
Citation: Huss, M.; Herber, D.R.;

Borky, J.M. An Agile Model-Based

Software Engineering Approach

Illustrated through the Development

of a Health Technology System.

Software 2023, 2, 234–257. https://

doi.org/10.3390/software2020011

Academic Editors: Sanjay Misra,

Robertas Damaševičius and

Bharti Suri

Received: 2 March 2023

Revised: 28 March 2023

Accepted: 12 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Agile Model-Based Software Engineering Approach Illustrated
through the Development of a Health Technology System
Moe Huss * , Daniel R. Herber and John M. Borky

Department of Systems Engineering, Walter Scott, Jr. College of Engineering, Colorado State University,
Fort Collins, CO 80523, USA
* Correspondence: moe.huss@colostate.edu

Abstract: Model-Based Software Engineering (MBSE) is an architecture-based software development
approach. Agile, on the other hand, is a light system development approach that originated in
software development. To bring together the benefits of both approaches, this article proposes an
integrated Agile MBSE approach that adopts a specific instance of the Agile approach (i.e., Scrum) in
combination with a specific instance of an MBSE approach (i.e., Model-Based System Architecture
Process—“MBSAP”) to create an Agile MBSE approach called the integrated Scrum Model-Based
System Architecture Process (sMBSAP). The proposed approach was validated through a pilot study
that developed a health technology system over one year, successfully producing the desired software
product. This work focuses on determining whether the proposed sMBSAP approach can deliver
the desired Product Increments with the support of an MBSE process. The interaction of the Product
Development Team with the MBSE tool, the generation of the system model, and the delivery of the
Product Increments were observed. The preliminary results showed that the proposed approach
contributed to achieving the desired system development outcomes and, at the same time, generated
complete system architecture artifacts that would not have been developed if Agile had been used
alone. Therefore, the main contribution of this research lies in introducing a practical and operational
method for merging Agile and MBSE. In parallel, the results suggest that sMBSAP is a middle ground
that is more aligned with federal and state regulations, as it addresses the technical debt concerns.
Future work will analyze the results of a quasi-experiment on this approach focused on measuring
system development performance through common metrics.

Keywords: software development; Model-Based Software Engineering (MBSE); Agile; Scrum; system
architecture; modeling; systems engineering (SE)

1. Introduction

Model-Based Software Engineering (MBSE) is well known for managing complexity
during system development processes [1]. MBSE for information-intensive systems could
be considered an attempt to have a knowledge hub for the software development lifecycle.
Additionally, the definition of a system model requires the use of a formal, standardized
language, such as Unified Modeling Language (UML) [2]. Leveraging individual intellec-
tual capabilities in software engineering is one of the many opportunities that MBSE may
provide. However, it also introduces additional technical and organizational challenges,
which have impacted its wide adoption [3,4].

Agile is a software development approach emphasizing continuous product delivery
by using short development cycles known as “sprints” [5]. Although there has been
significant adoption in recent years, discussion about software development projects not
meeting expectations has been increasing [6–8]. Given that there are still challenges that
hinder MBSE and Agile from unlocking their full potential, Agile MBSE presented itself as
a possible resolution [9–12]. Therefore, this study adopts a specific instance of the Agile
approach (i.e., Scrum) in combination with a specific instance of an MBSE approach (i.e.,

Software 2023, 2, 234–257. https://doi.org/10.3390/software2020011 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software2020011
https://doi.org/10.3390/software2020011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0000-0001-5189-7725
https://orcid.org/0000-0003-4995-7375
https://orcid.org/0000-0002-0833-0130
https://doi.org/10.3390/software2020011
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software2020011?type=check_update&version=1

Software 2023, 2 235

MBSAP [13]) to create an Agile MBSE approach called the integrated Scrum Model-Based
System Architecture Process (sMBSAP).

Several researchers have advocated for the benefits of integrating Agile and MBSE [9,10,14].
Researchers have also seen the need for techniques and methods that support documen-
tation in Agile environments [15]. A technique that makes documentation more easily
writable, manageable, and updatable is needed [16,17]. This research contributes to the
literature by explaining a practical approach to implementing Agile MBSE. The research
also applies the proposed approach to a health technology system. The proposed sMBSAP
attempts to narrow the gap between Agile practitioners and document-based/waterfall
practitioners by simplifying and streamlining system documentation and making it easier
to develop, manage, access, and share.

2. Background
2.1. Software Development Lifecycle (SDLC)

The Software Development Lifecycle (SDLC) is a process for building and maintaining
software systems. Several researchers have explained that system development lifecycle
models have been strongly influenced by software, and so the two terms “system” and
“software” might be used interchangeably in terms of SDLC [18], especially since system
development encompasses software system development [18–20]. Others have clarified
that systems engineering, software systems engineering, and software engineering have
different areas of focus [21].

Currently, two major SDLC categories are used when managing software systems
projects: (1) traditional and (2) Agile. Several commonly used traditional systems develop-
ment methods are shown in Figure 1. Traditional systems development methods have been
historically associated with Document-Based Systems Engineering (DBSE) practices [22].
On the other hand, Agile systems development methods are the other category of SDLC
that came to life to address some of the challenges associated with traditional systems devel-
opment methods. The first generation of Agile approaches, sometimes called lightweight
development methods [23], are also shown in Figure 1.

Document-Based System Development

use

Waterfall
V-Model
Spiral Model
RUP
RAD
Big Bang Model

System Development Lifecycle (SDLC))

use

Agile Modeling
ASD
AUP
Crystal Clear
DSDM
FDD
Lean Software Development

Architecture Frameworks

use MBSE Approach

use

Agile MBSE Approach

Model-Based System Development

NIST Enterprise Architecture
TOGAF
FEAF
DoDAF
Zachman

IBM Telelogic Harmony-SE
INCOSE OOSEM
IBM RUP SE for MDSD
Vitech MBSE
JPL State Analysis (SA)
Dori OPM
MBSAP

May leverage an architecture
framework (for modeling), and
combined MBSE and an Agile
methods (for development process)

SAFe
Scrum
XP
Rapid Prototyping
iterative Model
Incremental Model

Traditional System
Development Methods

Agile System
Development Methods

May leverage an architecture
framework (for modeling) and a

TSDM (for development)

Figure 1. Overview of software development lifecycle models and their relationship with MBSE.

Software 2023, 2 236

Although Agile methodologies have merits over traditional development methods,
several limitations have been faced when expanding their adoption [24]. One of these
limitations is that Agile methods considerably decrease the amount of required documen-
tation [25], which is a source of subsequent issues. The lack of documentation does not
align well with federal and state acquisition regulations. A report by the U.S. Government
Accountability Office (GAO) identified 14 challenges related to implementing the Agile
approach in federal agencies. These challenges include that government contracts may be
designed with heavily structured tasks and performance checks that are not necessarily
aligned with Agile methods or cadences [26]. A report [26] also highlighted the need to
track several different Agile metrics, such as Requirements and architectures. Without track-
ing such metrics, the government may not have the right information for effective contract
oversight [26]. The abilities of MBSE methodologies to centrally manage documentation
and track Requirements and architectures make them a reasonable solution for aiding in
complying with such regulations.

2.2. Scrum Method

The Scrum software development process is an Agile method for managing and
directing the development of complex software and products by using incremental and
iterative techniques [27]. The State of Agile Report revealed higher adoption of Scrum-
based development in the present-day software industry compared to other methodologies.
It was found that 87% of the 2022 survey participants leveraged Scrum [28].

The Scrum method includes three main components: roles, ceremonies, and arti-
facts [29]. The Scrum processes are grouped into five phases: initiate, plan and estimate,
implement, review and retrospect, and release [30]. In addition, there are three distinct
roles in the Scrum process: the Product Owner, the Scrum Team, and the Scrum Master [31].
The Scrum method includes periodic meetings known as ceremonies, which include Sprint
Planning, Daily Scrum (Standup), Sprint Review, and Sprint Retrospective [12,32–34]. In ad-
dition to the Scrum roles and ceremonies, the Scrum process delivers three main artifacts,
namely, the Product Backlog, the Sprint Backlog, and the Product Increment [12,32–34]. A
high-level overview of the Scrum ceremonies, artifacts, and phases is shown in Figure 2.

Increment /
Demo

Other
artifacts

Product
Backlog

Sprint Backlog

Sprint
Planning

Daily
Standups

Sprint Review

Sprint Retro
Scrum Meetings

Scrum Artifacts Scrum

Scrum Roles
Product Owner
Scrum Team
Scrum Master

Initiate Plan Implement Review and
Retrospect Release

Create Project Vision
Identify Scrum Master
and Stakeholder(s)
Form Scrum Team
Develop Epic(s)
Create Prioritized
Product Backlog
Conduct Release
Planning

Create User Stories
Approve, Estimate,
and Commit User
Stories
Create Tasks
Estimate Tasks
Create Sprint Backlog

Create Deliverables
Conduct Daily
Standup
Groom Prioritized
Product Backlog

Convene Scrum of
Scrums
Demonstrate and
Validate Sprint
Retrospect Sprint

Ship Deliverables
Retrospect Project

Scrum Processes

Figure 2. Scrum process overview.

Software 2023, 2 237

Scrum artifacts are the key information that a Scrum team uses and generates during
the sprints to show their progress to stakeholders. Some researchers even claimed that
the code itself should act as a document [25]. Agile practitioners devalue comprehensive
documentation and traceability; therefore, architecture artifacts, such as use case diagrams,
data models, and Requirement Traceability, are not typical in Scrum methodology [14,31].
User Stories are used to capture scenarios or system Behavior by describing how a user
interacts with the system [14]. With the Scrum approach, information elements are captured
in an Agile tool (such as Jira [35] and ClickUp [36]) and amongst separate, independent
documents by using Microsoft Office tools (rather than a primary, integrated system model
as a single source of truth, as is the case in MBSE approaches).

2.3. Model-Based Software Engineering (MBSE)

Model-Based Software Engineering (MBSE) is a software development approach in
which models play an important central role [37]. MBSE was developed to overcome the
drawbacks of the conventional Document-Based Systems Engineering (DBSE) method,
which became apparent as information-intensive systems became more complex [38].
The discussion around MBSE is closely tied to the concept of architecture, which represents
the Structure, Behavior, and Rules for a complex entity (or system), including its evolu-
tion over time [13]. Some commonly encountered architecture frameworks are shown in
Figure 1.

There has been a tendency to use MBSE approaches due to the reported benefits.
The International Council on Systems Engineering (INCOSE) describes the benefits of
an MBSE approach as improved communications, increased ability to manage system
complexity, improved product quality, and enhanced knowledge capture [39]. However, it
is important to note that none of the MBSE methodologies [13,40] shown in Figure 1 have
gained the ever-increasing popularity of Scrum [28].

The concept behind model-based software engineering is to leverage software model-
ing to carry out development and maintenance and to achieve code reuse [3]. The notion
of employing models to reduce software complexity has been around for many years.
When appropriately used, MBSE can provide a significant opportunity to capitalize on
individual intellectual assets in software engineering in general and to realize the promise
of business/technology alignment made by Domain-Driven Design in particular [3].
However, MBSE can also pose a threat because of the additional challenges that it may
introduce at the technical and organizational levels.

While adopting MBSE, several challenges have been identified and discussed by
researchers and practitioners [38,41–43]. Some of these challenges include the disconnect
between how system architects conceptualize their systems (within the limitations of a
typical DBSE approach) and describe them in a different way. Another challenge is related
to the perception that MBSE is performed by a tool, although several researchers explained
that MBSE is more than just a tool [38,43,44]. Usability is another issue that has been
described, as too many aspects and attributes have to be specified to describe a simple
system characteristic—in other words, too many clicks [45]. Finally, the selection of MBSE
tools without a deep understanding of user needs is another issue [45]. Accordingly, it
is not a surprise that implementing an MBSE approach typically takes a long time and
does not frequently provide incremental value to the customer. Therefore, searching for
alternative approaches seems necessary.

Model-Based System Architecture Process (MBSAP)

The MBSAP outlines object-oriented design methods to create an architecture for a sys-
tem through structured decomposition into modular and manageable levels of complexity
by using object-oriented principles, such as abstraction, encapsulation, modularity, general-
ization, aggregation, interface definition, and polymorphism [13]. The process begins with
identifying the customer’s needs. Then, one iteratively develops progressive architecture
models starting with an Operational Viewpoint, then a Logical/Functional Viewpoint (LV), and,

Software 2023, 2 238

finally, a Physical Viewpoint. Similarly, prototypes of the system (or system increments) are
incrementally built, integrated, and tested with other increments. Finally, the cycle leads to
either the delivery of a final product or a new starting point for a follow-on increment of
development [13]. An overview of the MBSAP is shown in Figure 3.

MBSAP

Physical
Viewpoint

Integration and
Test

Operational
Viewpoint

Increment /
Demo

Logical/
Functional
Viewpoint

Capabilities

Figure 3. Overview of the MBSAP [13].

Many practitioners of object-oriented methods make the assumption that the essence
of an object-oriented method is the incremental approach [13]. This incremental (spiral
approach) originally evolved to respond to frequently changing Requirements, especially for
complex systems. It is obvious that the MBSAP is intrinsically incremental and iterative (as
shown by the closed loop in Figure 3), making its integration with other Agile methods
occur naturally in an attempt to get the best of both approaches.

2.4. Agile MBSE

Agile MBSE presented itself as a possible solution for two issues that faced system
development, namely, rigidity and waterfall orientation [9].

Agile MBSE also presented itself as a potential solution for the competing views and
challenges related to documentation and traceability. The architecture specification doc-
ument is usually very long, complex, and not self-explanatory [46]. Therefore, the Agile
manifesto values “working software over comprehensive documentation” [47]. However,
not all Agile practitioners seem to agree with this Agile principle [48]. Moreover, a survey
conducted at the University of Melbourne revealed that despite the lower priority of docu-
mentation in Agile practices, 98% of the respondents considered documented information
moderately to extremely important when estimating effort [49]. However, developers
find documentation important, but at the same time, too little of it is available in their
projects [48]. While some Agilistas devalue documentation and traceability [50], Agile
methods and documentation are not actually contradictory [46,51]. A certain amount of
documentation is essential [46,52]. Some researchers have also made a case that traceability
is both necessary and required [14]. The view that supports documentation is adopted in
government procurement/reporting practices [26]. Researchers see the need for techniques
and methods that support documentation in Agile environments [15], such as a technique
that makes documentation more easily writable, manageable, and updatable [16,17].

Douglass [14] clarified that in Agile MBSE, the outcome of Agile software development
is implementation, while the outcome of systems engineering is specification. Douglass [14]
also discussed the notion of model-based handoff to “downstream engineering”, enabling
precise and unambiguous communication between architecture and Requirements analysts
and the discipline-specific teams.

Salehi and Wang [10] compared four V-models and found that they did not consider
the Agile concept. This finding led to the proposal of the adoption of Agile in MBSE to
create a new approach, which was termed the Munich Agile MBSE Concept (MAGIC) [10].
Integrating MBSE and product development offers the capability of building a virtual

Software 2023, 2 239

prototype and a product’s digital twin [11]. Bott and Mesmer [12] reviewed the theories
supporting the Agile and MBSE methodologies and found them a key enabler of Agile
methods for systems engineering. Figure 1 illustrates the relationship between SDLC
models and MBSE.

3. Integrated Scrum Model-Based System Architecture Process (sMBSAP)
3.1. Research Methods

Context: The product development took place for one year (between May 2020 and
May 2021) within an early-stage health technology startup company that aimed to develop
a health tech system that provides dietary recommendations to users based on their health
profiles. The development period coincided with the COVID-19 pandemic, when stay-
at-home orders were in effect, so the Product Development Team primarily used virtual
conferencing tools and Slack [53] for communication and collaboration.

Participants: The three co-founders, in addition to the lead author, served as the
Product Development Team. The role of the lead author was then limited to developing the
architectural artifacts based on requests from the team. Table 1 summarizes the product
development team personas.

Table 1. Product development team personas.

Role Gender Industry
Experience

Highest
Education
Level

Familiarity
with System
Development

System Architect and
Scrum Master Male 20+ years MSc Yes

Backend Developer Male 15+ years PhD Yes

Frontend Developer Male 15+ years PhD Yes

Health and Nutrition
Scientist Female 15+ years PhD No

Materials: Sparx Enterprise Architect (“Sparx EA”) [54] was chosen as the architecting
software tool, and Unified Modeling Language (UML) was chosen as the architecting
language (which is allowed in MBSAP [13].) The sMBSAP artifacts generated included the
Product Backlog, Sprint Backlog, Glossary, Product Breakdown, Class Diagrams, Object Diagrams,
Data Model, Activity Diagrams, Use Case Diagrams, and Capabilities (Requirements and User
Stories).

Procedures: Before each sMBSAP sprint, information elements were generated for
each perspective, integrated into a system model by using Sparx EA, and referenced
in the appropriate model viewpoint. The model elements, diagrams, and views were
generated according to standard and non-standard UML diagram formats [13], and they
were implemented according to the standard Sparx EA modeling procedures [54]. The
sMBSAP procedures (outlined in the following sections) were implemented to conduct the
sprints and create Product Increments.

The proposed sMBSAP approach followed a combination of Scrum and MBSAP, as
shown in Figure 4. The processes near the bottom of the figure describe the steps followed
by the Product Development Team, who used the sMBSAP to develop a software system;
these processes will be described in detail in this section.

Software 2023, 2 240

Sprint /
Architecture

Planning

Daily
Standups

Sprint /
Architecture

Review

Sprint Retro
sMBSAP Meetings

sMBSAP Artifacts
sMBSAP

Operational
Viewpoint

Logical/Functional
Viewpoint

Physical
Viewpoint

Increment /
Demo

Product/Sprint
Backlog

sMBSAP Roles
Product Owner
Scrum Master
System Architect
Development Team

Initiate Plan and Architect Implement Review and
Retrospect Release

 Processes

Create Project and
Product Scope
Identify Project
Stakeholders and
Project Team
Create Architecture
Overview and
Summary
Create Product
Breakdown
Create Product
Backlog
Develop Release Plan

 Processes

Create and Update
Backlog Items
Develop System
Architecture
Commit User Stories
Create Product
Breakdown
Estimate Backlog
Items

 Processes

Create
Deliverables/Product
Increments
Communicate
Progress
Groom Product
Backlog Breakdown
Update System
Architecture

 Processes

Demonstrate and
Validate Deliverables
Retrospect Sprint

 Processes

Ship Deliverables
Deliver Architecture
Models
Retrospect Project

sMBSAP Processes

 Outputs

Acceptance criteria of
the Product Backlog
Items
Sprint Backlog
System Architecture

 Outputs

Prioritized Product
Backlog
Updated System
Architecture
Sprint Deliverables
Burndown Charts

 Outputs

Accepted System
Architecture
Accepted Deliverables
List of Actionable
Improvements

 Outputs

Working Deliverables
Lessons Learned for
Future Implementation

 Inputs

Project Business
Case

 Outputs

Personas
Prioritized Product
Backlog
System Architecture
Overview and
Summary
Release Plan
Core Project Team

 Inputs

Personas
Prioritized Product
Backlog
System Architecture
Overview and
Summary
Release Plan
Core Project Team

 Inputs

Prioritized Product
Backlog
Updated System
Architecture
Sprint Deliverables
Burndown Charts

 Inputs

Accepted System
Architecture
Accepted Deliverables
List of Actionable
Improvements

 Inputs

Acceptance criteria of
the Product Backlog
Items
Sprint Backlog
System Architecture

Modified to integrate
Scrum and MBSAP

Inherited from MBSAP

Inherited from Scrum

Common in both Scrum
and MBSAP

Inherited from MBSAP
Input, process or output
Input, process or output

Inherited from Scrum

Figure 4. Overview of the sMBSAP with the goal of developing Product Increments.

3.2. Overview of the sMBSAP

Before describing the sMBSAP method in detail, it is important to highlight that the
illustrative development activity shown here is for an implemented health technology
system. The sMBSAP approach includes five phases: (1) Initiate, (2) Plan and Architect,
(3) Implement, (4) Review and Retrospect, and (5) Release. The outputs of each phase
serve as inputs to the following phase, as shown in Figure 4. Figure 4 also shows that two
of the four main Scrum meetings are used during the sMBSAP approach, namely, Daily
Standups and Sprint Retro. The other two Scrum meetings were modified for the sMBSAP.
The sprint planning meeting was modified to be the Sprint/Architecture Planning meet-
ing. The same applied to the Sprint Review meeting, which was modified to be the
Sprint/Architecture Review meeting.

Software 2023, 2 241

The typical MBSAP viewpoints generate the architecture artifacts for driving the
development process. The MBSAP artifacts and Sprint Backlog that include User Stories
are the key information that the Product Development Team uses to execute the product
development and show the progress to stakeholders. The Sprint Backlog captures the list of
items that need to be developed during each sMBSAP-driven sprint. The sMBSAP approach
also includes the many typical MBSAP artifacts, including but not limited to a glossary,
Product Breakdown, class diagrams, object diagrams, data models, use case diagrams, and
capabilities.

According to Borky and Bradley [13], the term “capabilities” is a preferred term over
the term “Requirements”. User Stories are similar to Requirements, except they are written
from the user’s perspective—in other words, what a user shall do when using the system
rather than describing what the system shall do for the user. The perspective of capabilities
captures the system capabilities, which include User Stories, Requirements, and other behind-
the-scenes tasks required to enable system capabilities. Now, the following description of
the phases and processes of the sMBSAP is organized to mirror that of the Scrum method
for more straightforward mapping.

3.3. Initiate

This phase includes the processes related to initiating the project. These processes are
summarized below:

• Create Project and Product Scope: In this process, the project business case is reviewed
to create a Project Scope Statement and subsequent Product Scope. The Product Owner is
typically identified at this stage of the project.

• Identify Project Stakeholders and Project Team: In this process, the four project roles
are identified, which include the Product Owner, Scrum Master, System Architect, and
Product Development Team. Other project stakeholders are also identified during this
process.

• Create Architecture Overview and Summary: In this process, an Architecture Overview
that provides the following architecture-related information is created: the architec-
ture’s scope, purpose, and perspective, contextual information, the role of the System
Architect, and the timeline of the architecture’s development. The Architecture Overview
acts as a contract between stakeholders and the System Architect based on establishing
bilateral commitments and understanding of the role of the architecture effort within
the overall project effort [13]. The main customer for the architecture artifacts is the
Product Development Team; accordingly, the System Architect must explain the value
and contribution of the architecture process. The System Architect should also expect
organizational resistance and lack of support among software developers, especially
those who are used to writing code with very little or no documentation as input. In
this process, the System Architect decides which MBSE tool they will use throughout
the project.

• Create Product Breakdown: In this process, the Project Scope Statement and Product
Scope are used as the basis for breaking the product down into Epics, Use Cases, User
Stories, and Requirements, as shown in Figure 5. The Product Breakdown is an iterative
process that occurs first during the Initiate phase and is further refined through
meetings between the project team and key stakeholders in subsequent phases as
needed. In the sMBSAP approach, Epics are modeled as stereotyped Use Cases [14] and
are decomposed to (lower-level) Use Cases, which are, in turn, decomposed into User
Stories, which are broken down into Requirements. This taxonomy is shown in Figure 5.

• Create Product Backlog: In this process, User Stories, Requirements, and other tasks
are added to the Product Backlog. These items are referred to as Product Backlog Items
(PBIs). It is important to note that a project team may choose to use only User Stories
(commonly used in Scrum) or both User Stories and Requirements (Requirements are
commonly used in MBSE and systems engineering). The PBIs will be progressively
refined, elaborated, and later prioritized. The acceptance criteria are also established

Software 2023, 2 242

at this point and will be further elaborated. The Product Backlog is developed and
maintained by using aRequirement management tool or Agile development tool, such
as Clickup [36]. Alternatively (or in addition), User Stories and Requirements may be
visually captured in the model, as shown in Figure 6, which illustrates User Stories and
Requirements that are modeled as stereotyped Use Cases, and Requirements are traced
to User Stories. This allows a User Story to be described and to its connection to a
persona to be shown. In this Use Case diagram, the System Architect wants to capture
the interaction of the “User” with the “Health Assessment” module of the system
and communicate it with the Product Development Team. The System Architect explains
the “User” behavior through a combination of User Stories and Requirements. At the
beginning of the “Health Assessment”, the system displays a series of messages to
the “User” to allow them to customize their “Health Assessment” experience. The
“User” will specifically be asked to select whether they would like to receive one
question per page, to select the weight and height unit of measure, to select which
health assessment sections to complete, and whether the “User” prefers to focus on
a specific category of medical conditions. The “User” will then start navigating the
“Health Assessment” sections. The “User” will have the ability to transition from one
section to the other. They can also skip questions and come back to them later. The
system will display a message at the end of each section to transition the “User” from
one section to the other. During the navigation, the “User” can see their progress in
terms of the percentage of completion. If the “User” does not complete the “Health
Assessment”, the system will send weekly emails reminding the “User” to complete
the “Health Assessment”.

• Develop Release Plan: In this process, the product team develops a Release Plan,
which is basically a phased deployment timeline that can be shared with the project’s
stakeholders. The length of each sprint is usually decided in this process. Some Scrum
practitioners develop a Product Roadmap that is more strategic and high-level and a
Release Plan that is more tactical and detailed.

Figure 5. Relationship among Epics, Use Cases, User Stories, and Requirements in the sMBSAP method.

Software 2023, 2 243

Customization

«user story»

Select height unit of measure

«user story»

Select weight unit of measure

«requirement»
Receive weekly emails to

complete health
assessment

«requirement»
List medical conditions

alphabetically

«requirement»
Ask the user whether they

prefer one question per
page or all questions in the

same page

«user story»

View a % complete for health
assessment

«user story»
1.2.2 Customize and
improve UX for HA

«user story»
Skip a question (or a

section)

«user story»
Go back to a previous

question

«user story»
Transitions from a
section to another

«requirement»
Save new response when
user go back and change

their answer

«user story»
Navigate the health

assessment

Health Assessment Navigation

«user story»
See a message at the end

of each section

Applies to "blood glucose
level" and "oxygen
saturation"

«user story»

Choose health
assessment sections to

complete

«user story»

Start with a short health
assessment

«requirement»
Ask for a category of medical
conditions and ask later for

specific condition

«user story»

Take full health assessment

«requirement»
Make all sections of the

health assessment visible
on every screen of the

health assessment except
the welcome screen

User A

(from User
Roles)

«trace»

«trace»

«include»

«trace»

«include»

«include»

«include»

«trace»

«include»

«include»

«include»

«include»

«trace»

«include»«include»

«trace»

«include»

Figure 6. An example of Use Cases stereotyped as User Stories and Requirements.

3.4. Plan and Architect

This second phase consists of the processes related to planning, architecting, and
estimating the PBIs. These processes are summarized below. It is important to note that
although these processes are presented sequentially, in practice, they overlap, and the
outcome of later processes serves as an input for former processes.

• Create and Update Backlog Items: In this process, PBIs (User Stories, Requirements, and
tasks) and their related acceptance criteria are created or updated and incorporated
into the Product Backlog. User Stories are designed to ensure that the project Requirements
are clearly defined and can be entirely understood by all stakeholders. When a User
story is committed, it can be broken down into specific tasks (or Requirements and
tasks). Agile development tools can show the task list beneath the relevant User Story.

• Develop System Architecture: In this process, the System Architect progressively
develops the system architecture. The system architecture is developed in lockstep
with the User Stories. Both are used by the Product Development Team to execute the
development work. The three main viewpoints progressively developed during this
process are:

– Operational Viewpoint (OV): The first progression is concerned with translating
the Project Scope Statement, Product Scope, and PBIs (in any form that they are
expressed) into an architectural model known as an Operational Viewpoint (OV).
This mapping is achieved with Use Cases and other object-oriented constructs.
Several researchers, such as Lattanze [55], stressed the importance of starting with

Software 2023, 2 244

a high-level view of the architecture before progressing to a more detailed design.
The high-level view of the architecture is the primary purpose of the OV. The OV
also defines the system’s boundary and context. It also creates top-level partition-
ing (Domains), primary behaviors (Use Cases), and primary data content. With the
aid of the model, the System Architect maps User Stories to Domains and Use Cases.
The data model developed in this first progression is called “Conceptual Data
Model (CDM)”. This is the most abstract type of data model. Platform-specific
information, such as data types, sequences, procedures, and triggers, are not in-
cluded in the CDM. Because of its simplicity, it is useful for communicating ideas
among different stakeholders. Data models can be developed with a number of
notations, such as Information Engineering, IDEF1X, UML data modeling, and
Entity Relationship notation.
The conceptual UML-based data model developed for the health tech system
is shown in Figure 7. At this stage, the System Architect wants to capture and
communicate the types of data (or “Entities”) that the health tech system needs
with the Product Development Team. These entities include the “User”, “Health
Assessment”, “Report Subsections Decisions”, “Medical Reference”, and others.
In addition to Entities, the CDM also captures the Relationships, i.e., how an Entity
connects to other Entities. In the case of the health tech system, the “User” takes
the “Health Assessment”. Based on the results of the “Health Assessment”, the
“Report Subsections Decisions” will be displayed to the “User” and form the
basis of the “Health Report”. The “Report Subsections Decisions” rely on the
“Medical Reference” for communicating the recommendations to the “User”. The
“Grocery Recommendations” are derived from “Report Subsections Decisions”
and depend on both the “Nutrition and Ingredients” and “Medical Reference”.
As noted on the CDM, both “Nutrition and Ingredients” and “Medical Reference”
are not exposed to the “User”.

User

Health Assessment

Health Report

- Dietary Seciton: int
- Disease RIsk Section: int
- Excercise Section: int
- Mood Section: int
- Organ Health Section: int
- Overview Section: int

Report Sub-sections Decisions
(Recommendations)

Grocery Decisions (Recommendations)

Nutrition and IngredientsMedical References

invisible to the user

Dependent on

Dependent on

Dependent on

«use»

«derive»«derive»

«derive»

Figure 7. Conceptual Data Model for a health technology system.

Software 2023, 2 245

– Functional/Logical Viewpoint (LV): The next progression transforms the OV
into the Logical/Functional Viewpoint (LV). This is where the design begins using
UML class diagrams to define the details of system elements, functions, and
data. The LV is a progressive elaboration on the perspectives of the OV and is
molded mainly by decomposing Domains and Use Cases to develop structural
and behavioral diagrams. The functional service specifications are developed
and allocated to logical components and interfaces. The architectural layering
is defined. The LV represents a functional definition of the technology- and
product-agnostic system. The data model developed in this architecture iteration
is called a “Logical Data Model (LDM)”. The LDM defines the detailed Structure
of a system’s data elements and the relationships between them. It elaborates
on the CDM introduced during the OV progression, but without going to the
level of specifying the Database Management System (DBMS) that will be used.
LDM forms the basis of the “Physical Data Model (PDM)”. This model is com-
monly developed by using the UML Data Modeling notation. The logical UML-
based data model developed for the health tech system is shown in Figure 8. As
shown in Figure 8, the data elements “Medical References” and “Nutrition and
Ingredients” contain UML attributes; the names and generic data types remain
platform-independent. Platform-specific data types and other metadata that
relate to a specific DBMS implementation are defined by the PDM.

Conceptual Data Model v2::User

- /account date: char
- First name: char
- id: int
- Last name: char
- User email: char

Conceptual Data Model v2::Health
Assessment

- basic info questions: String
- blood test questions: String
- dietary habbits questions: String
- excercise questions: String
- family health history: String
- lifestyle questions: String
- medical conditions questions: String
- mental health questions: String

Conceptual Data Model v2::Health Report

- Dietary Seciton: int
- Disease RIsk Section: int
- Excercise Section: int
- Mood Section: int
- Organ Health Section: int
- Overview Section: int

Conceptual Data Model v2::Report Sub-
sections Decisions (Recommendations)

Conceptual Data Model v2::Grocery
Decisions (Recommendations)

Conceptual Data Model v2::Nutrition
and Ingredients

+ id: int
- nutrition category: string
- nutrition name: char

Conceptual Data Model v2::Medical
References

- Reference Description: String
- Reference ID: int
- Reference Name: String

invisible to the user

«derive»

«derive»

Dependent on

«use»

«derive»

Dependent on

Dependent on

Figure 8. Logical Data Model for a health technology system.

– Physical Viewpoint (PV): The architecture modeling is completed by progressing
from the LV to the Physical Viewpoint (PV). The PV is the basis for the actual
implementation of the full system or an increment of the system. To clarify the
relationship between the LV and the PV, the former defines what is to be built,
and the latter defines how it will be realized [13]. Accordingly, this architecture

Software 2023, 2 246

iteration focuses on products and standards whose selection is paramount to
reaching a physical design. The data model developed during the PV is called a
“Physical Data Model (PDM)”. A PDM graphically represents the Structure of data
as implemented by a relational database schema. The ability to automatically
generate the database schema from a PDM is a significant advantage of PDMs,
in addition to presenting a visual abstraction of the database structure. This
is made feasible by the amount of metadata that a PDM captures and its close
alignment with aspects of the database schema, such as database tables, columns,
primary keys, and foreign keys. The UML-based PDM developed for the health
tech system is shown in Figure 9. Each table is represented by a UML Class; table
columns, primary keys, and foreign keys are modeled by using UML attributes
and operations. The DBMS type used in the system is PostgreSQL.

groceryitems

«column»
 GroceryCategory: VARCHAR
 GroceryName: VARCHAR
 GroceryStore: VARCHAR
 Id: INT
*PK GroceryItemsID: VARCHAR

«PK»
+ PK_groceryitems(VARCHAR): void

user

«column»
 /accountDate: VARCHAR
 FirstName: VARCHAR
 Id: VARCHAR
 LastName: VARCHAR
 UserEmail: VARCHAR
*PK UserID: VARCHAR

«PK»
+ PK_user(VARCHAR): void

healthconditions

«column»
 BloodVesselConditions: VARCHAR
 BonesAndJointsConditions: VARCHAR
 BrainConditions: VARCHAR
 GenitalConditions: VARCHAR
 HeartConditions: VARCHAR
 KidneyConditions: VARCHAR
 LiverConditions: VARCHAR
 SkinConditions: VARCHAR
 ThyroidConditions: VARCHAR
*PK HealthConditionsID: VARCHAR
 FK UserID: VARCHAR

«PK»
+ PK_healthconditions(VARCHAR): void

«FK»
+ FK_HealthConditions_User(VARCHAR): void

healthquestionnaire

«column»
 BasicInfoQuestions: VARCHAR
 BloodTestQuestions: VARCHAR
 DietaryHabbitsQuestions: VARCHAR
 ExcerciseQuestions: VARCHAR
 FamilyHealthHistory: VARCHAR
 LifestyleQuestions: VARCHAR
 MedicalConditionsQuestions: VARCHAR
 MentalHealthQuestions: VARCHAR
*PK HealthQuestionnaireID: VARCHAR
*FK UserID: VARCHAR

«PK»
+ PK_healthquestionnaire(VARCHAR): void

«FK»
+ FK_Health Questionnaire_Relationship One(VARCHAR): void

healthreport

«column»
 BloodTestReport: VARCHAR
 DietaryReport: VARCHAR
 DiseaseRiskReport: VARCHAR
 ExcerciseReport: VARCHAR
 MoodReport: VARCHAR
 OrgansReport: VARCHAR
 ReportMessages: VARCHAR
*PK HealthReportID: VARCHAR
*FK UserID: VARCHAR

«PK»
+ PK_healthreport(VARCHAR): void

«FK»
+ FK_Health Report_Relationship Two(VARCHAR): void

nutrition itemsgrocery items

«column»
 FK GroceryItemsID: VARCHAR
 FK NutritionItemsID: VARCHAR

«FK»
+ FK_Nutrition ItemsGrocery Items_Grocery Items(VARCHAR): void
+ FK_Nutrition ItemsGrocery Items_Nutrition Items(VARCHAR): void

nutritionitems

«column»
 Id: VARCHAR
 NutritionName: VARCHAR
*PK NutritionItemsID: VARCHAR
 FK HealthConditionsID: VARCHAR
 NutritionCategory: VARCHAR

«PK»
+ PK_nutritionitems(VARCHAR): void

«FK»
+ FK_NutritionItems_HealthConditions(VARCHAR): void

+FK_Nutrition ItemsGrocery Items_Nutrition Items

0..*

(NutritionItemsID = NutritionItemsID)

«FK»

+PK_nutritionitems

0..*

+FK_Health Questionnaire_Relationship One

1

(UserID = UserID)

«FK»

+PK_user

1

+FK_Nutrition ItemsGrocery Items_Grocery Items

0..*

(GroceryItemsID = GroceryItemsID)

«FK»
+PK_groceryitems

0..*

+FK_NutritionItems_HealthConditions0..*

(HealthConditionsID = HealthConditionsID)

«FK»

+PK_healthconditions 1

+FK_Health Report_Relationship Two

1

(UserID = UserID)

«FK»

+PK_user

1

+FK_HealthConditions_User 0..1

(UserID = UserID)
«FK»

+PK_user 1

Figure 9. Physical Data Model for a health technology system.

It is important to note that each viewpoint is represented with several perspec-
tives (within the viewpoints); the perspectives are largely derived from the fun-
damental elements of the architecture and the needs of the project. The proposed
perspectives for the sMBSAP are the Structure, Behavior, Data, and Requirements, as
shown in Figure 10. The importance of an adequate model Structure in achieving
the full benefits of MBSE should be emphasized [13]. One way to group the
content of each viewpoint into a set of perspectives that create a logical and easily
searchable content framework is shown in Figure 11.

Software 2023, 2 247

Figure 10. Organizational overview of an information model for the UML-based sMBSAP.

Figure 11. An illustration of organizing the sMBSAP artifacts in an MBSE tool.

• Commit User Stories: In this process, the project team commits to delivering the
approved User Stories for a sprint. The committed User Stories are added to the Sprint
Backlog. During the Sprint/Architecture Planning, the Scrum team may add further
details to the PBIs.

• Estimate Backlog Items: In this process, the project team, supported by the System Ar-
chitect, estimates the PBIs and estimates the effort required to develop the functionality
described in each PBI.

3.5. Implement

This third phase is related to the execution of the activities required to develop the
capabilities described by the PBIs to create the product. These processes are summarized below.

• Create Deliverables/Product Increments: In this process, the project team works
on the items in the Sprint Backlog to create sprint deliverables. The project team’s
progress, measured in completed story points, is captured in an Agile development

Software 2023, 2 248

tool. Planned versus actual story points are captured in the tool, in addition to marking
an item as “done” when it is completed. The collected data are plotted on burnup
charts and velocity fluctuation charts to allow the Scrum Master to monitor the project’s
health and make course corrections when needed.
It is important to note that creating deliverables/Product Increments may include
activities such as project management, software engineering, continuous integration
and testing, system configuration management, security, and other aspects. The
sMBSAP is similar to the MBSAP in that the design modeled in the PV is built up in a
prototype and goes through continuous integration and testing to assess its suitability
against the required capabilities that are being addressed.

• Communicate Progress: In this process, the project team members update each other
on their individual progress and any barriers that they may be facing. These up-
dates occur through a short daily 15 min meeting, referred to as a Standup Meeting.
The System Architect participates in these meetings and addresses any issues that the
Product Development Team faces in relation to the system architecture.

• Groom Product Backlog: In this process, the prioritized PBIs are continuously updated
and refined. A backlog grooming meeting is conducted to discuss any changes or
updates to the backlog.

• Update System Architecture: In this process, the system architecture models are
continuously updated and refined based on the progress and feedback from the
project team. The results of the architecture changes or updates are discussed during
the Sprint/Architecture Review.

3.6. Review and Retrospect

This fourth phase is concerned with reviewing the deliverables and work completed
and identifying areas for improvement for future consideration. The processes of this phase
are summarized below:

• Demonstrate and Validate Deliverables: In this process, the System Architect presents
the updated system architecture to the project stakeholders. The project team then
demonstrates the sprint deliverables that match the models to the stakeholders.
These presentations and demos occur in a Sprint/Architecture Review meeting.
This meeting aims to gain the acceptance of the delivered PBIs from the
Product Owner.
Screenshots from the health tech system product demo are shown in Figure 12.
The product demo shows the four key steps in the “User” journey at a high level. In
step 1, the “User” completes the registration process by entering their first name, last
name, and email address, creating a password, and confirming it. After the “User”
confirms their email address, they are redirected to the login page. In step 2, the
“User” will be introduced to the “Health Assessment” and start completing its various
sections. At the end of the “Health Assessment”, the “User” will proceed to the third
step, which is reviewing their “Health Report”. Finally, in the fourth step, the “User”
will receive the grocery items recommended for their health profile.

• Retrospect Sprint: In this process, the project team meets in a Sprint Retro meeting to
discuss the lessons learned from the previous sprint. This information is recorded and
should be used in future sprints. As a result of this meeting, some actions to improve
performance or to make course corrections may be decided upon.

Software 2023, 2 249

Figure 12. Screenshots from the health tech product demo.

3.7. Release

This fifth and final phase is about delivering the finally accepted deliverables to the
customer. In addition, the lessons learned from the project are identified and documented.
These processes are summarized below.

• Ship Deliverables and Architecture Models: In this process, approved and accepted
deliverables are handed over to the concerned stakeholders. A formal transition docu-
ment should be drafted and signed by the concerned stakeholders denoting the success-
ful completion of the agreed-upon shippable part of the product.
The architecture models are also handed over to the concerned stakeholders. The
combined artifacts developed for the health tech system are shown in Figure 13.

• Retrospect Project: This is the final step in the project, in which the project team and
stakeholders meet to identify and document the lessons learned for future implemen-
tation. This meeting is called the Project Retrospective meeting (or Retro).

Software 2023, 2 250

Figure 13. Combined sMBSAP artifacts for a health tech system.

4. Discussion

In addition to the main characteristics of Scrum and the MBSAP, the sMBSAP is
also concerned with the engagement of the Product Development Team in customizing the
MBSE tool, using UML-based and non-UML-based models to describe the system, and
leveraging the built-in models (provided in some tools) to get to an initial version of the
model more quickly. Moreover, the Scrum ceremonies are mapped and integrated into the
entire sMBSAP lifecycle with some modifications. The sMBSAP has the same cyclic shape
as Scrum to demonstrate that the development process is iterative. The iterative nature
applies to both the product delivery and the system model construction.

Figure 14 shows a comparison among Scrum, MBSAP, and sMBSAP. The compari-
son reveals that Scrum and MBSAP have similarities, including a focus on collaboration,
iterative and incremental development, and continuous improvement. In addition, both
approaches value customer-centricity, prioritizing delivering a working product to the cus-
tomer, and responding to change. These similarities have been passed down to the sMBSAP.
However, there are also differences among Scrum, MBSAP, and sMBSAP. Scrum prioritizes
working software as the primary measure of progress over system documentation. Scrum
documentation does not follow a formal modeling language. While the MBSAP values a
working product, it places a great emphasis on using models to capture and communicate
system information. The sMBSAP, on the other hand, is a middle point, as it uses both
formal and informal modeling languages to keep system information within the model.
The model can be customized to keep the details of system architecture at a high level
or comprehensive. Additionally, Scrum is primarily focused on software development.
However, the MBSAP is more focused on systems engineering and the creation of high-level
system models. The sMBSAP, on the other hand, is application agnostic and can be applied
to software, defense, or other industries. As for project size, Scrum is primarily used for
small to medium-sized projects. However, the MBSAP is more geared towards medium to
large-sized projects. Finally, the sMBSAP can be customized to fit small to large projects.

Software 2023, 2 251

Figure 14. Comparison of Scrum, MBSAP, and sMBSAP.

Unlike traditional document-based methods, an MBSE tool is the key to handling,
processing, and executing the data and information generated or collected during the
system development process. Therefore, it is important to select the appropriate tool
to create a modeling environment that fits the different kinds of data and information
being processed. A proper MBSE tool can simplify the working process and accelerate the
working efficiency. The MBSE tool used for architecting the health tech system in this pilot
study was Sparx EA [54]. Sparx EA was selected due to its compatibility and readiness for
software development models.

It is important to note, however, that in an MBSE-driven environment, having the
best tools in the wrong environment would not contribute to project success. What
contributes to project success is having the right group of individuals in product de-
velopment. Even more crucial is how these people interact with one another. The other
factor contributing to success is building a feedback loop with the customer to ensure
that successful Product Increments are delivered. This feedback loop will open the door
to embracing change, which always happens. These factors are inherited from both
Scrum and MBSAP for sMBSAP, and they align well with the four values of the Agile
Manifesto [47].

When a change is requested by the customer in the middle of a sprint, it is suggested to
add the created User Story to the Product Backlog and reprioritize the PBIs rather than adding
the User Story to the current Sprint Backlog. The benefit of this way of handling change
is that it would avoid assuming that the development team would finish their work in
progress and would be able to begin and finish the added User Story by the end of the sprint.
The more assumptions a project has, the more risk exposure it has. Moreover, adding User
Stories to an ongoing sprint would impact the monitoring of Estimation Reliability and
Velocity.

During the execution of the phases of the sMBSAP approach, data were generated or
collected from the beginning to the end of the health tech system development effort. Keep-
ing the data and artifacts in one model made accessing and retrieving data easier compared
to the process when using document-based methods. Tracking back the Requirements (User

Software 2023, 2 252

Stories) or even performing simple simulation tasks for validation and verification was also
beneficial. The key characteristics and benefits of implementing the sMBSAP include the
following:

• The System Architect works closely, not in a silo, with the Product Development Team to
(1) co-customize the MBSE tool at the beginning of the project to align with the needs
of the project and the Product Development Team. The customization exercise is used as
an MBSE infusion opportunity. In an MBSE-driven project, the Product Development
Team is the first customer of the system architecture, and the Maintenance and Op-
erations team is the end user, as they leverage the system architecture in operating
software applications, monitoring system performance, making defect repairs, etc.
The System Architect would need to work closely with different business and technical
stakeholders from the customer organization to ensure that the model perspective and
viewpoints are customized to fit their needs and the organization’s standards.
(2) It is also necessary to engage and educate the Product Development Team about the
basic concepts and processes of the architecture and (3) to empower and support the
Product Development Team Members (owners of core components of the system) to define
discipline-specific MBSE methods. For example, a frontend developer develops a wire-
frame for the “Health report summary” including the screen elements, such as the fol-
lowing: buttons—“View my groceries”; dashboard indicators and messages—“Health
score” and “Summary health report”; navigation sections—“Dietary”, “Lifestyle”,
“Disease risk”, “Organ health”, and “Mental health”; finally, a scroll bar. The System
Architect works closely with the frontend developer to ensure that every screen element
is aligned with and mapped to Requirements or User Stories, as shown in Figure 15.
The System Architect adds the relevant Requirements and User Stories to the wireframe.
Throughout the process, the wireframe is refined and updated to reflect the intended
use of each screen. The outcome of this collaborative effort is a model-based wireframe
(an artifact unique to the sMBSAP).

• Selecting an MBSE tool with (1) built-in methodologies that support the transformation
of current systems engineering practices into model-centric engineering practices and
(2) built-in models that support specific Use Cases would help create a faster first
iteration of the model. This fast turnaround increases the engagement of the Prod-
uct Development Team and contributes to changing the perception that architecture
modeling slows down the development process. For example, some MBSE tools
have built-in Gantt charts, which can automatically display the schedule for sprints,
and built-in and customizable dashboards that can be used to show the progress of
a sprint. Moreover, the Product Owner, Scrum Master, and Team Member roles can
all be supported, needless to say, by the role of the System Architect. Selecting and
customizing the right MBSE tool will provide a cohesive collaboration andRequirement
management platform.

• The sMBSAP enables the System Architect to use Agile terminologies that the Product
Development Team understands. Implementing Agile concepts such as sprints, Product
Backlog, Epics, and User Stories conveys a sense of familiarity to the Product Development
Team, even if these concepts are implemented within the context of an MBSE and
architecture-driven environment.

• The sMBSAP leverages the MBSE tool to combine the UML-based formal description
of the system with non-formal models that fit the needs of the Product Development
Team. Combining formal and non-formal modeling aids in addressing the usability
challenge, as it gives more freedom to the Product Development Team. The value of this
combination is to instill in the Product Development Team the concept of keeping all
artifacts in one model. For example, wireframes are valuable visuals that are widely
used in Agile software development. Integrating the non-UML-based wireframes in
the sMBSAP approach could increase the engagement of the Product Development Team
and the adoption of the sMBSAP.

Software 2023, 2 253

Health Report

Health score

Dietary

Lifestyle

Disease risk

Organ health

Mental health

This score means that...
customized message to 3 types of users (1) healthy (2)
needs improvements in some areas (3) unhealthy

These dashboard indicators retrieve their data from the sections of
the health report indicated by the shown user stories.
The first 3 metrics can take any of the 3 colors: red, green, and
yellow.
The last metric is always blue because to indicate that the user
cannot do something about it.

(from User stories (requirements)
and use cases)

«user story»

1.2.1.2 Complete dietary
habits assessment

(from User stories
(requirements) and use

cases)

«user story»

1.3.6 View mental
health recommendation

(from User stories
(requirements) and use

cases)

«user story»

1.3.4 View disease risk
recommendation

(from User stories
(requirements) and use

cases)

«user story»

1.3.3 View lifestyle
recommendation

When blood tests become
available, they will also
influence this indicator

% of results meeting dietary guidelines

% of results need taking some proactive steps

% of results suggesting the user might be at
risk of developing a medical condition

% of results due to pre-existing condition

(from User stories
(requirements) and use cases)

«user story»

View overall health score

(from User stories
(requirements) and use

cases)

«user story»

View 4 sub-scores

«requirement»
Make all sections of the
report visible on every

screen of the health report

(from User stories (requirements) and
use cases)

Overall score will be the
first thing to be shown on
the top followed by the
breakdown as %

Example message: This score means that there are some
aspects in your lifestyle and dietary habits that you need to
work on to maintain healthier status. Furthermore, your
score is also impacted by the pre-existing conditions and
family history. Below is a breakdown of that score and
explanation of the 4 health score sections that you saw in the
previous window.

A

(from User stories
(requirements) and use cases)

«user story»

View explanation of the
health score

«requirement»
Scroll to view the rest of

the content on the screen

(from User stories (requirements) and
use cases)

«requirement»
Display a button titled
"view my groceries"

(from User stories (requirements) and
use cases)

View my groceries«trace»

«use»

«use»

«use»

«trace»

«trace»

«trace»

«trace»

«use»

«trace»

Figure 15. Requirements and user stories traced to elements of a wireframe diagram embedded in the
sMBSAP model.

• The architecture effort progresses one sprint at a time. After the System Architect pre-
pares the high-level end-to-end OV of the system, they focus only on the Requirements
and the Structural, Behavioral, and Data perspectives of one sprint at a time. In that
sprint, the OV is further elaborated into an LV, which will be progressively elaborated
in future sprints. This approach could potentially be a step toward addressing the
disconnect between how the system is conceptualized and how it is described, since
the description is progressively elaborated over several weeks or months.

• The Requirements and User Stories will be traced to the various perspectives of the
system model throughout the subsequent iterations or viewpoints. In Use Case
diagrams, Requirements are traced to User Stories that are modeled using a stereotyped
Use Case. Requirements can then be shown on other models to trace the implementation
of Requirements and User Stories (a Requirement or User Story is created once and used
multiple times across the model). This approach simplifies the traceability process and
bypasses the need to develop and maintain a document-based Requirement Traceability
Matrix. Model-based Requirement Traceability could be a meeting ground between those
who devalue Traceability and those who want to align with procurement/reporting
practices.

• The iterative benefits of Agile combined with an integrated model of artifacts, as
proposed in the sMBSAP, could be a practical happy medium between light docu-
mentation enthusiasts and those who value heavy documentation. The centralized
management of artifacts makes the sMBSAP approach suitable for projects that value a
working product and, at the same time, are keen to have more manageable, accessible,
and retrievable documentation via a system architecture model.

On the other hand, there are a few challenges related to the adoption of the sMBSAP.
Some of these challenges include the perception that MBSE is performed by a tool, although

Software 2023, 2 254

several researchers explained that MBSE is more than just a tool [38,43,44]. Selecting an
MBSE tool without a deep understanding of user needs is another challenge that may
impede the adoption of the sMBSAP. Transitioning to a model-based software engineering
approach requires a high level of executive support, which may not be always present.
Finally and most importantly, adopting the sMBSAP requires a considerable investment in
training because of its steep learning curve. Organizations may implement organizational
change management initiatives to facilitate organizational adoption, but such organization-
wide initiatives themselves require investment and management support.

5. Conclusions and Future Work

In this paper, an integration of the Agile and MBSE approaches has been proposed.
The new approach, termed the Scrum Model-Based System Architecture Process (sMBSAP),
uses the same cyclic approach of Scrum and the MBSAP.

The sMBSAP approach includes five main artifacts: Product/Sprint Backlog, Operational
Viewpoint (OV), Logical/Functional Viewpoint (LV), Physical Viewpoint (PV), and Product In-
crement, as well as four roles: Product Owner, Scrum Master, System Architect, and Product
Development Team. The five sMBSAP phases include Initiate, Plan and Architect, Implement,
Review and Retrospect, and Release.

Both Scrum and the MBSAP focus on collaboration and continuous improvement.
Both approaches also value customer-centricity and prioritize delivering a working product
to the customer. These similarities have been passed down to the sMBSAP.
The sMBSAP customizes the artifacts to keep system information within the model.
The sMBSAP is application agnostic and can be applied to software or other industries.
As for project size, the sMBSAP can be customized to fit small to large projects. The sMB-
SAP approach was validated through a pilot study to develop a health technology system
over one year.

The preliminary results have shown that the proposed approach contributed to achiev-
ing the desired system development outcomes and, at the same time, generated complete
system architecture artifacts that would not have been developed if Agile alone had been
used. The highlights of the sMBSAP approach and benefits observed during the implemen-
tation can be summarized as follows: (1) The System Architect works closely, not in a silo,
with the Product Development Team to customize, empower, and educate the team to get the
best out of the architecture model; (2) selecting an MBSE tool with built-in methodologies
and models helps create a faster first iteration of the model; (3) the sMBSAP enables the
System Architect to use Agile terminologies that the Product Development Team understands;
(4) the MBSE tool enables the System Architect to combine formal and informal modeling
to gradually shift the mindset of the Agile team towards MBSE; (5) the architecture effort
progresses one sprint at a time; (6) the Requirements and User Stories will be traced to the
various perspectives of the system model throughout the following iterations or viewpoints;
(7) the sMBSAP is a practical middle ground between light documentation enthusiasts and
those who value heavy documentation.

The promising results observed while using the model are a step towards closing the
gap between Agile and MBSE. The sMBSAP offered a practical and operational method for
achieving the desired and potentially better outcomes compared to either approach alone.
In parallel, this research shows that the sMBSAP is more aligned with federal and state
regulations, which promote Agile in its systems engineering guidelines while requiring a
proper set of system documentation.

The continuation of this research project includes quantitatively comparing the impact
on the system development objectives when using the sMBSAP compared to Scrum. Specif-
ically, the subsequent step includes conducting a quasi-experimental study to compare
Scrum and the sMBSAP in terms of system development performance metrics, as measured
by the estimation reliability, productivity, and defect rate.

Software 2023, 2 255

Author Contributions: Conceptualization, M.H., J.M.B. and D.R.H.; methodology, M.H.; software,
M.H.; validation, D.R.H.; formal analysis, M.H.; investigation M.H.; data curation, M.H.; writing—
original draft preparation, M.H.; writing—review and editing, D.R.H.; visualization, M.H. and
D.R.H.; supervision, D.R.H. and J.M.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Sharing research data may be restricted due to intellectual property on
the part of the health tech company whose system development was used to conduct this research.

Acknowledgments: The research described in this publication would not have been possible without
leveraging the system development effort at Hekafy. The lead author would like to acknowledge the
support of the co-founders of Hekafy: Reem Olaby, Mohamed Farid, and Aneesh Panoli.

Conflicts of Interest: The lead author is one of the co-founders of Hekafy Inc.

Abbreviations
The following abbreviations are used in this manuscript:

ASD Adaptive Software Development
AUP Agile Unified Process
CDM Conceptual Data Model
DBSE Document-Based Systems Engineering
DoDAF Department of Defense Architecture Framework
DSDM Dynamic Systems Development Method
FDD Feature-Driven Development
FEAF Federal Enterprise Architecture Framework
LDM Logical/Functional Data Model
LV Logical Viewpoint
MAGIC Munich Agile MBSE Concept
MBSAP Model-Based System Architecture Process
MDSD Model-Driven Systems Development
MBSE Model-based Software Engineering
NIST National Institute of Standards and Technology
OPM Object-Process Methodology (Dori)
OOSEM Object-Oriented Systems Engineering Method (INCOSE)
OV Operational Viewpoint
PBI Product Backlog Items
PDM Physical Data Model
PV Physical Viewpoint
RAD Rapid Application Development
RUP Rational Unified Process
RUP SE Rational Unified Process for Systems Engineering (IBM)
SAFe Scaled Agile Framework
SDLC Software Development Life Cycle
SA State Analysis (JPL)
SE Systems Engineering
sMBSAP Scrum Model-Based System Architecture Process
TOGAF The Open Group Architecture Framework
UML Unified Modeling Language
XP Extreme Programming

References
1. Hooshmand, Y.; Adamenko, D.; Kunnen, S.; Köhler, P. An approach for holistic model-based engineering of industrial plants.

In Proceedings of the International Conference on Engineering Design, Vancouver, BC, Canada, 21–25 August 2017; Volume 3,
pp. 101–110.

2. Friedenthal, S.; Moore, A.; Steiner, R. A Practical Guide to SysML: The Systems Modeling Language, 3rd ed.; Morgan Kaufmann:
Burlington, MA, USA, 2015. [CrossRef]

http://doi.org/10.1016/C2013-0-14457-1

Software 2023, 2 256

3. Basha, N.M.J.; Moiz, S.A.; Rizwanullah, M. Model based software development: Issues & challenges. Int. J. Comput. Sci. Inform.
2013, 3, 84–88. [CrossRef]

4. Call, D.R.; Herber, D.R. Applicability of the diffusion of innovation theory to accelerate model-based systems engineering
adoption. Syst. Eng. 2022, 25, 574–583. [CrossRef]

5. Cao, L.; Ramesh, B. Agile software development: Ad hoc practices or sound principles? IT Prof. 2007, 9, 41–47. [CrossRef]
6. Altahtooh, U.A.; Emsley, M.W. Is a challenged project one of the final outcomes for an IT project? In Proceedings of the Hawaii

International Conference on System Sciences, Waikoloa, HI, USA, 6–9 January 2014; pp. 4296–4304. [CrossRef]
7. Muganda Ochara, N.; Kandiri, J.; Johnson, R. Influence processes of implementation effectiveness in challenged information

technology projects in Africa. Inf. Technol. People 2014, 27, 318–340. [CrossRef]
8. Yeo, K.T. Critical failure factors in information system projects. Int. J. Proj. Manag. 2002, 20, 241–246. [CrossRef]
9. Turner, R. Toward Agile systems engineering processes. Crosstalk J. Def. Softw. Eng. 2007, 20, 11–15.
10. Salehi, V.; Wang, S. Munich Agile MBSE Concept (MAGIC). In Proceedings of the Design Society: International Conference on

Engineering Design, Delft, The Netherlands, 5–8 August 2019; Volume 1, pp. 3701–3710. [CrossRef]
11. Riesener, M.; Doelle, C.; Perau, S.; Lossie, P.; Schuh, G. Methodology for iterative system modeling in Agile product development.

Procedia CIRP 2021, 100, 439–444. [CrossRef]
12. Bott, M.; Mesmer, B. An analysis of theories supporting Agile scrum and the use of scrum in systems engineering. Eng. Manag. J.

2020, 32, 76–85. [CrossRef]
13. Borky, J.M.; Bradley, T.H. Effective Model-Based Systems Engineering; Springer: Berlin/Heidelberg, Germany, 2019. [CrossRef]
14. Douglass, B.P. Agile Model-Based Systems Engineering Cookbook; Packt: Birmingham, UK, 2021.
15. Bouillon, E.; Güldali, B.; Herrmann, A.; Keuler, T.; Moldt, D.; Riebisch, M. Leichtgewichtige Traceability im agilen Entwick-

lungsprozess am Beispiel von Scrum. Softwaretechnik-Trends 2013, 33, 29–30. [CrossRef]
16. Lethbridge, T.; Singer, J.; Forward, A. How software engineers use documentation: The state of the practice. IEEE Softw. 2003,

20, 35–39. [CrossRef]
17. Voigt, S.; Hüttemann, D.; Gohr, A.; Große, M. Agile Documentation Tool Concept. In Developments and Advances in Intelligent

Systems and Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 67–79.
18. Ruparelia, N.B. Software development lifecycle models. ACM SIGSOFT Softw. Eng. Notes 2010, 35, 8–13. [CrossRef]
19. Rather, M.A.; Bhatnagar, M.V. A comparative study of software development life cycle models. Int. J. Appl. Innov. Eng. Manag.

2015, 4, 23–29.
20. Tsai, B.Y.; Stobart, S.; Parrington, N.; Thompson, B. Iterative design and testing within the software development life cycle. Softw.

Qual. J. 1997, 6, 295–310. [CrossRef]
21. Kossiakoff, A.; Biemer, S.M.; Seymour, S.J.; Flanigan, D.A. Systems Engineering Principles and Practice; John Wiley & Sons: Hoboken,

NJ, USA, 2020.
22. Dora, S.K.; Dubey, P. Software development life cycle (SDLC) analytical comparison and survey on traditional and Agile

methodology. Natl. Mon. Ref. J. Res. Sci. Technol. 2013, 2, 22–30.
23. Schmidt, C. Agile Software Development Teams; Progress in IS; Springer: Berlin/Heidelberg, Germany, 2015. [CrossRef]
24. Khong, L.; Yu Beng, L.; Yip, T.; Soofun, T. Software development life cycle AGILE vs traditional approaches. In Proceedings of

the International Conference on Information and Network Technology, Chennai, India, 28–29 April 2012; Volume 37, pp. 162–167.
25. Vijayasarathy, L.R.; Turk, D. Agile software development: A survey of early adopters. J. Inf. Technol. Manag. 2008, XIX, 1–8.
26. U.S. Government Accountability Office. Agile Assessment Guide: Best Practices for Agile Adoption and Implementation; Technical

Report GAO-20-590G; U.S. Government Accountability Office: Washington, DC, USA, 2015
27. Anand, R.V.; Dinakaran, M. Issues in scrum Agile development principles and practices in software development. Indian J. Sci.

Technol. 2015, 8, 1–5. [CrossRef]
28. DIGITAL.AI. 16th State of Agile Report. 2022. Available online: https://info.digital.ai/rs/981-LQX-968/images/AR-SA-2022-1

6th-Annual-State-Of-Agile-Report.pdf (accessed on 14 April 2022).
29. Schwaber, K. Agile Project Management with Scrum; Microsoft Press: Unterschleissheim, Germany, 2004.
30. Satpathy, T. A Guide to the Scrum Body of Knowledge (SBOK™ Guide), 3rd ed.; SCRUMstudy: Avondale, AZ, USA, 2016.
31. Akif, R.; Majeed, H. Issues and challenges in scrum implementation. Int. J. Sci. Eng. Res. 2012, 3, 1–4.
32. Buffardi, K.; Robb, C.; Rahn, D. Learning agile with tech startup software engineering projects. In Proceedings of the ACM

Conference on Innovation and Technology in Computer Science Education, Bologna, Italy, 3–5 July 2017; pp. 28–33. [CrossRef]
33. Ghezzi, A.; Cavallo, A. Agile business model innovation in digital entrepreneurship: Lean startup approaches. J. Bus. Res. 2020,

110, 519–537. [CrossRef]
34. Kuchta, D. Combination of the earned value method and the Agile approach—A case study of a production system implementa-

tion. In Intelligent Systems in Production Engineering and Maintenance; Springer: Berlin/Heidelberg, Germany, 2019; pp. 87–96.
[CrossRef]

35. Atlassian. Jira|Issue & Project Tracking Software|Atlassian. 2019. Available online: https://www.atlassian.com/software/jira
(accessed on 14 April 2022).

36. ClickUp™. Available online: https://www.clickup.com.html (accessed on 28 February 2023).
37. Brambilla, M.; Cabot, J.; Wimmer, M. Model-Driven Software Engineering in Practice; Springer: Cham, Switzerland, 2017. [CrossRef]

http://dx.doi.org/10.47893/IJCSI.2013.1123
http://dx.doi.org/10.1002/sys.21638
http://dx.doi.org/10.1109/MITP.2007.27
http://dx.doi.org/10.1109/HICSS.2014.531
http://dx.doi.org/10.1108/ITP-09-2013-0167
http://dx.doi.org/10.1016/S0263-7863(01)00075-8
http://dx.doi.org/10.1017/dsi.2019.377
http://dx.doi.org/10.1016/j.procir.2021.05.101
http://dx.doi.org/10.1080/10429247.2019.1659701
http://dx.doi.org/10.1007/978-3-319-95669-5
http://dx.doi.org/10.1007/BF03323544
http://dx.doi.org/10.1109/MS.2003.1241364
http://dx.doi.org/10.1145/1764810.1764814
http://dx.doi.org/10.1023/A:1018528506161
http://dx.doi.org/10.1007/978-3-319-26057-0
http://dx.doi.org/10.17485/ijst/2015/v8i35/79037
https://info.digital.ai/rs/981-LQX-968/images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf
https://info.digital.ai/rs/981-LQX-968/images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf
http://dx.doi.org/10.1145/3059009.3059063
http://dx.doi.org/10.1016/j.jbusres.2018.06.013
http://dx.doi.org/10.1007/978-3-319-97490-3_9.
https://www.atlassian.com/software/jira
https://www.clickup.com.html
http://dx.doi.org/10.1007/978-3-031-02549-5

Software 2023, 2 257

38. Bonnet, S.; Voirin, J.L.; Normand, V.; Exertier, D. Implementing the MBSE cultural change: Organization, coaching andlessons
learned. In Proceedings of the INCOSE International Symposium, Seattle, WA, USA, 13–16 July 2015; Volume 25, pp. 508–523.
[CrossRef]

39. Walden, D.D.; Roedler, G.J.; Forsberg, K. INCOSE systems engineering handbook version 4: Updating the reference for
practitioners. In Proceedings of the INCOSE International Symposium, Seattle, WA, USA, 13–16 July 2015; Volume 25,
pp. 678–686. [CrossRef]

40. Estefan, J.A. Survey of Model-Based Systems Engineering (MBSE) Methodologies; Technical report; INCOSE MBSE Initiative: San
Diego, CA, USA, 2008.

41. Zimmerman, P. A review of model-based systems engineering practices and recommendations for future directions in the
department of defense. In Proceedings of the Systems Engineering in the Washington Metropolitan Area Conference, Chantilly,
VA, USA, 3 April 2014.

42. Wang, L.; Izygon, M.; Okon, S.; Wagner, H.; Garner, L. Effort to accelerate MBSE adoption and usage at JSC. In Proceedings of the
AIAA SPACE, Long Beach, CA, USA, 13–16 September 2016. [CrossRef]

43. Young, K.G. Defense space application of MBSE-closing the culture chasms. In Proceedings of the AIAA SPACE Conference and
Exposition, Pasadena, CA, USA, 31 August–2 September 2015. [CrossRef]

44. Noguchi, R.A. A roadmap for advancing the state of the practice of model based systems engineering for government acquisition.
In Proceedings of the INCOSE International Symposium, Orlando, FL, USA, 20–25 July 2019; Volume 29, pp. 678–690. [CrossRef]

45. Kim, S.Y.; Wagner, D.; Jimenez, A. Challenges in applying model-based systems engineering: Human-centered design perspective.
In Proceedings of the INCOSE Human-Systems Integration Conference, Biarritz, France, 11–13 September 2019.

46. Hadar, I.; Sherman, S.; Hadar, E.; Harrison, J.J. Less is more: Architecture documentation for agile development. In Proceedings
of the International Workshop on Cooperative and Human Aspects of Software Engineering, San Francisco, CA, USA, 25 May
2013; pp. 121–124. [CrossRef]

47. Manifesto for Agile Software Development. Available online: http://agilemanifesto.org (accessed on 27 March 2023).
48. Stettina, C.J.; Heijstek, W. Necessary and neglected? An empirical study of internal documentation in agile software development

teams. In Proceedings of the ACM International Conference on Design of Communication, Pisa, Italy, 3–5 October 2011;
pp. 159–166. [CrossRef]

49. Pasuksmit, J.; Thongtanunam, P.; Karunasekera, S. Towards just-enough documentation for agile effort estimation: What
information should be documented? In Proceedings of the IEEE International Conference on Software Maintenance and
Evolution, Luxembourg, 27 September–1 October 2021; pp. 114–125. [CrossRef]

50. Prause, C.R.; Durdik, Z. Architectural design and documentation: Waste in agile development? In Proceedings of the International
Conference on Software and System Process, Zurich, Switzerland, 2–3 June 2012; pp. 130–134. [CrossRef]

51. Rubin, E.; Rubin, H. Supporting agile software development through active documentation. Requir. Eng. 2011, 16, 117–132.
[CrossRef]

52. Selic, B. Agile documentation, anyone? IEEE Softw. 2009, 26, 11–12. [CrossRef]
53. Slack. Available online: https://slack.com (accessed on 28 February 2023).
54. Sparx Systems. Enterprise Architect 15.2 User Guide. Available online: https://sparxsystems.com/enterprise_architect_user_

guide/15.2/ (accessed on 28 February 2023).
55. Lattanze, A.J. Architecting Software Intensive Systems: A Practitioners Guide; Auerbach Publications: Boca Raton, FL, USA, 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/j.2334-5837.2015.00078.x
http://dx.doi.org/10.1002/j.2334-5837.2015.00089.x
http://dx.doi.org/10.2514/6.2016-5542
http://dx.doi.org/10.2514/6.2015-4620
http://dx.doi.org/10.1002/j.2334-5837.2019.00628.x
http://dx.doi.org/10.1109/CHASE.2013.6614746
http://agilemanifesto.org
http://dx.doi.org/10.1145/2038476.2038509
http://dx.doi.org/10.1109/ICSME52107.2021.00017
http://dx.doi.org/10.1109/ICSSP.2012.6225956
http://dx.doi.org/10.1007/s00766-010-0113-9
http://dx.doi.org/10.1109/MS.2009.167
https://slack.com
https://sparxsystems.com/enterprise_architect_user_guide/15.2/
https://sparxsystems.com/enterprise_architect_user_guide/15.2/

	Introduction
	Background
	Software Development Lifecycle (SDLC)
	Scrum Method
	Model-Based Software Engineering (MBSE)
	Agile MBSE

	Integrated Scrum Model-Based System Architecture Process (sMBSAP)
	Research Methods
	Overview of the sMBSAP
	Initiate
	Plan and Architect
	Implement
	Review and Retrospect
	Release

	Discussion
	Conclusions and Future Work
	References

