise due to fast revisions, whereas those with managerial roles agree.

When considering whether automated testing tools and techniques lack functionality,
in general, the more experienced employees are likely to agree, but overall the majority
disagree (q16). When asked whether people believe that automated tools are reliable
enough, there was a very strong tendency to disagree (q17). There is a slight agreement
that people believe that automated testing tools lack support for testing nonfunctional
requirements (q18). When asked whether automated testing tools and techniques change
too often, introducing problems that need fixing, the general trend is that a greater number
of years of experience leads to an increased chance of disagreement. Furthermore, of the
response categories, nontechnical roles agree/strongly agree (q21). This aligns with the
findings from performing principal component analysis where nontechnical roles more
strongly believe that software reasons are preventing the use of automated testing, whereas
those undertaking technical roles believe it is nonsoftware issues.

The reason why more experienced employees disagree that automated testing tools
and techniques lack functionality is most likely down to the fact that more experienced em-
ployees either have fully mastered the tools, or they have developed sufficient workaround
or alternative techniques. Furthermore, experienced staff do not believe that updates cause
significant problems, which could be put down to the fact that they are experienced in how
to handle revisions within automated testing frameworks. Nonfunctional requirements are
a secondary feature set of automated testing tools and techniques and, as such, are not the
primary feature set integral to their core use. This is most likely the reason why the majority
of participants do not see an issue with their lack of support for nonfunctional requirements.

Many comments were received in regard to the capabilities of tools and techniques, and
in general, they state that the tools, techniques, and frameworks do not lack functionality.
Rather, they justify the complexity of tightly integrating the functionality within a project
and how this can make it hard to reuse and fix revisions. Furthermore, it is evident that
technical employees also believe that those in managerial roles do not understand what
is involved in the implementation of automated testing. It is also interesting that one
response from an individual performing a technical role (#64) even states that test scripts
breaking is a good sign, as it clearly demonstrates that they are working. A comment from
an individual in management (#81) states that product delivery is more important than
testing, demonstrating that for management, their emphasis is on project completion rather
than testing.

Summary Point 5. Only managerial staff believe that test preparation and integration inhibit
their use. Furthermore, only management staff do not believe that software requirements change too
frequently, having negative impacts on automated testing.

In terms of utilisation, when considering whether difficulties in preparing test data and
scripts inhibit their use, only nontechnical staff agree, and there is a balanced response from
technical roles (q5). Furthermore, the majority of the participants do not believe that not
having the right automation tools and available frameworks prevents use (q6). When asking

Software 2024, 3 22

staff specifically about whether the difficulty of integrating tools is a problem, nontechnical
roles agree, and technical roles are balanced with a slight emphasis on disagreement (q7).
The majority of participants also agreed that requirements changing too frequently are
impacting their use (q8); however, it is also the case that nontechnical roles do not agree.
There is also strong disagreement among the technical staff that test scripts are difficult to
reuse in different testing stages (q22). This finding also agrees with the performed principal
component analysis, where it was identified that nontechnical staff more strongly believe
the reasons for not adopting automated testing to be technical.

The fact that nontechnical employees believe that there are difficulties, both in setting
up and maintaining automated tests, which are prohibiting the use of automated testing
tools is most likely down to the disconnect between nontechnical and technical staff when
it comes to understanding limitations with software testing. All participants believe that
there are sufficient frameworks to meet their individual testing requirements. Interestingly,
only management believes that changing requirements do not impact automated testing
techniques. This difference could most likely originate from a managerial misunderstanding
of the impact of changing requirements throughout the software development cycle.

Comments provided by the participants do support the argument that those in testing
roles understand the technical complexities involved and why automated testing might
not be fully utilised. However, there is a lack of responses from management staff to justify
that this is only a point of view of technical staff. There are many reasons specified for poor
utilisation, from formal training and guidance, a preference to view automated testing as
second to manual, and that automation might be used for the wrong reasons, i.e., to replace
manual rather than complement.

Summary Point 6. Whether a lack of support prevents the use of automated testing is polarised.

There is no agreement or disagreement that lack of support prevents the use of
automated testing. However, there is an observation that consultants tend to agree with
this statement (q10). This is interesting, as it demonstrates that there is no majority, either in
terms of role or experience, stating that lack of support is preventing them from adopting
and using automated testing within their organisation. However, it is also worth noting that
the responses to this question are rather polarised, with people agreeing and disagreeing,
but overall there are few holding strong views on this. This is consistent with the performed
principal component analysis, which determined that nontechnical roles and technical roles
agree (technically more strongly) that nonsoftware factors, such as finance, expertise, and
time, are preventing the adoption of automated testing.

Comments received from participants detail that training is a common limiting factor
to their uptake, but the biggest theme is that nontechnical either do not understand or
value test automation. This means that automation is seen as an afterthought from manual
testing and thus will not be well supported by their employer.

5. Conclusions

Six key findings have been established, which demonstrate key differences in the per-
ceptions of both technical and managerial employees, as well as of employees of different
levels of experience. The two-stage analysis approach presented in this paper demonstrated
that an overarching two-factor split can be established when considering the attitudes to-
wards automated testing of both technical and nontechnical staff. It has been established
that technical employees strongly believe that preventing factors to automated testing
use are those of a nonsoftware nature, whereas nontechnical roles believe that it is for
both software and nonsoftware reasons. These attitudes have been further analysed and
explained considering different roles and years of experience. In addition to the implication
of these findings in software development organisations, they also have significance and
implication more broadly throughout Information Technology. For example, any reduced
efficiency or effectiveness within software development organisations has the potential

Software 2024, 3 23

to reduce software quality and increase costs. Furthermore, the difference in perspective
between those in technical and nontechnical roles has the potential to introduce additional
costs and delays. Those in managerial roles could invest in training and resources that
may not be required and add further delays. Failure to adequately address these chal-
lenges might result in an organisation and its software products gaining a competitive
disadvantage, and the organisation may suffer, negatively affecting its ability to operate.
The findings presented in the article highlight that a culture change is required that could
involve training programmes focused on both technical and nontechnical roles to improve
awareness and create a supportive environment for learning and adopting automated
testing practices.

Although the study is based on responses from 81 different users, future work should
focus on gaining a larger number of samples with a more even distribution across the
different role types. However, it is important to note that 81 responses from those working
in software testing are significant and worthy of investigation and analysis. Another
limitation of the study is that the questionnaire focused on reasons why automated testing
is not adopted and is therefore negatively formulated. This means that the positive aspects
of using automated testing have been ignored. Although this was a deliberate design choice
in this work, collecting positive attitudes can also help to gain a deeper understanding.

The use of the two-stage analysis ensures that each question is interpreted before
investigating the responses to identify the relationships between factors. Although this
provides a systematic analysis approach, it does have limitations. One of the main limita-
tions of this survey is that it is performed on a relatively small (81) dataset, which makes it
difficult to form a generalised view and opinions. Although this was a deliberate design
choice to incentivise busy people to undertake the survey, we acknowledge the potential
impact. However, loadings with a high Cronbach’s alpha that have several high loading
marker variables (>0.80) do not require such large sample sizes as solutions with lower
loadings [59]. Our results produced a Cronbach alpha of 0.86, justifying the reliability of the
survey. Another limitation of the study is that, by using a convenient sampling approach,
there is the potential to introduce sampling error or bias. As we use LinkedIn and special
interest groups to identify participants, it is possible that we have not captured represen-
tative and unbiased views of the data, as those who participated in the study could have
stronger negative opinions against the adoption of software testing. Another limitation is
that the questionnaire does not cover all factors involved in the automated software testing
process, and therefore, the key findings may not be true or applicable in all cases. However,
this research has achieved its goal of developing an understanding of why people are not
adopting automated testing, which establishes a suitable position for further research.

Another limitation of our study is that we consider large-scale AT software in a general
sense rather than focusing on any specific AT software. Research finds that public opposi-
tion tends to be highest when projects are proposed and then decreases once construction
is complete [60]. However, we believe this limitation to be fairly minor because we are
trying to understand practitioners’ attitudes about AT generally rather than any relation
to any testing software adoption. The selection of questionnaire items always restricts the
potential structure that can emerge from innovation adoption studies. We designed the
questionnaire to include items related to a broad range of potential experiences, motivated
both theoretically and by prior qualitative research.

Author Contributions: Conceptualization, G.M. and S.P.; methodology, G.M., S.P., S.K. and N.L.;
formal analysis, G.M., S.P., S.K. and N.L.; data curation, G.M.; writing—original draft preparation,
G.M., S.P., S.K. and N.L.; writing—review and editing, G.M., S.P., S.K., N.L. and G.A.; supervision,
S.P. and G.A.; project administration, S.P.; All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data are contained within the article.

Software 2024, 3 24

Conflicts of Interest: Author George Murazvu was employed by the company Axia Digital. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Appendix A

Table A1 provides the comments provided at the two designated points when per-
forming the test. In the table, responses to Q1 have been abbreviated to save space. The
response of ‘Tester’ means that they have one of the following job titles: Tester, Engineer,
Analyst, Architect, Automation. ‘Senior Tester’ means having the title of a senior version of
one of the aforementioned roles.

Table A1. Summary of free-text responses.

Response Summary Points

2 • Problems are with people and not technology.

3 • Skilled team will prevent issues.

5

• False expectations from management.
• Lack of consideration to test data and scripts.
• People are the cost and over expectation of automation.
• Setting and using testing tools requires knowledge.

15 • Company recognise value of automation.

20 • High maintenance due to when testing is performed.

24 • Management do not understand automation.

33 • People management is poor.

35 • Lack of mentorship and guidance.
• Self-teaching is important and widely performed.

39
• Management does not understand the time/effort required.
• Automation is always seen as nice to have after the manual is performed.
• Benefits of automated testing are significant.

43 • Implementation of open-source frameworks is key to their value.

49 • Training is the most challenging aspect.

51 • Management sees value in automated testing for the stability of the end product.

55 • Training is the most challenging point.

56 • Once automated testing is used, it may become tricky to understand its value.

64 • Automation still viewed as secondary.
• The need to maintain scripts as new tools and techniques develop is a good sign.

66 • Automated testing is more of a process than a skill.
• Test automation needs to be pre-planned to consider software development factors.

Software 2024, 3 25

Table A1. Cont.

Response Summary Points

75

• New experienced testers are likely to make mistakes.
• Automation engineers lack product knowledge and are disconnected from the project they are working on.
• Those involved in automation spend lots of time making scripts and maintaining them.
• Managers often do not see the level of waste in automated testing.
• Managers invest heavily without seeing or understanding the benefit.
• Management pushing advice on automation without knowledge is a bad thing.
• People often build their own frameworks, but spending too much time here can be disadvantageous for

the project.
• Translation of testing output to management is currently underperformed.
• Changing requirements is normal and a necessary part of a product’s life cycle.
• Automation used for the wrong reasons.
• Automated testing can make it hard to see the true benefits, and therefore management is likely to want it until

they do not see any positive impact.
• Commercial tools are too expensive.
• Open-source tools are not hard to utilise unless the person is unfamiliar with the area.
• Knowing when and how to use automated testing is important.
• Level of programming ability is less important than the ability to learn when needed.
• A wrongly utilised tool is expensive.
• Challenges with maintenance stem from a lack of understanding.
• Bespoke and low-level test scripts can be translated to new projects, but this is necessary as they encode

application-specific behaviour.

77 • A deep understanding is required.

81 • Product delivery is more important than testing.

References
1. Charette, R. Why software fails. IEEE Spectr. 2005, 42, 42–49. [CrossRef]
2. Ammann, P.; Offutt, J. Introduction to Software Testing; Cambridge University Press: Cambridge, UK , 2016.
3. Dustin, E.; Rashka, J.; Paul, J. Automated Software Testing: Introduction, Management, and Performance; Addison-Wesley Professional:

Boston, MA, USA, 1999.
4. Elghondakly, R.; Moussa, S.; Badr, N. Waterfall and agile requirements-based model for automated test cases generation. In

Proceedings of the 2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS),
Cairo, Egypt, 12–14 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 607–612.

5. Al-Saqqa, S.; Sawalha, S.; AbdelNabi, H. Agile software development: Methodologies and trends. Int. J. Interact. Mob. Technol.
2020, 14, 246–270. [CrossRef]

6. Rafi, D.M.; Moses, K.R.K.; Petersen, K.; Mäntylä, M.V. Benefits and limitations of automated software testing: Systematic literature
review and practitioner survey. In Proceedings of the 2012 7th International Workshop on Automation of Software Test (AST),
Zurich, Switzerland, 2–3 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 36–42.

7. Asfaw, D. Benefits of Automated Testing Over Manual Testing. Int. J. Innov. Res. Inf. Secur. 2015, 2, 5–13.
8. Collins, E.F.; De Lucena, V.F. Software test automation practices in agile development environment: An industry experience

report. In Proceedings of the 2012 7th International Workshop on Automation of Software Test (AST), Zurich, Switzerland, 2–3
June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 57–63.

9. Wiklund, K.; Eldh, S.; Sundmark, D.; Lundqvist, K. Impediments for software test automation: A systematic literature review.
Softw. Test. Verif. Reliab. 2017, 27, e1639. [CrossRef]

10. Bear, S. State of Testing; Technical report; Smart Bear: Somerville, MA, USA, 2018.
11. Taipale, O.; Kasurinen, J.; Karhu, K.; Smolander, K. Trade-off between automated and manual software testing. Int. J. Syst. Assur.

Eng. Manag. 2011, 2, 114–125. [CrossRef]
12. Nass, M.; Alégroth, E.; Feldt, R. Why many challenges with GUI test automation (will) remain. Inf. Softw. Technol. 2021,

138, 106625. [CrossRef]
13. Khan, A.Z.; Iftikhar, S.; Bokhari, R.H.; Khan, Z.I. Issues/challenges of automated software testing: A case study. Pak. J. Comput.

Inf. Syst. 2018, 3, 61–75.
14. Evans, I.; Porter, C.; Micallef, M. Scared, frustrated and quietly proud: Testers’ lived experience of tools and automation. In

Proceedings of the 32nd European Conference on Cognitive Ergonomics, Siena Italy, 26–29 April 2021; pp. 1–7.
15. Li, B.; Zhao, Q.; Jiao, S.; Liu, X. DroidPerf: Profiling Memory Objects on Android Devices. In Proceedings of the 29th Annual

International Conference on Mobile Computing and Networking, Madrid Spain, 2–6 October 2023; pp. 1–15.

http://doi.org/10.1109/MSPEC.2005.1502528
http://dx.doi.org/10.3991/ijim.v14i11.13269
http://dx.doi.org/10.1002/stvr.1639
http://dx.doi.org/10.1007/s13198-011-0065-6
http://dx.doi.org/10.1016/j.infsof.2021.106625

Software 2024, 3 26

16. Li, B.; Xu, H.; Zhao, Q.; Su, P.; Chabbi, M.; Jiao, S.; Liu, X. OJXPerf: Featherlight object replica detection for Java programs. In
Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 21–29 May 2022; pp. 1558–1570.

17. Hynninen, T.; Kasurinen, J.; Knutas, A.; Taipale, O. Guidelines for software testing education objectives from industry practices
with a constructive alignment approach. In Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education, Larnaca, Cyprus, 2–4 July 2018; pp. 278–283.

18. Felderer, M.; Büchler, M.; Johns, M.; Brucker, A.D.; Breu, R.; Pretschner, A. Security testing: A survey. In Advances in Computers;
Elsevier: Amsterdam, The Netherlands, 2016; Volume 101, pp. 1–51.

19. Larusdottir, M.K.; Bjarnadottir, E.R.; Gulliksen, J. The focus on usability in testing practices in industry. In Human-Computer
Interaction, Proceedings of the Second IFIP TC 13 Symposium, HCIS 2010, Held as Part of WCC 2010, Brisbane, Australia, 20–23 September
2010; Proceedings; Springer: Berlin/Heidelberg, Germany, 2010; pp. 98–109.

20. Hourani, H.; Hammad, A.; Lafi, M. The impact of artificial intelligence on software testing. In Proceedings of the 2019 IEEE
Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 9–11 April
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 565–570.

21. Vos, T.E.; Marin, B.; Escalona, M.J.; Marchetto, A. A methodological framework for evaluating software testing techniques and
tools. In Proceedings of the 2012 12th International Conference on Quality Software, Xi’an, China, 27–29 August 2012; IEEE:
Piscataway, NJ, USA, 2012; pp. 230–239.

22. Eldh, S.; Hansson, H.; Punnekkat, S.; Pettersson, A.; Sundmark, D. A framework for comparing efficiency, effectiveness and
applicability of software testing techniques. In Proceedings of the Testing: Academic & Industrial Conference-Practice And
Research Techniques (TAIC PART’06), Windsor, UK, 29–31 August 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 159–170.

23. Infosys. Infosys Test Automation Accelerator. 2019. Available online: https://www.infosys.com/IT-services/validation-
solutions/Documents/infosys-test-automation-accelerator.pdf (accessed on 20 November 2023).

24. Kumar, D.; Mishra, K. The Impacts of Test Automation on Software’s Cost, Quality and Time to Market. Procedia Comput. Sci.
2016, 79, 8–15. [CrossRef]

25. Mittal, V.; Garg, N. Test Automation using Selenium Webdriver 3.0 with C#; AdactIn Group Pty Limited: Parramatta, Australia, 2018.
26. Vogel-Heuser, B.; Fay, A.; Schaefer, I.; Tichy, M. Evolution of software in automated production systems: Challenges and research

directions. J. Syst. Softw. 2015, 110, 54–84. [CrossRef]
27. Zhou, Z.Q.; Sinaga, A.; Susilo, W.; Zhao, L.; Cai, K.Y. A cost-effective software testing strategy employing online feedback

information. Inf. Sci. 2018, 422, 318–335. [CrossRef]
28. Panichella, S.; Di Sorbo, A.; Guzman, E.; Visaggio, C.A.; Canfora, G.; Gall, H.C. How can i improve my app? Classifying

user reviews for software maintenance and evolution. In Proceedings of the 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Bremen, Germany, 29 September–1 October 2015; IEEE: Piscataway, NJ, USA, 2015;
pp. 281–290.

29. Tracey, N.; Clark, J.; Mander, K.; McDermid, J. An automated framework for structural test-data generation. In Proceedings of
the Proceedings 13th IEEE International Conference on Automated Software Engineering (Cat. No. 98EX239), Honolulu, HI,
USA, 13–16 October 1998; IEEE: Piscataway, NJ, USA, 1998; pp. 285–288.

30. Fewster, M.; Graham, D. Software Test Automation: Effective Use of Test Execution Tools; ACM Press: New York, NY, USA;
Addison-Wesley Publishing Co.: Boston, MA, USA, 1999.

31. Graham, D.; Fewster, M. Experiences of Test Automation: Case Studies of Software Test Automation; Addison-Wesley Professional:
Boston, MA, USA, 2012.

32. Böhme, M.; Paul, S. A probabilistic analysis of the efficiency of automated software testing. IEEE Trans. Softw. Eng. 2015,
42, 345–360. [CrossRef]

33. Rahman, A.A.; Hasim, N. Defect Management Life Cycle Process for Software Quality Improvement. In Proceedings of the
2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS), Kota Kinabalu, Malaysia, 2–4
December 2015; pp. 241–244. [CrossRef]

34. Garrett, T. Useful Automated Software Testing Metrics. Softw. Test. Geek 2011.
35. Rex, B. Managing the Testing Process: Practical Tools and Techniques for Managing Hardware and Software Testing; Rex Black Inc.:

Dallas, TX, USA, 2002.
36. Berner, S.; Weber, R.; Keller, R.K. Observations and lessons learned from automated testing. In Proceedings of the 27th

International Conference on Software Engineering, St. Louis, MO, USA, 15–21 May 2005; ACM: New York, NY, USA, 2005;
pp. 571–579.

37. Jansing, D.; Novillo, J.; Cavallo, R.; Spetka, S. Enhancing the Effectiveness of Software Test Automation. Ph.D Thesis, State
University of New York Polytechnic Institute Utica, New York, NY, USA, 2015.

38. Dustin, E.; Garrett, T.; Gauf, B. Implementing Automated Software Testing: How to Save Time and Lower Costs While Raising Quality;
Pearson Education: London, UK, 2009.

39. Melton, J.R. The Hidden Benefits of automated Testing. In Proceedings of the 2015 Aerospace Testing Seniar, CVENTS, Los
Angeles, California, 27–29 October 2015;

40. Kasurinen, J.; Taipale, O.; Smolander, K. Software test automation in practice: Empirical observations. Adv. Softw. Eng. 2010,
2010, 620836. [CrossRef]

https://www.infosys.com/IT-services/validation-solutions/Documents/infosys-test-automation-accelerator.pdf
https://www.infosys.com/IT-services/validation-solutions/Documents/infosys-test-automation-accelerator.pdf
http://dx.doi.org/10.1016/j.procs.2016.03.003
http://dx.doi.org/10.1016/j.jss.2015.08.026
http://dx.doi.org/10.1016/j.ins.2017.08.088
http://dx.doi.org/10.1109/TSE.2015.2487274
http://dx.doi.org/10.1109/AIMS.2015.47
http://dx.doi.org/10.1155/2010/620836

Software 2024, 3 27

41. Leitner, A.; Ciupa, I.; Meyer, B.; Howard, M. Reconciling manual and automated testing: The autotest experience. In Proceedings
of the 2007 40th Annual Hawaii International Conference on System Sciences (HICSS’07), Big Island, HI, USA, 3–6 January 2007;
IEEE: Piscataway, NJ, USA, 2007; p. 261a.

42. Monier, M.; El-mahdy, M.M. Evaluation of automated web testing tools. Int. J. Comput. Appl. Technol. Res. 2015, 4, 405–408.
[CrossRef]

43. Garousi, V.; Felderer, M. Worlds Apart: Industrial and Academic Focus Areas in Software Testing. IEEE Softw. 2017, 34, 38–45.
[CrossRef]

44. Zou, W.; Lo, D.; Chen, Z.; Xia, X.; Feng, Y.; Xu, B. How practitioners perceive automated bug report management techniques.
IEEE Trans. Softw. Eng. 2018, 46, 836–862. [CrossRef]

45. Lo, D.; Nagappan, N.; Zimmermann, T. How practitioners perceive the relevance of software engineering research. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, Bergamo, Italy, 30 August 2015; pp. 415–425.

46. Meyer, A.N.; Fritz, T.; Murphy, G.C.; Zimmermann, T. Software developers’ perceptions of productivity. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, Hong Kong, China, 16–21 November
2014; pp. 19–29.

47. Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [CrossRef]
48. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng.

Sci. 2016, 374, 20150202. [CrossRef]
49. Boone, H.N.; Boone, D.A. Analyzing likert data. J. Ext. 2012, 50, 48. [CrossRef]
50. Etikan, I.; Musa, S.A.; Alkassim, R.S. Comparison of convenience sampling and purposive sampling. Am. J. Theor. Appl. Stat.

2016, 5, 1–4. [CrossRef]
51. Faraj, S.; Sproull, L. Coordinating expertise in software development teams. Manag. Sci. 2000, 46, 1554–1568. [CrossRef]
52. Gaskin, C.J.; Happell, B. On exploratory factor analysis: A review of recent evidence, an assessment of current practice, and

recommendations for future use. Int. J. Nurs. Stud. 2014, 51, 511–521. [CrossRef] [PubMed]
53. Nunnally, J.C.; Ira, H.B. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1994.
54. Ferketich, S. Focus on psychometrics. Aspects of item analysis. Res. Nurs. Health 1991, 14, 165–168. [CrossRef] [PubMed]
55. Cortina, J.M. What is coefficient alpha? An examination of theory and applications. J. Appl. Psychol. 1993, 78, 98. [CrossRef]
56. Streiner, D.L.; Norman, G.R.; Cairney, J. Health Measurement Scales: A Practical Guide to Their Development and Use; Oxford

University Press: Oxford, UK, 2015.
57. Ferguson, E.; Cox, T. Exploratory factor analysis: A users’ guide. Int. J. Sel. Assess. 1993, 1, 84–94. [CrossRef]
58. Tobias, S.; Carlson, J.E. Brief report: Bartlett’s test of sphericity and chance findings in factor analysis. Multivar. Behav. Res. 1969,

4, 375–377. [CrossRef]
59. Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2007; Volume 5.
60. Warren, C.R.; Lumsden, C.; O’Dowd, S.; Birnie, R.V. ‘Green on green’: Public perceptions of wind power in Scotland and Ireland.

J. Environ. Plan. Manag. 2005, 48, 853–875. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.7753/IJCATR0405.1014
http://dx.doi.org/10.1109/MS.2017.3641116
http://dx.doi.org/10.1109/TSE.2018.2870414
http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.1098/rsta.2015.0202
http://dx.doi.org/10.34068/joe.50.02.48
http://dx.doi.org/10.11648/j.ajtas.20160501.11
http://dx.doi.org/10.1287/mnsc.46.12.1554.12072
http://dx.doi.org/10.1016/j.ijnurstu.2013.10.005
http://www.ncbi.nlm.nih.gov/pubmed/24183474
http://dx.doi.org/10.1002/nur.4770140211
http://www.ncbi.nlm.nih.gov/pubmed/2047538
http://dx.doi.org/10.1037/0021-9010.78.1.98
http://dx.doi.org/10.1111/j.1468-2389.1993.tb00092.x
http://dx.doi.org/10.1207/s15327906mbr0403_8
http://dx.doi.org/10.1080/09640560500294376

	Introduction
	Related Work
	Requirement for Automated Software Testing
	Current Limitations of Automated Testing
	Survey-Based Research

	Materials and Methods
	Questions and Process
	Participants
	Results: Stage 1
	Time
	Cost
	Tools and Techniques
	Utilisation
	Organisation and Capabilities

	Results: Stage 2

	Discussion and Findings
	Conclusions
	Appendix A
	References

