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Abstract: Scientific data acquisition is a problem domain that has been underserved by its computa-
tional tools despite the need to efficiently use hardware, to guarantee validity of the recorded data,
and to rapidly test ideas by configuring experiments quickly and inexpensively. High-dimensional
physical spectroscopies, such as angle-resolved photoemission spectroscopy, make these issues espe-
cially apparent because, while they use expensive instruments to record large data volumes, they
require very little acquisition planning. The burden of writing data acquisition software falls to
scientists, who are not typically trained to write maintainable software. In this paper, we introduce
AutodiDAQt to address these shortfalls in the scientific ecosystem. To ground the discussion, we
demonstrate its merits for angle-resolved photoemission spectroscopy and high bandwidth spec-
troscopies. AutodiDAQt addresses the essential needs for scientific data acquisition by providing
simple concurrency, reproducibility, retrospection of the acquisition sequence, and automated user
interface generation. Finally, we discuss how AutodiDAQt enables a future of highly efficient
machine-learning-in-the-loop experiments and analysis-driven experiments without requiring data
acquisition domain expertise by using analysis code for external data acquisition planning.
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1. Introduction

The landscape of modern experimental physics is best conceived through the set of
experimental tools that physicists use to interrogate space and matter. Historically, ad-
vances in instrumentation have been as significant as theoretical breakthroughs because the
ability to perform new experiments allows scientists to pave over speculation with experi-
mental proof. These advances are not always in hardware. Across techniques as diverse
as ptychography [1], astrophysical imaging, cryo-electron microscopy [2,3], and various
super-resolution and nonlinear microscopy techniques [4–6], instrumentation improve-
ments require the integration of statistically sophisticated approaches to data analysis and
acquisition. Over the last decade, analysis software tailored for individual experimental
techniques has been a driving factor in bringing new analysis approaches into physical
spectroscopies. In the domain of angle-resolved photoemission spectroscopy (ARPES) [7,8],
the development of analysis and modeling toolkits such as PyARPES [9] and chinook [10],
the integration of machine-learning-based denoising for ARPES spectra [11,12], and the
continued development of new paradigms for the analysis of spectral data [13] all signal
continued advances in the interpretation of high-dimensional spectroscopy. While these
software packages ease the interpretation of data after data collection, they do not currently
permit an effective use of acquisition hardware.

Because rapid innovation in ARPES experiments is still ongoing—most recently in
the development of submicron resolution beams for photoemission [14–16] and the devel-
opment of two-angle resolving time-of-flight electron analyzers [17–19]—this separation
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may remain because there is a belief that integrating more complex analysis is unneces-
sary for the time being. After all, nanoARPES is revolutionizing our understanding of
two-dimensional materials [20], heterostructures [21–25], and electronic devices [26–28].
However, resolving the additional degrees of freedom in an experiment, as nanoARPES
does by adding spatial resolution, usually makes contention for limited time on hardware
worse and increases the demands on hardware apparatus for the efficient use of acquisition
time. A minor reason for this is the greater demand for more capable experiments, but the
real problem is fundamental: the curse of dimensionality means that experiments must
record in sparser subsets of configuration space putting pressure on efficient use. The
limited penetration of tightly integrated analysis and acquisition software in domains such
as ARPES that might address this curse of dimensionality indicates friction and difficulty
in tightly joining hardware and software. There are numerous benefits to be gained in more
effectively using frequently limited acquisition time [29–31], removing sources of system-
atic bias from physical experiments, serving as checksums against common experimental
and sample problems [32], and in allowing scientists to opt into collecting data driven by
the statistical requirements of their analysis [33,34].

Scientists also actively interact with their data during an acquisition session by iter-
atively refining what they are measuring based on the data the experiment has yielded.
Consequently, data acquisition is tightly integrated to a user interface (UI) controlling the
acquisition session, to domain-specific data analysis tools, and to a large set of “application
programming” concerns ranging from logging to data provenance. These are inviolable
constraints for scientific data acquisition, but the burden they place explains the absence
of universal approaches that more tightly integrate analysis, hardware, and software. It is
vital to build software systems that allow scientists to restrict their attention to the issue of
succinctly describing how hardware apparatus maps onto experimental degrees of freedom
and sequencing data collection. Universal concerns—the thorny issues of user interfaces,
data persistence, logging, error recovery, and data provenance—should be recycled because
they are used across all scientific acquisition tasks. As things stand, most scientific DAQ
software is purpose built to suit a given experiment with a vast amount of effort being spent
on re-engineering solutions to the common concerns of the UI, persistence, and provenance.
Because the exigency is for data, these concerns may not be addressed at all, especially in
smaller university labs where DAQ software has usually evolved from existing LabVIEW
VIs. When these issues are addressed, creating DAQ software may represent a substantial
fraction of instrumentation effort and costs. Depending on the relative balance of hardware
and personnel cost, DAQ engineering overheads may permit or inhibit novel experiments
requiring synergistic combinations of hardware.

Here we present a new software system, AutodiDAQt, to address this problem space
by providing a composable platform for describing DAQ systems. This new software
system provides the necessary metaphors for tightly integrating scientific analysis and data
acquisition and enabling analysis-in-the-loop and machine-learning-in-the-loop acquisition
paradigms. This new system synthesizes the user interface and controls directly from the
definitions of instrument drivers thereby reducing the problem of constructing scientific
data acquisition software to the irreducible one of describing each instrument’s software
interface and degrees of freedom. Because mature libraries and drivers for direct instrument
control already exist [35–38], this reduces data acquisition software prototyping to a task
that can be accomplished in a short period of time. Because it handles generating a user
interface for instruments and for acquisition without end-user programming, AutodiDAQt
is exceptionally well suited for writing DAQ software where scientists expect to be able to
walk up to hardware and immediately start collecting data using the user interface, rather
than by writing per experiment scan code.

Attempts to incorporate these needs in a flexible structure or to provide a general
data acquisition framework for science [36,38–42], and to provide data acquisition systems
serving a particular scientific discipline [33,34], have been adopted previously. For example,
PyMeasure [35], a data acquisition framework for physics, provides user interface genera-
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tion primitives for data acquisition but does not confront the problem of data provenance
or make it straightforward to compose and refine acquisition sequences. Bluesky [43]
and Auspex [38] capture the essentials of composing acquisition routines and offer robust
support for metadata, but Bluesky requires a significant amount of configuration code and
neither framework provides user interface generation to achieve the application fluency
appropriate for setting up experiments quickly in small labs. The approach we advocate
in AutodiDAQt is a simple, low-code approach incorporating the strengths of PyMeasure
(strong user interface support) and Bluesky (strong composability). AutodiDAQt is de-
signed to be appropriate for rapidly creating and modifying scientific experiments and
reflects the need for small-scale, flexible experiments that can be adapted to rapid advances
in both hardware and data analysis software. This is in strict contrast to systems such as
Bluesky which, based on different philosophy, emphasize the ability to adopt pieces of the
acquisition system “à la carte” and thereby require software engineering work to integrate
into a full-fledged DAQ application. This can be seen as a focus for AutodiDAQt and a
distinguishing characteristic in a robust landscape of data acquisition software: Autodi-
DAQt excels at providing full data acquisition applications by restricting its focus to user
interface generation, experiment planning, and downstream application programming
consequences such as data provenance. In the following sections, we outline the ways in
which AutodiDAQt adopts and extends the strengths of acquisition user interfaces and
program composability. In the final section, we discuss how AutodiDAQt permits the
control of the acquisition software directly by live analysis and also the prospects for this
paradigm in ARPES.

2. Materials and Methods

Relieving the burden of application programming from scientists requires automati-
cally generating as much of the common user interface as is possible. AutodiDAQt lever-
ages the highly structured nature of DAQ tasks to generate user interface (UI) elements for
experiment parameters, collected values, data streams, and experimental apparatus. For
this reason, AutodiDAQt uses schemas extending the Python-type system to provide con-
trol over data validation and data representation in the UI. At a coarser level, we recognize
that writing DAQ software is an application programming task more than an algorithmic
one and so provides high-level primitives for the UI that map onto application features
where it is necessary or desirable to extend the default AutodiDAQt—for instance as the
application needs to mature with an experiment. Experiment controls and acquisition
interfaces are generated automatically (Figure 1(a3)) together within the acquisition session
manager (Figure 1(a4)) just by defining the degrees of freedom in an experiment in terms
of hardware capabilities exposed by instrument drivers (Figure 1(a1)). Most significantly,
AutodiDAQt generates controls, streaming plots, and virtual front panels for hardware
(Figure 1(a3)), obviating the need for UI programming, unless an experiment’s constraints
are very unusual, through a combination of schema annotation and instrument driver
specification. By defining these degrees of freedom, we will see in the following section
that AutodiDAQt makes it straightforward to compose acquisition programs. Internal state
and acquisition parameters of these programs are also associated automatically with user
interface elements (Figure 1b).

The following user interface programming tasks are requirements that have been
carried out by scientists—creating front panels for instruments that are coherently linked
with the acquisition system, creating control interfaces for different acquisition programs
and their data streams, and linking the internal application state to user interface elements;
however, AutodiDAQt can perform all of these just by defining the software representation
of the hardware capabilities (Figure 1(a1,a2) and Supplementary Materials).
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struments. (a2) Hardware capabilities are mapped to a uniform representation for experimental de-
grees of freedom and experimental states in AutodiDAQt. In certain contexts, this mapping can be 
built automatically by driver introspection. Otherwise, an expressive API for defining the hardware 
semantics of an experiment is available. Device semantics cover details of how to invoke instrument 
methods to control hardware, limits on values, their concrete types, and their role in an experiment. 
(a3) User interface elements corresponding to each degree of freedom and capability of the hard-
ware are provided automatically and synchronize automatically with the data acquisition program 
state. (a4) Degrees of freedom defined in the software representation of (a2) can be automatically 
composited into acquisition programs, with associated software generated controls. The complex 
user interface programming tasks of (a3,a4), in fact most data acquisition software and interfaces, 
can be handled automatically by adopting a uniform software representation for the degrees of free-
dom of the hardware. The leftmost panel shows the main acquisition window with acquisition sta-
tus, data streams, acquisition program queue, and acquisition parameters. (b) At a more fine-
grained level, users can use the UI generation primitives for basic types, composite data structures, 
and classes. In the cases where acquisitions are parameterized—for instance, by the range over 
which to acquire data, the number of points to collect, or the details of control flow such as logging 
details or whether to wait after motion—AutodiDAQt will generate appropriate controls for the 
parameters that will be used at the beginning of an acquisition. If the user assigns multiple inde-
pendent modes of collecting data, a control for the active collection mode will be generated as well. 

The following user interface programming tasks are requirements that have been car-
ried out by scientists—creating front panels for instruments that are coherently linked 
with the acquisition system, creating control interfaces for different acquisition programs 
and their data streams, and linking the internal application state to user interface ele-
ments; however, AutodiDAQt can perform all of these just by defining the software rep-
resentation of the hardware capabilities (Figure 1(a1,a2) and Supplementary Materials). 

Composability 
In AutodiDAQt, the structure of acquisition programs reduces the burden on scien-

tists to prototype their acquisition software. Principally, AutodiDAQt automates experi-
ment planning by using the definitions of the underlying experimental degrees of freedom 
in two ways. First, AutodiDAQt permits defining logical hardware atop physical hard-
ware by expressing coordinate transforms and their inverse functions over physical hard-
ware. This is exceptionally useful for sample positioning but carries the benefits of 

Figure 1. User interface generation. ((a), 1–4) Elements of the default user interface provided by
AutodiDAQt and their correspondence to data acquisition hardware. (a1) Acquisition hardware
and software drivers express degrees of freedom (axes) and capabilities (settings, functions) for
instruments. (a2) Hardware capabilities are mapped to a uniform representation for experimental
degrees of freedom and experimental states in AutodiDAQt. In certain contexts, this mapping can be
built automatically by driver introspection. Otherwise, an expressive API for defining the hardware
semantics of an experiment is available. Device semantics cover details of how to invoke instrument
methods to control hardware, limits on values, their concrete types, and their role in an experiment.
(a3) User interface elements corresponding to each degree of freedom and capability of the hardware
are provided automatically and synchronize automatically with the data acquisition program state.
(a4) Degrees of freedom defined in the software representation of (a2) can be automatically composited
into acquisition programs, with associated software generated controls. The complex user interface
programming tasks of (a3,a4), in fact most data acquisition software and interfaces, can be handled
automatically by adopting a uniform software representation for the degrees of freedom of the
hardware. The leftmost panel shows the main acquisition window with acquisition status, data
streams, acquisition program queue, and acquisition parameters. (b) At a more fine-grained level,
users can use the UI generation primitives for basic types, composite data structures, and classes. In
the cases where acquisitions are parameterized—for instance, by the range over which to acquire
data, the number of points to collect, or the details of control flow such as logging details or whether
to wait after motion—AutodiDAQt will generate appropriate controls for the parameters that will be
used at the beginning of an acquisition. If the user assigns multiple independent modes of collecting
data, a control for the active collection mode will be generated as well.

Composability

In AutodiDAQt, the structure of acquisition programs reduces the burden on scientists
to prototype their acquisition software. Principally, AutodiDAQt automates experiment
planning by using the definitions of the underlying experimental degrees of freedom in
two ways. First, AutodiDAQt permits defining logical hardware atop physical hardware
by expressing coordinate transforms and their inverse functions over physical hardware.
This is exceptionally useful for sample positioning but carries the benefits of allowing the
experimenter to attach physically meaningful coordinates to hardware, such as when a
motion controller is used to implement an optical delay line and would prefer to work in
temporal units instead of spatial units.

The second and most beneficial way is by permitting acquisition composition, effec-
tively by running one acquisition program inside another, or by performing direct products
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over the configuration spaces of two acquisition programs. This facility, sometimes called
sweep composition or acquisition strategies, is available in other software such as Aus-
pex [38] and Bluesky [43]. However, AutodiDAQt coordinates exceptionally well with
user interface generation, as it can also supply all the user interface elements required to
populate the composite acquisition program (see Supplementary Materials for an example).
In practice, the composition of arbitrary acquisition programs is possible because Autodi-
DAQt separates the set of high-level instructions required to perform acquisition—which is
what the scientist cares about—from the asynchronous runtime required to orchestrate the
hardware and acquisition. This declarative approach—such as that adopted in Bluesky—
has distinct advantages that make writing experiments more expressive and improves
the durability and correctness of results. Acquisition sequences are automatically logged
and recorded alongside the collected data, meaning the scientist can replay and retrospect
the acquisition in ways that are very difficult, if not impossible, to accomplish without
declarative separation. Acquisition sequences are automatically robust to changes in instru-
mentation because of inherent loose coupling. Because of this loose coupling, AutodiDAQt
can also create mock instruments for prototyping by generating synthetic values according
to their declared schema. This approach pushes error handling and recovery fully onto
AutodiDAQt, which improves acquisition software robustness and correctness. Finally,
the declarative approach makes it straightforward to allow an external analysis routine to
specify the acquisition sequence, providing tighter feedback between data analysis and
data acquisition while offloading analysis responsibilities that bloat and complicate data
acquisition systems.

The core provision for modularity in AutodiDAQt comes from viewing the configura-
tion space of the experiment as inheriting algebraic structure. Direct products of the degrees
of freedom of the experiment define high-dimensional configuration spaces where data can
be recorded. Analogously, direct products of coordinate intervals (e.g., one-dimensional
sweeps) for these degrees of freedom correspond to acquisition programs that follow
trajectories through this space.

3. Results
3.1. Analysis-in-the-Loop: Applications to ARPES

So far, we have described how AutodiDAQt provides application primitives that
remove the burdens common to implementing correct and reliable data acquisition appli-
cations. In a large variety of scientific data acquisition tasks, the experimenter needs to
iteratively refine the acquisition task based on the quality of data previously acquired or
conditioned on features of the data identified by on-the-spot analysis. The most straight-
forward approach is to integrate appropriate analysis tools directly into the acquisition
suite. However, this approach is fundamentally flawed because the software used to make
DAQ systems (LabVIEW, systems languages, and asynchronous runtimes) is ill-suited to
analysis. In addition, placing burden on the acquisition runtime can cause errors and even
pose safety risks, as analysis code typically has less rigor and minimal quality control when
compared to the code managing hardware. As a practical matter, the inclusion of analysis
tools further complicates analysis for scientists at user facilities, who cannot plug their
favorite analysis tools directly into the acquisition suite and must instead learn to use an
additional system to perform their work under time constraints. A safer approach that
simultaneously makes better use of the rich scientific data ecosystem built-in languages
such as Python is to isolate analysis from acquisition but to make data available for analysis
in open formats during the data acquisition session and even before data are written to disk.

AutodiDAQt addresses this issue by providing no programming interface to facilitate
real-time analysis in the acquisition framework. In fact, AutodiDAQt performs minimal
handling of data and encourages direct retention of the analysis log as the experimental
ground truth. This approach provides high runtime performance and better correctness
guarantees. Instead, AutodiDAQt provides a client library, AutodiDAQt Receiver, which
runs alongside AutodiDAQt across a message broker. The receiver collates data during
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an acquisition into an analysis process running on the same or a remote computer and
can issue control instructions driven by an experimenter’s analysis. The receiver can also
dispatch predefined experiments, as through the application UI. In practice, the receiver
can issue, write, and read commands using the same API as when manual experiment
planning is used in AutodiDAQt directly (see examples in the receiver codebase and the
AutodiDAQt codebase). Partial data are available on the receiver as a convenient xarray.
Dataset instance containing all prior data received from the runtime.

With this change, it becomes apparent to perform complex acquisitions under one of
two different paradigms for data acquisition. Under the traditional paradigm, users can
select a predefined acquisition program and issue collection over a predefined collection of
experimental configurations (Figure 2a). Next, they can analyze their data before making
further decisions about what data to collect. Alternatively, the fine-grained decisions
about the next data point to collect can be made by a user analysis program running
asynchronously on AutodiDAQt Receiver, as is shown in Figure 2b. The ability to perform
acquisitions driven by analysis, or simply to rapidly adapt the acquisition in response to the
experimental data, provides a leap in capability and experimental efficiency. Because data
are available during acquisition, the experimenter is free to begin analysis and decision
making using whatever tools they are most comfortable with.
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It pays to be concrete, so here we will consider two examples that stem from photo-
emission spectroscopy. By considering nanoARPES and nanoXPS, where regions with dis-
tinct electronics and morphology require efficient use of acquisition time, we will explore 
two approaches that permit the rapid acquisition and interpretation of data. Using time-

Figure 2. Analysis-driven acquisition. ((a), 1–4) (a,b) Supported data collection paradigms. (a) In
traditional conceptions of data acquisition, a scientist selects from a limited menu of predefined
collection modes over a fixed coordinate space. Once requested (1a), the system collects data over the
states Ci (2a) of this space until all data are available, at which point the system retains the data for
later analysis (3a). The scientist inspects the data (4a) and the process is repeated. (b) Analysis-in-
the-loop conception of data acquisition. A scientist submits a program to the acquisition system (1b).
The program can issue acquisition instructions that are validated and performed by the acquisition
system (2b) and intermediate data are collected as well as provided back to the program. In response
to the acquired data or as part of a pre-existing acquisition strategy, the scientist’s program can issue
additional instructions (3b), which are iteratively handled until the program decides the acquisition
is finished (4b).

It pays to be concrete, so here we will consider two examples that stem from pho-
toemission spectroscopy. By considering nanoARPES and nanoXPS, where regions with
distinct electronics and morphology require efficient use of acquisition time, we will ex-
plore two approaches that permit the rapid acquisition and interpretation of data. Using
time-resolved ARPES (TARPES), we will see how the approach can improve the reliability
and fidelity of recorded data and reconfigure the acquisition to defeat hardware limitations.

3.2. Application to NanoXPS

In Figure 3a(1–3), we show how even rudimentary applications of the analysis-in-the-
loop would provide gigantic efficiency gains over data that were collected under standard
acquisition controls. In Figure 3(a1), core-level spectra from a multilayer sample of WS2
were collected by coarsely rastering over a sample surface (Figure 3(a2)) using a nanoXPS
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setup. In the conducted experiment, which was performed with traditional DAQ software
roughly following the scheme of Figure 2a, the resolution was increased by a factor of
nine to resolve details in the sample morphology. However, analysis-in-the-loop, which
adaptively increases the resolution only on a sample region with intense W 4f core levels
(orange divided by blue regions in Figure 3(a1)), would have permitted acquiring data over
only relevant portions of the sample, shown in Figure 3(a3), and would have used only
37% of the total acquisition time as was used in the measurement.
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Figure 3. nanoARPES Opportunities for Analysis-Driven Acquisition. (a1) Tungsten 4f core-level
X-ray photoelectron spectrum at a specific location (a2) Tungsten 4f core-level X-ray photoelectron
spectrum as a function of position (a3) Tungsten 4f core-level X-ray photoelectron spectrum at binding
energy shown in the blue and orange areas of (a1). (b1) Coarse nanoXPS image providing sample
topography, with complex region-of-interest. (b2) High-resolution experiment trajectory on sample
regions with intense W 4f peak (blue divided by orange energy region). Collected area occupies
37% of total scan window. (b1–b3) Integrating machine learning into the analysis–acquisition loop
permits rapid understanding of the sample morphology and efficient use of acquisition time. (b1) PCA
component projection for XPS curves across the sample surface colored according to their composition
(labels at right of (b3)). (b2) Spatial map of all XPS curves across the sample corresponding to scattered
points in (b2) showing correspondence to distinct physical regions on the sample. (b3) W 4 f7/2 level
green WS2 multilayer region of the sample corresponding to spatial cohorts with varying PCA
components (green arrow in (b2)). Even coarse decompositions such as PCA map onto physically
interpretable qualities such as inhomogeneous doping across the sample surface inducing shifts in
the peak locations seen by nanoXPS.

Other more sophisticated schemes, falling under the broader umbrella of machine-
learning-in-the-loop, have been explored. One approach class based on Gaussian process
(GP) regression has already demonstrated progress toward autonomous experimentation
in photoemission spectroscopy [29]. Autonomous GP regression assumes, however, that
all sources of variance in experimental data are salient, whereas most are not and can be
rejected instantly by a domain expert. This contention between automation and domain
expertise is likely to prevent the wide application of fully autonomous experimentation for
a long time to come, with narrow exceptions for well-defined experimental tasks. Human-
in-the-loop methods, which improve the decision-making power of scientists, are a more
capable middle ground and promise to improve throughput while targeting the specific
needs of scientists. Of course, these approaches can include machine learning, especially
that used for exploratory data analysis. Figure 3b(1–3) illustrate an approach covering the
same problem space as discussed in Figure 3a(1–3). Figure 3b1 shows a principal component
analysis (PCA) decomposition of the XPS curves from the same sample region. Colored
scatter cohorts are identified by visual clustering and correspond to sample morphology
and content in Figure 3(b3). Although not principled in the sense of accurately modeling the
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experimental data’s distribution, rudimentary decompositions such as PCA rapidly provide
insight that drives the efficient use of acquisition time. Decomposition features are also
frequently highly correlated with relevant sample physics even if they provide no causal
or generative information: in Figure 3(a3), it is apparent that PCA has identified a proxy
for the inhomogeneous doping variations on the WS2 sample. In this scheme, machine
learning is used for the rapid surveying and summarization of datasets, optimizing the use
of available scientific expertise for decision making.

3.3. Application to Pump-Probe ARPES

Alternatively, the analysis-in-the-loop approach provides scientists with the ability to
rapidly adapt to changes in experimental conditions and to remove dataset bias, by treating
software as a malleable tool rather than a fixed constraint. To give an example where
this is valuable, we now turn to issues of systematic bias arising in pump-probe ARPES
experiments. Because fourth harmonic or high harmonic generation is common in attaining
DUV and XUV pulses from Ti:Sapph lasers, pump-probe ARPES experiments are especially
susceptible to laser intensity fluctuations. These fluctuations can create confounding effects
where infrared and UV doses can be highly correlated with measured delay time. These
issues compound with other nonlinearities in the photoelectron detection process [44]. One
very common way of minimizing this effect, if stabilizing the source power is not feasible,
is to repeat the experiment in many short repetitions so that transients are better spread
across different delays. Although not guaranteed to remove the correlation between delay
and laser power, this approach is very common on photoemission apparatus because it
is simple to shoehorn it into complicated data acquisition software merely by running
additional sweeps. The resulting total dose delivered can be visualized in this scheme
for an actual experiment in Figure 4a. Despite the appearance that this minimizes the
effects of transients, when we average data across repetitions, we see that there is still a
pernicious dependence of mean dose, measured by total photoelectron yield, as a function
of the experimental delay, as in Figure 4b. Properly removing the bias requires stratifying
individual experimental runs by dose cohort and randomly shuffling the acquisition order
so that there can be no correlation. Adaptively accommodating these kinds of responses to
issues arising during acquisition requires a dynamic and cooperative approach between
acquisition and analysis. In this narrow case, AutodiDAQt provides support for acquisition
shuffling in either of the supported acquisition paradigms.
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Figure 4. Using analysis-in-the-loop to improve experimental reliability. (a,b) Scan primitives
provide options to reduce systematic bias in time-resolved angle-resolved photoemission spectroscopy
experiments. (a) laser power fluctuations over a Tr-ARPES experiment acquired by traversing
delay and repetitions in major delay order. (b) Systematic bias due to small laser power variations
throughout the experiment (yellow dots and trend), which are removed by acquiring data in random
order (simulated with identical variability, blue points).

In the broader context, deeper cooperation between DAQ-aware user analysis pro-
grams, such as PyARPES [9] in the context of angle-resolved photoemission spectroscopy,
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permit scientists to rapidly define acquisitions over trajectories that are challenging to
define without expert knowledge. In this approach, it is straightforward to collect data
along a particular path in a given material’s 2D surface Brillouin zone, or in the 3D bulk
Brillouin zone.

4. Discussion

AutodiDAQt makes some assumptions about the data acquisition task to simplify
the acquisition runtime. Significantly, because AutodiDAQt implements the acquisition
runtime as a set of asynchronous tasks running on a single process, AutodiDAQt assumes
that reads from instrumentation are IO bound rather than CPU bound. Although this
is not a strict assumption, communication with another process that is set up during
the application startup is still possible, circumventing this assumption requires that the
end user take care of any multitasking concerns arising out of the partial adoption of
multiprocessing.

Despite this constraint, the AutodiDAQt runtime is a very low overhead, as can be
verified by running the profiling benchmarks included in the source repository. Benchmarks
are always machine dependent, but on plain consumer hardware available at the time of
publication, the overhead per experimental configuration (“point”) is in the order of 200 µs
when running an acquisition generating synthetic data from a 250 px by 250 px virtual
CCD. As AutodiDAQt is not intended for applications that need to operate instruments in
closed loop control or collect data in real-time, overheads of less than one millisecond per
point makes the use of multiprocessing unnecessary for most experiments. AutodiDAQt
achieves this level of performance by running UI repainting infrequently, using the Qt event
loop in place of the standard library event loop, and by performing essentially no data
bookkeeping other than memory allocation during an experimental run. All data collation
and transformation is deferred to a separate process once an experiment is complete.

5. Conclusions

Compared to the existing approaches to the data acquisition task, AutodiDAQt rep-
resents a compromise between data acquisition simplicity and holism that makes it the
ideal platform for scientists who do not want the writing of software to overshadow their
central task: collecting and understanding data. By providing synchronous and isolated
control and analysis via AutodiDAQt Receiver, this compromise is better seen as a strength,
which we believe will enable a new generation of experiments driven by real-time ML
analysis during the experiment. Analysis isolation encouraged by the remote broker design
of AutodiDAQt minimizes the trust surface area between user code and DAQ code, making
AutodiDAQt appropriate for experiments with many nonexpert users. As scientists are
allowed to make more parsimonious use of time during experiment design and during
acquisition, AutodiDAQt opens the door to treating data collection as a living and malleable
part of the analysis process.
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listing 1; Figure S5: Structure of the AutodiDAQt Framework and Experiment Control Flow. Refer-
ences [45–49] are cited in the Supplementary Materials.
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