
Citation: Zasada, A.; Hashmi, M.;

Fellmann, M.; Knuplesch, D

Evaluation of Compliance Rule

Languages for Modelling Regulatory

Compliance Requirements. Software

2023, 2, 71–120. https://doi.org/

10.3390/software2010004

Academic Editors: Silvia Bonfanti

and Juri Di Rocco

Received: 3 August 2022

Accepted: 25 November 2022

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Evaluation of Compliance Rule Languages for Modelling
Regulatory Compliance Requirements
Andrea Zasada 1 , Mustafa Hashmi 2,3,* , Michael Fellmann 1 and David Knuplesch 4

1 Institude of Computer Science, University of Rostock, 18057 Rostock, Germany
2 La Trobe LawTech, La Trobe Law School, La Trobe University, Melbourne, VIC 3086, Australia
3 Institute of Law and Technology, Autonomous University of Barcelona (IDT-UAB), 08193 Bellaterra, Spain
4 alphaQuest GmbH, 89077 Ulm, Germany
* Correspondence: m.hashmi@latrobe.edu.au

Abstract: Compliance in business processes has become a fundamental requirement given the con-
stant rise in regulatory requirements and competitive pressures that have emerged in recent decades.
While in other areas of business process modelling and execution, considerable progress towards
automation has been made (e.g., process discovery, executable process models), the interpretation
and implementation of compliance requirements is still a highly complex task requiring human
effort and time. To increase the level of “mechanization” when implementing regulations in business
processes, compliance research seeks to formalize compliance requirements. Formal representations
of compliance requirements should, then, be leveraged to design correct process models and, ide-
ally, would also serve for the automated detection of violations. To formally specify compliance
requirements, however, multiple process perspectives, such as control flow, data, time and resources,
have to be considered. This leads to the challenge of representing such complex constraints which
affect different process perspectives. To this end, current approaches in business process compliance
make use of a varied set of languages. However, every approach has been devised based on different
assumptions and motivating scenarios. In addition, these languages and their presentation usually
abstract from real-world requirements which often would imply introducing a substantial amount
of domain knowledge and interpretation, thus hampering the evaluation of their expressiveness.
This is a serious problem, since comparisons of different formal languages based on real-world
compliance requirements are lacking, meaning that users of such languages are not able to make
informed decisions about which language to choose. To close this gap and to establish a uniform
evaluation basis, we introduce a running example for evaluating the expressiveness and complexity of
compliance rule languages. For language selection, we conducted a literature review. Next, we briefly
introduce and demonstrate the languages’ grammars and vocabularies based on the representation
of a number of legal requirements. In doing so, we pay attention to semantic subtleties which we
evaluate by adopting a normative classification framework which differentiates between different
deontic assignments. Finally, on top of that, we apply Halstead’s well-known metrics for calculating
the relevant characteristics of the different languages in our comparison, such as the volume, difficulty
and effort for each language. With this, we are finally able to better understand the lexical complexity
of the languages in relation to their expressiveness. In sum, we provide a systematic comparison
of different compliance rule languages based on real-world compliance requirements which may
inform future users and developers of these languages. Finally, we advocate for a more user-aware
development of compliance languages which should consider a trade off between expressiveness,
complexity and usability.

Keywords: conceptual modelling; compliance rules modelling; regulatory compliance; business
processes; expressiveness; language complexity

Software 2023, 2, 71–120. https://doi.org/10.3390/software2010004 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software2010004
https://doi.org/10.3390/software2010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0000-0001-6895-0131
https://orcid.org/0000-0002-6376-082X
https://orcid.org/0000-0003-0593-4956
https://doi.org/10.3390/software2010004
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software2010004?type=check_update&version=2

Software 2023, 2 72

1. Introduction

Companies are required to comply with an increasing number of regulations of dif-
ferent origins and complexity. Some rules are required by law, while others are rooted in
best-practice frameworks, company policies and inter-company business contracts. One
of the first legal initiatives to assure compliance was the American Sarbanes-Oxley Act
(SOX) of 2002, a U.S. federal law which had a great impact on all financial reporting pro-
cesses [1]. Not only did it increase the transparency of financial reporting, it also paved
the way for auditors to identify ineffective control mechanisms [2]. Other regulations such
as BASEL series of acts I-III or MiFID (Markets in Financial Institute Directive) BASEL
or followed, to address different aspects of financial reporting, including the disclosure
of potential risks [3]. Moreover, compliance requirements not only arise from legislation,
but have also developed from codes of practice and standards such as ISO 9000 ff, SCOR,
ISO/IEC 27018:2014, GDPR [4], guidelines and business partner contracts, and internal
control objectives [5,6]. Ensuring that all these compliance requirements are met is a major
challenge for many enterprises, since it requires a labour-intense and error-prone review of
all business operations.

This is all the more important, as enterprises increasingly rely on business process
models and execution environments to manage and automate their business processes [7].
The collected data about processes and their execution greatly increases opportunities for
automation. Therefore, approaches to ensure compliance in business process modelling and
execution are regarded as highly relevant in the literature [6,8–22]. However, the existence
of a plethora of sophisticated languages and approaches, in turn, creates a new challenge:
how do we find a suitable compliance language to capture real-world compliance requirements?
In order to decide which language fits best, two criteria are of utmost importance: (i) the
language needs to be expressive enough to intuitively capture the respective compliance
requirements of a business process; and (ii) the language has to be usable by compliance
experts viz. it should be as complex as necessary and, at the same time, as simple as possible.
Notice that, in this article, ur focus is not on the usability of modelling language, but
rather on the expressive power and complexity of the compliance rule modelling languages.
The usability analysis of modelling languages is another concern and deserves to be
addressed separately as is achieved by Becker et al. [23].

Some works address this challenge by comparing different compliance languages.
For example, the authors of COMPAS-Project [3] report on available models, languages
and architectures for assuring compliance. Whereas Becker et al. [23] analyzes existing
approaches for compliance checking regarding their applicability to arbitrary modelling
techniques and their ability to address a wide range of compliance rules. Fellmann and
Zasada [24], on the other hand, provide a comprehensive overview and classification
of compliance languages. More recently, Hashmi and Governatori [25] mapped deontic
modalities using compliance patterns proposed in different modeling languages. However,
to the best of our knowledge, no comprehensive study has been reported in the literature
that formally investigates the complexity and expresiveness of existing compliance require-
ments modelling languages. To obviate this shortcoming, in this article, we address the
following research questions: to what extent can compliance requirements be expressed
by existing languages? Thus, the contribution of this paper is a detailed review of the
expressiveness of compliance rules languages. In addition, we also evaluate the complexity
of such languages.

The remainder of the paper is structured as follows. In the next section, we discuss the
overall research procedure adopted for this paper (Section 2). After that, we elaborate on
our language selection process (Section 3) and introduce the compliance requirements of a
financial-services process (Section 4) that we use for the rule formalisation and evaluation
of the languages’ semantic expressiveness (Section 5). We then consolidate the results by
conducting a comparative analysis, pointing out representable deontic effects on the one
hand, and the textual complexity of the formalisation on the other (Section 6). Thereafter,

Software 2023, 2 73

we discuss related work (Section 7) and the analysis’ results (Section 8), before we conclude
the paper with some final remarks and indications for future research (Section 9).

2. Research Approach

This paper provides a systematic procedure to compare and evaluate the expressive-
ness and complexity of compliance rule languages. Embedded in techniques for process
modelling analysis, business process compliance (BPC) aims to design, analyse and monitor
requirements that are imposed by laws, regulations and standards [26]. Existing approaches
in this well-developed field of research allow for compliance checking from different per-
spectives, i.e., declarative or normative, using a textual and/or graphical representation
to formally express compliance rules for subsequent model checks. Being able to elicit
relevant process information, by abstracting from the natural language in which regulatory
requirements are encoded, is one of the key challenges of BPC research.

Naturally, existing methods deviate in the exactness and granularity in which com-
pliance requirements are modelled, due to the applied formalism. Focussing on technical
implementation, it often remains unclear to what extent the formalism captures the mean-
ing of a given compliance rule accurately. The chosen formalism also entails a certain
degree of complexity, which has a great impact on the understandability of the respective
language. A number of approaches, therefore, suggest a graphical layer, or the use of
patterns, to hide the complexity of the underlying fomalism. However, neither of these
approaches distinguishes between the introduced “high-level” language and the formal-
ism itself, when discussing its expressiveness and complexity. In fact, most approaches
focus on the modelling and verification of compliance rules without conducting usability
studies [23].

In addition, using different running examples tailored to a specific problem often
hampers the fair comparison between approaches and impairs their generalisability. Hence,
we refine and extend the discussion of the applicability of compliance rule languages to:

1. The expressiveness in terms of the different scope (i.e., control flow, etc.) and deontic
effects and modalities (i.e., obligations) of a compliance requirement as a norma-
tive construct.

2. The complexity measured by metrics that help untangle the components of formulas
(i.e., operands, operators) as well as the elements of graphs (i.e., nodes, edges).

With the proposed methodology, we aim to determine the differences with which
existing compliance rule languages can reflect the intuition of a given set of compliance rules
and take measures to quantify the complexity of the applied formalism. We thereby provide
an integrated approach to compare the expressiveness and complexity of compliance rule
formalisations at design-time. The main contributions of this paper are:

• A systematic literature review and classification of business-process compli-
ance languages.

• A practical application of typical compliance rule languages found in the literature.
• A comparison of the expressiveness and complexity for textual and visual compliance

rule languages.

The overall approach consists of three phases: survey, design and evaluation (cf.
Figure 1). The phases were adopted from Ly et al. [27], who derived a framework for
Compliance Monitoring Functionalities (CMF) which facilitates a systematic comparison of
approaches to compliance monitoring at run-time.

Phase 1—Survey: We start our survey with the definition of search phrases and criteria
to set the goals and boundaries for the following literature review. We focus on
approaches that are explicitly described as compliance approaches and refrain from
technical-oriented approaches that view compliance as a peripheral aspect and solve
rather specific problems. The approach had to be designed for end users of IT
tools, which implies the availability of a meta-model or grammar which enables the
automated execution of compliance checks (cf. Section 3).

Software 2023, 2 74

The comparison of the approaches is driven by a realistic process from the finance
industry which incorporates different types of compliance requirements. The require-
ments are divided into four process perspectives [28]: control flow, data flow, time
and resources. In addition, we include the concept of a compensation to demonstrate
how temporary compliance violations can be resolved later.

Phase 2—Modeling: After selecting and classifying the compliance approaches, we briefly
introduce each language used in the respective approaches, before modelling the
requirements derived from the given example process. As we distinguish between a
high-level language (if applicable) and the underlying formalism, we provide a large
number of details for the subsequent evaluation (involve [29] in Section 5.5). More-
over, we juxtapose textual and visual approaches to simplify the direct comparison
between similar approaches (cf. Section 5).

Phase 3—Evaluation: In the last phase, the approaches are compared regarding their
expressiveness and complexity. First, the expressiveness is measured by the level of
completion with which the requirements introduced in Phase 1 have been modelled
in Phase 2. To extend the discussion to the correct interpretation and modelling of
each compliance requirement, we characterize the semantics of the formalised rules
with regard to a number of modalities (i.e., obligations, permissions and prohibitions)
which are based on legal theory [25] (cf. Section 6.1).

Second, the complexity is measured by means of metrics which were originally used
to analyse the complexity of software (modules). In this context, they serve as a
simple but effective instrument to compare the lexical complexity of the different
modelling languages.

In line with metrics for programming languages, both the variety and the volume of
the used language constructs is considered when lexical complexity is determined.
To do this, we first discuss the applicability of software metrics, before we apply the
Halstead metrics to the rule formalisation developed in Phase 2 (cf. Section 6.2).

Define selec-
tion criteria

Classify ap-
proaches and
requirements

Model com-
pliance rules

Compare formal-
isation results

Review compli-
ance literature

Select compliance
requirements

Phase 1:
Survey

Phase 2:
Modeling

Phase 3:
Evaluation

Figure 1. Phases of applied research procedure.

3. Language Selection Process

The literature review was conducted to identify relevant approaches to BPC. To
structure our literature search and analysis, we followed the systematic review process
proposed by Webster and Watson [30]. Since we were especially interested in compliance
languages, we first selected suitable keywords and queried prominent scholarly databases
such as Google Scholar, Science Direct, Scoupus, Web of Science to find scholarly references.
To attain highly relevant articles, we continuously refined our searches in each iteration. To
restrict our search, right from the beginning, to compliance publications in close relation
to process management, we chose the “all in title” prefix. The final query was composed
of the keywords compliance (rule OR language OR pattern OR pattern-based) (business OR
process OR workflow), which we also provided in their plural forms. We then obtained all
76 results of the literature search, and sorted out 2 duplicates, before we reviewed and
discussed the remaining 74 hits based on title and abstract. The list of identified articles
can be retrieved from https://www.dropbox.com/s/buyju4d6zjyfjdm/Library.pdf?dl=0,

https://www.dropbox.com/s/buyju4d6zjyfjdm/Library.pdf?dl=0

Software 2023, 2 75

accessed on 3 August 2022. Note that the list contains only 58 entries due to the temporal
availability of some reference details.

The pre-selection revealed 67 relevant approaches, for which a forward/backward
search was conducted. The main criteria for selecting a paper was that it addressed
compliance checking and focused on instruments such as languages or patterns to express
compliance requirements in order to allow for compliance checking. Thereby, we identified
177 additional references which were reviewed by criteria introduced in the next section.

In order to be able to conduct an in-depth comparison of languages and also to report
the results in sufficient detail, we had to reduce the large number of possible approaches
further. In addition, this is also reasonable since, despite the large number of publications,
there exists only a limited number of distinct compliance approaches that make use of an
even smaller set of compliance languages. With “approach”, we denote the fundamental
strategy of compliance rule representation and/or checking which, in turn, can rely on (one
or multiple) compliance languages. We, hence, applied additional filtering criteria [31] for
the inclusion of compliance approaches (cf. Figure 2): (a) We selected approaches that are
explicitly described as a compliance language or pattern catalogue. With this, we required
some versatility of the approach and sorted out approaches that deal with compliance to a
certain degree, but primarily solve other (or very specific) problems; (b) We preferred “high-
level” languages or patterns intended for the business analyst or compliance expert over
lower level languages and patterns. With this, we selected approaches that address end
users of IT tools rather than IT experts and eliminated approaches that primarily focus on
implementation aspects; (c) We required that a meta-model or grammar is provided in one
of the publications of the approach. With this, we ensure that the approach, though being
versatile, can nevertheless be applied in a systematic way, i.e., that there are principles
that govern the composition from primitive language or patterns to complex expressions;
(d) We required the machine processability of expressions created with the compliance
language or pattern system, at least in theory. With this, we ensured that the approach is
amenable to IT support and, thus, eliminated management frameworks and approaches
with little to no automation potential.

(i) Method-
ological work?

(ii)
Model analy-
sis approach?

(a)
Language or pat-
tern catalogue?

(b)
"High-level" language?

(c)
Meta-model
or grammar?

(d)
Machine pro-
cessability?

Initial sample Reviewed by ti-
tle and abstract

Forward/backward
search

Literature review

Inclusion criteria

Exclusion criteria

(2)

(3)

(1)

List of approaches

Figure 2. Filtering criteria.

Besides these inclusion criteria, we additionally applied exclusion criteria. We did not
further consider an approach: (a) If it consisted of pure methodological work—e.g., pro-
cedures for how to deal with compliance problems; (b) If existing (formal) languages are
applied in a transformation scenario where the initial model does not capture compliance

Software 2023, 2 76

rules explicitly and compliance rules are predominantly hard coded into the compliance
checking tool. Thus, we classify these languages as model analysis approaches.

The described procedure resulted in 44 approaches out of 208 reviewed papers. Al-
though all 44 approaches were considered as relevant, they were still overlapping in content.
Table 1 contains the results. In addition to the short description we give on the particular
approach, we also decided to assign each language to one or more categories, namely:
graph, pattern, query and logic. Graph-based approaches typically use visual elements to
model compliance rules, while pattern, query and logic-based approaches frequently rely
on textual formulas. Often, these concepts are combined to model a compliance rule as,
for example, in [32], where queries are represented as visual patterns and mapped to a
formal expression in computational tree logic (CTL).

By comparing a class of languages instead of single unlinked approaches, we aim to
generalize the results and provide a substantial knowledge base to better understand the
complexity and expressiveness of compliance rule languages. For the language comparison,
we finally chose two languages of each category, as indicated in Table 1. The seven lan-
guages are formally introduced in Section 5, before being compared in Section 6 based on an
example process and its compliance requirements, which are presented in the next section.

Table 1. List of selected approaches.

Language Approach
Classification

Graph Pattern Query Logic

BPMN-Q [32] * Pattern-based language expressing compliance requirements as BPMN
graphs with a formal representation in CTL. X X X

CRL [33] * Pattern-based language expressing compliance requirements as atomic
and composite pattern with a formal representation in LTL and MTL. X

Declare [28] *
Framework supporting several declarative languages (i.e., ConDec, Con-
Dec++, DecSerFlow) for modelling graphical constraints with a formal
representation in LTL.

X X

DCR [34]

Combination of two logics for verifying compliance via model checking.
Process and organisational view are expressed as graphs before being
translated into description logic. The data view is implemented as hybrid
logic.

X X X

DMQL [35] * Query language based on graph theory for matching patterns in concep-
tual models represented in arbitrary modelling languages. X X X

eCRG [36] *
Visual language for modelling compliance rules with a formal repre-
sentation in FOL. Specified compliance rules are verified against event
logs.

X

PCL [37] *
Combination of deontic and defeasable logic to capture the intuition of
normative requirements. Compliance rules are formally represented as
obligations, prohibitions and permissions.

X

Petri-net Pattern [38] Repository of frequent compliance patterns formally represented as
Petri-nets. Conformance checks are performed on the basis of event logs. X X

PENELOPE [39] * Declarative language for expressing temporal deontic assignments. Com-
pliance rules are formally represented as obligations and permissions. X

PROPOLS [40]
Pattern-based property specification language based on OWL. Specified
properties are used to verify compliance in BPEL service composition
schemas.

X X

PPSL [41]
Pattern-based property specification language based on UML activities.
Constraints are modelled as visual patterns with a formal representation
in LTL.

X X

Rule Pattern [42]
Rule-based process mining approach enclosing patterns formally
grounded and divided into static (FOL), dynamic (LTL) and composed
pattern.

X

Abbreviations: Business Process Model and Notation Query Language (BPMN-Q), Business Property Specifi-
cation Language (BPSL), Compliance Request Language (CRL), Computational Tree Logic (CTL), Diagramed

Software 2023, 2 77

Model Query Language (DMQL), Dynamic Condition Response Graph (DCR), extended Compliance Rule Graph
(eCRG), Process Compliance Language (PCL), Linear Temporal Logic (LTL), Metrical Temporal Logic (MTL),
Process Entailment from the Elicitation of Obligations and Permissions (PENELOPE), Process Pattern Specification
Language (PPSL), Property Specification Pattern Ontology Language for Service Composition (PROPOLS),
Unified Modeling Language (UML), Web Ontology Language (OWL). Comment: Compared approaches are
marked with *.

4. Running Example

Since our main motivation is to compare compliance languages, we begin with estab-
lishing a common ground for comparison. We do this in this section by providing a running
example from the financial industry. In Section 4.1, we present a securities purchasing
process which we use to derive types of compliance requirements in Section 4.2.

4.1. Process Model

Compliance has a long tradition in the finance sector. Examples have been drawn,
e.g., from sales and consultation [43], loan application [33,35] and account opening [7],
and studied with respect to the different constraints that occur in a process [44]. In this
paper, we introduce a financial advisory process. The compliance requirements of this
process reflect financial regulations of the German Securities Trading Act (WpHG), the EU
Markets in Financial Instruments Directive (MiFID II) as well as the US Foreign Account Tax
Compliance Act (FACTA). Basically, these regulations establish principles and criteria to take
appropriate measures against insider trading and money laundering [45] The classification
of these requirements is shown in Table 2.

Table 2. Classification of compliance requirements based on process aspects.

Control flow R1: Order
R2: Occurence

Data flow R3: Data value
R4: Interaction

Resources R5: Employee role
R6: Segregation of duties

Time R7: Point in time
R8: Period of time (interval)

The process model shown in Figure 3 resulted from a process workshop and a number
of interviews conducted with the compliance officer and three customer advisors of a
German savings bank [46]. During the first iteration, we focused on the general structure
of the process including the legal regulations that apply. The second iteration helped us to
identify compliance practices and corresponding requirements. The original purpose of
the qualitative interviews was to discover how IT helps employees to ensure compliance.
Hence, the compliance requirements had not been the focus until that point.

The process exemplifies a securities purchase for new and existing customers. It was
selected due to its relevance for day-to-day operations and its transferability to other asset
classes. The process starts with a new customer request and branches off into activities
that are either related to the approval of a new customer, or the maintenance of an existing
customer. Based on the customer’s knowledge base and investment profile, the advisor
discloses the individual investment risks to the customer before the investment advice
is given and sufficiently documented. The process is completed by the execution of the
customer order and some administrative tasks related to the securities purchase. In the last
step, the invoice is sent to the customer.

Software 2023, 2 78

Update cus-
tomer data

Check if
customer

exists

Conduct customer
identification

& legitimation

Conclude cus-
tody account

Send legitima-
tion & custody

account documents

Open cus-
tody account

Conduct customer
information

Execute plau-
sibility check

Obtain cus-
tomer data

� �

Conduct risk
disclosure

Conduct invest-
ment advice

Create consul-
tation protocol

Conclude securities
purchase contract

Hand out cus-
tomer copies

Anti-money laundering officer Market support

Market support

Advisory sub-process

Advisory sub-process

Execute plau-
sibility check

Conduct cus-
tomer order

Purchase in-
voice sent �

Custody
account
contract

WpHG
customer

information

Basic informa-
tion security &
capital invest.

Target invest-
ment portfolio

Product infor-
mation sheet

Consultation
protocol

Securities
purchase
contract

Copy of sales
documents

Investment
profile

WpHG
question
annaire

Integ. IT
solution

Document
mgmt. syst.

Securities
order syst.

Document
mgmt. syst.

Document
mgmt. syst.

Securities
order system

Integ. IT
solution

Securities
databank

�

R6, R7 R4 R1, R2

R3 R5

R8, R9

Customer
request received

New
cus-
tomer?

Yes

No

No

No order

Yes

Customer
approval? Purchase

invoice sent

Figure 3. BPMN model of the securities purchase process.

Software 2023, 2 79

4.2. Compliance Requirements

With the adoption of legal standards such as SOX [1] and BASEL III [47], financial
institutes have become obliged to establish and maintain an internal control system that
facilitates an effective risk and compliance management.

Over the course of this process, compliance requirements are compiled from legal
releases and distributed through internal channels which are run by the compliance de-
partment. The department is headed by legal experts, who deal with the complexity of
externally imposed regulations and manage the implementation of compliance require-
ments. Their work is supported by information systems which are specialised, for example,
for the retrieval of information (securities databank) or business operations (order system)
which have a relation to compliance regulations (see Figure 3). The electronic document-
management system is the foundation for distributing compliance information, with links
to concrete working instructions, questionnaires, protocols and contracts. Working instruc-
tions included the legal references that served us as template to formulate nine compliance
requirements (see Table 3).

The first requirement R1 stipulates which information must be obtained from the
customer before a subsequent activity can be performed. R2 simply states which informa-
tion needs to be shared with the customer. The two requirements are related to R3, which
requires the customer to acknowledge the receipt of this information. R4 specifies which
documents need to be forwarded to another business unit after the customer has been
identified and legitimised. R5 determines the competence level (role) of the consultant
during the advisory process, while R6 stipulates which two activities must be performed
by employees with different roles (four-eyes principle). R7 and R8 indicate whether a task
is related to a specific point in time or a time interval.

Table 3. Compliance requirements of the securities purchase process.

ID Compliance Requirement

R1 The customer data must be received before the individual risk assessment can
take place.

R2 The customer advisor must provide the two obligatory brochures WpHG Customer
Information and the Basic Information Securities and Capital Investment.

R3 The customer advisor must ensure that the customer acknowledges receipt of the
two brochures

R4 After concluding the custody account contract, the customer legitimation and the
account documents need to be send to market support.

R5 The investment advice needs to be conducted by a customer advisor with a
securities competence of level C or above.

R6
The customer identification and legitimation must be handled by the customer
advisor, while suspected cases of money laundering must be checked by an anti-
money-laundering officer.

R7 Before concluding a custody-account contract, the customer advisor needs to wait
until the suspected case of anti-money laundering is resolved.

R8 The customer information must be updated with every future customer contact.

R9
Stockless custody accounts are charged with a fee of EUR 5 per year. If the fee is
not paid, the account is terminated by market support. The account is reactivated
by a new securities purchase.

The classification of these requirements is shown in Table 2. It is comprised of the
four process perspectives: control flow, data flow, resources and time, which have been
addressed in many compliance approaches. In addition, in R9, we included the concept of
a compensation for managing exceptions from a rule [27]. A compensation usually consists
of an if-then-else statement [33] which defines what happens when the first condition cannot
be met, and a second repairing action has to be implemented in order to comply. Based

Software 2023, 2 80

on these five requirement types, we develop a formal representation of the rules in the
next section.

5. Language-Specific Compliance Rule Formalisation

In this section, we present the formalisation of the selected languages. For this, we first
introduce the basic constructs of the language. We then demonstrate how well these lan-
guages can express the previously categorised compliance requirements. Finally, we specify
the formal semantics of the expressions by providing a mapping to a formal language.

5.1. BPMN-Q

BPMN-Q (Business Process Model and Notation Query Language [32]) is a visual query
language for specifying control-flow and data-flow rules as a pattern which can be used to
query a repository of BPMN process models. Each pattern has a formal representation in
CTL to check for compliance violations, and a set of anti-patterns [48] to query the part of the
process model causing the violation. The approach builds on existing pattern classifications
such as [49] describing the presence, absence and/or ordering of activities [9]. BPMN-Q
comprises two types of patterns, namely, control-flow and conditional control-flow patterns.
The latter are used to express data conditions on activities. For the rule formalisation in
BPMN-Q, we adopted four (conditional) control-flow patterns (see Table 4). Anti-patterns,
which are generated from the original patterns to describe potential violations, have not
been considered (they can be used to, e.g., detect violations at the runtime of the process,
i.e., queries for violations).

A BPMN-Q pattern is basically a rudimentary BPMN graph composed of activities and
events and a path edge connecting the flow objects [32]. If a data condition is consigned in
the requirement, the pattern is annotated by an implicit data input–output.

Table 4. Excerpt of BPMN-Q patterns (adopted from [32]).

Pattern Type CTL Mapping

A

� Leads to �
Global-scope Presence
(Leads To)

AG(start→ AF(executed(A)))

Data
condition

A/
@A B

� Leads to �

Conditional Response
(Leads to)

AG((executed(A) ∧ stableDataCondition)→
AF(executed(B)))

A B

� Preceedes�
Before-scope Presence
(Precedence)

¬E[¬executed(A) U ready(B)]

Data
condition

A/
@A B

� Precedes�

Conditional Presence
(Precedence)

¬E[¬(executed(A) ∧ stableDataCondition)
U ready(B)]b

Naming convention used in the mappings: logical operators (¬ not, ∧ and, → implies); activities A and B,
anonymous activity @A; predicates start (process), end (process), ready (activity), executed (activity); temporal
operators: A (every), E (some), F (final), G (global) and U (until).

The CTL semantics for the visual patterns (cf. Figure 4) are listed in Table 5. R1 has
been modelled using the Before-scope Presence (Precedence) pattern (i.e., ¬E[¬executed(A) U
ready(B)]) indicating that the individual risks cannot be assessed (B) before the customer
data has been received (A). In contrast to R1, the update of the customer information (A)
required in R8 applies to the whole process (i.e., AG(start → AF(executed(A)))) and can,

Software 2023, 2 81

thus, be modelled with the Global-scope Presence (Leads to) pattern. Note that the graphical
notation of the Precedence and Leads to pattern does not change the diagram except for the
name of the pattern that is assigned to the path edge [9].

Receive
customer data

Perform risk
assessment

� Precedes�
′′

R1: Before-scope presence

Provide
brochure

WpHG
customer

information

Basic info sec
& cap inv.

R2: Data condition

Provide
brochure

Conduct
customer
advisory

Signature form

� Precedes�
′′

R3: Conditional presence

Provide
brochure

Conduct
customer
advisory

Account
information

Customer
legitimation

� Precedes�
′′

R4: Conditional response

Provide
brochure

WpHG
customer

information

R7: Data condi-
tion

Update
customer

information� Precedes�
′′

R8: Global-scope pres-
ence

Check
custody
account

Charge 5
Euro per year

Stockless
custody
account

� Leads to �
′′

Check
custody
account

Dissolve
custody
account

Stockless
custody
account

� Leads to �
′′

Check
custody
account

Reactivate
custody
account

Stockless
custody
account

� Leads to �
′′

R9: Conditional response

Figure 4. Formalised requirements in BPMN-Q patterns.

R3 and R4 visualize the dependency between an activity and a data condition. For both
patterns, the data condition is aligned with the first activity denoted by the name of the
data object and its state at the time the activity is executed. For the formal definition of the
stableDataCondition, see [32]. R2 and R7 depict two more data conditions; however, due to
the absence of a second activity, it is modelled only with a single activity. Alternatively,
these rules can be realized with an anonymous activity (@A), but the corresponding textual
requirements do not specify the relation to a second activity. Through the lack of an explicit
compensation pattern, R9 is modelled by repeating the initial activity and data condition.

As the formalisation shows, BPMN-Q patterns are easy to read and interpret, al-
though the complexity of the corresponding CTL formula increases with respect to condi-
tional patterns and to compliance rules which are composed of more than one pattern. To
apply BPMN-Q, however, all process models have to be specified in BPMN, and, although
there is the possibility to extend the language, other process perspectives such as resources
(R5 and R6), time and data are currently not supported.

Software 2023, 2 82

Table 5. Mapping of formalised requirements from BPMN-Q to CTL.

ID CTL Representation

R1 ¬E[¬executed(Receive customer data) U ready(Perform risk assessment)]

R2 AG(ready(Check new customer)→ state(Customer information brochure, provided))

AG(ready(Check new customer)→ state(Basic information securities and capital invest-
ment brochure, provided))

R3 ¬E[¬(executed(Conduct customer advisory) ∧ state(Signature form, signed) U
ready(Provide brochures)]

R4 AG((executed(Conclude custody account contract) ∧ state(Documents, received)) →
AF(executed(Send account information and legitimation documents)))

R5 R5 cannot be modelled with BPMN-Q semantics.

R6 R6 cannot be modelled with BPMN-Q semantics.

R7 AG(ready(Conclude custody account)→ state(Money-laundering case, solved))

R8 AG(start→ AF(executed(Update customer information)))

R9 R9 cannot be modelled with BPMN-Q semantics.

5.2. CRL

CRL (Compliance Request Language, [33]) is a systemised collection of typical complaince
patterns. CRL provides four classes of rule patterns as well as a mapping to temporal logic
to verify compliance rules annotated in a process model. Atomic patterns (i.e., order
and occurrence, [50]) are aligned with the property specification patterns developed by
Dwyer [49]. This pattern collection has been extended for compliance checking introducing
resource patterns, timed patterns and a notion for composite patterns [51]. A special feature
of CRL is that the approach combines two logics for the formal presentation of patterns.
Beside Linear Temporal Logic (LTL), Metric Temporal Logic (MTL) is applied to compensate
for the missing support of timed patterns in LTL [52]. An excerpt of the patterns and their
formal specification in LTL is given in Table 6.

A compliance rule is modelled by choosing the correct pattern from the classes of the
CRL meta-model [33]. The first two classes reflect the control flow (i.e., atomic patterns)
and resource perspective of a process. The patterns of the other two classes can be used to
depict time conditions (i.e., timed patterns) and to model dependencies between operands
(i.e., composite patterns). Operands represent business objects as well as activities and
events, and their attributes or conditions [53]. As a general rule, an operand begins with
an activity (or event), followed by one or more business objects describing the particular
compliance task. The formulation of pattern-based expressions is comparable to the use of
activities and events of Event-driven Process Chains. Atomic patterns can be combined
into more complex and even nested expressions using Boolean operators (i.e., AND, OR)
and parentheses. An expression is built from patterns and operands, which have a direct
mapping to either LTL or MTL.

Table 7 shows how the patterns introduced in Table 6 are applied to model compliance
rules. Note that the example rules do not require an original timed pattern, which is why
we rely exclusively on LTL semantics [54]. R1, R4 and R8 are modelled with the atomic
patterns Precedes and LeadsTo, respectively. Both patterns imply that the rule has to hold
for every occurrence of the activity. In the case of R1, one task has to be performed before
another task (¬Q W P); that is, the risk analysis cannot take place (¬Q) until the customer
data have been received (P).

Software 2023, 2 83

Table 6. Excerpt of CRL patterns (adopted from [33]).

Pattern Type LTL Mapping

P Exists Atomic Pattern F(P)
P LeadsTo Q Atomic Pattern G(P→ F(Q))
P Precedes Q Atomic Pattern ¬Q W P
t PerformedBy R Resource Pattern G(t→ t.Role(R))

t1 SegregatedFrom t2 Resource Pattern G(t1.Role(R) → ¬(t2.Role(R))∧ G(t1.User(U) →
¬(t2.User(U))

P Frees Q Atomic Pattern P R Q
P (LeadsTo|DirectlyFollowedBy) P1 (Else|ElseNext)
P2, . . . , (Else|ElseNext) Pn

Atomic Pattern G(p→ F|X(p1∧1≤i<n−1(F|X(pi NotSucceed)

∧ (pi) NotSucceed→ F|X(pi + 1)))))

Naming convention used in the mappings: logical operators (¬ not, ∧ and,→ implies); operands P, Q, R, T, pi

and ti with i, n ∈ ℵ; temporal operators F (final), G (global), R (release), W(weak until) and X (next).

On the contrary, R4 and R8 are modelled assuming that an activity, such as concluding
a custody-account contract (P), must be followed by sending the account documents and
the customer legitimation to market support (Q). Here, the focus shifts from activity Q to P
as the triggering element (G(P→ F(Q)). However, the exact time period, in which these
rules have to be fulfilled, cannot be specified until more information about the process is
given. For the same reason, interactions in terms of message exchanges between business
partners are not modelled explicitly [55].

Table 7. Mapping of formalised requirements using CRL patterns to LTL.

ID Pattern and LTL Representation

R1 ReceiveCustomerData Precedes PerformRiskAssessment

¬ReceiveCustomerData W(PerformRiskAssessment)

R2 (CustomerInformationBrochure And SecuritiesAndCapitalInvestmentBrochure) Exists

F(CustomerInformationBrochure ∧ SecuritiesAndCapitalInvestmentBrochure)

R3 NewCustomer.AcknowledgeInformationBrochures = ‘Yes’ FreesConductCustomerAdvisory

NewCustomer.AcknowledgeInformationBrochures = ‘Yes’ R(ConductCustomerAdvisory)

R4 ConcludeCustodyAccountContract LeadsTo (SendAccountDocuments And SendCustomerLegitimation)

G(ConcludeCustodyAccountContract→ F(SendAccountDocuments ∧ SendCustomerLegitimation))

R5 ConductInvestmentAdvice PerformedBy Role.CustomerAdvisorSecuritiesCompetence ≥ ‘C’

G(ConductInvestmentAdvice→ ConductInvestmentAdvice.Role(‘CustomerAdvisor’ ∧ SecuritiesCompetence ≥ ‘C’))

R6 (ConductCustomerIdentification And ConductCustomerLegitimation) SegregatedFrom CheckSuspectedMoneyLaunderingCase

G((ConductCustomerIndentification.Role(‘CustomerAdvisor’) ∧ ConductCustomerLegitimation.Role(‘CustomerAdvisor’)) →
¬(CheckSuspectedMoneyLaunderingCase.Role(‘AntiMoneyLaunderingOfficer’)) ∧ G((ConductCustomerIndentification.User(‘U’) ∧ Conduct-
CustomerLegitimation.User(‘U’))→ ¬(CheckSuspectedMoneyLaunderingCase.User(‘U’))

R7 MoneyLaunderingCase.Solved = ‘Yes’ Frees ConcludeCustodyAccount

MoneyLaunderingCase.Solved = ‘Yes’ R(ConcludeCustodyAccount)

R8 CustomerContact LeadsTo UpdateCustomerInformation

G(CustomerContact→ F(UpdateCustomerInformation))

R9 ((CheckCustodyAccount = ‘Stockless’) LeadsTo (CustomerPayFee = 5 ‘Euro’)) Else DissolveCustodyAccount Else ReactivateDissolvedCustodyAccount

G((CheckCustodyAccount = ‘Stockless’) → (F(CustomerPayFee = 5 ‘Euro’) ∧ F(CustomerPayFeeNotSuccceed) ∧ (CustomerPayFeeNot-
Succceed) → X(DissolveCustodyAccountNotSucceed) ∧ F(DissolveCustodyAccountNotSucceed) ∧ (DissolveCustodyAccountNotSucceed)
F(ReactivateDissolvedCustodyAccount))))

The atomic pattern P Exists indicates that the activity P has to occur at least once
during the process. In R2, this pattern is used to ensure that legal information in the form
of two brochures is passed to the customer (F(P)). To model the requirements R3 and R7,
we used the Frees pattern. It includes a data condition (cf. R3) that checks, for a new
customer (P), whether s/he has acknowledged the receipt of the obligatory brochures (Q).
That means that the second operand Q must be true up to and including the point where

Software 2023, 2 84

the operand P first becomes true (P R Q) [33]. In this way, most control-flow rules can be
expressed using only atomic patterns, which coincide with the control-flow patterns found
in the literature [44].

R5 and R6 are examples of two resource patterns. They can be used to assign a task
directly to a role, which can then be executed by several users (cf. R5). For the segregation
of duties (cf. R6), role and user are separated from each other. An alternative concept of
modelling the relation between activities whose execution might conflict is a compensation.
A compensation (cf. R9) is realised in CRL as an if-then-else statement [33]. Initiated by a
LeadsTo (or DirectlyFollowedBy) pattern, the Else (or ElseNext) pattern signifies that a primary
action (P) can be compensated by defining at least one repairing action (P1 . . . Pn).

While the presented patterns require, in general, only little interpretation, the com-
plexity of the underlying LTL formulas clearly increases with the complexity of the pattern
expression, as observed for resource patterns, and compensations and composite pattern
(cf. Table 7).

5.3. Declare

Declare [28,56] is a constraint-based language for the specification, verification, and
monitoring of processes and process orchestrations. Declare is based on a set of constraint
templates (i.e., visual control-flow patterns) which allow the specifying of the order in
which tasks should be executed. Constraints are visualised as connectors or annotations
to activities which, in turn, are drawn as boxes. A formal translation to LTL specifies the
semantics of Declare constraints. Table 8 shows examples of Declare templates and their
mapping to LTL.

Table 8. Excerpt of Declare constraints (adopted from [57]).

Visual Constraint Control Flow Pattern LTL Mapping

A

1..n
Existence(A) F(A)

A B Responded_Existence(A,B) F(A)→F(B)

A B Co_Existence(A,B) F(A)↔F(B)

A B Response(A,B) F(A)↔F(B)

A

C

B

Branched_Response(A,(B,C)) G(A→F(B∨C))

A B Precedence(A,B) (F B)→ (¬B U A)

A B1 of n Exclusive_1_Of_2(A,B) ((F A)∧(¬F B))∨((¬F A)∧(F B))

Naming convention used in the mappings: logical operators (¬ not, ∧ and, ∨ or, → implies, ↔ coincides);
operands A and B; temporal operators F(final) and G (global)..

Declare templates can be partitioned into existence templates, relation templates, choice
templates, and negation templates. Existence templates (e.g., Existence(A)) restrict the number
of occurrences for a given activity A. Dependencies and sequence orders between activities
are expressed by relation templates. For example, the constraint Responded_Existence(A,B)
expresses that activity A must not occur without activity B. However, activity B may occur
without activity A. The small filled circle attached to activity A visualises this difference, i.e.,
that only activity A triggers the constraint. In turn, the constraint Co_Existence(A,B) states
that neither activity A nor activity B can occur without the other activity. The constraints
Response(A,B) and Precedence(A,B) restrict the possible execution orders of activities A and
B. In particular, Response(A,B) expresses that after each occurrence of activity A, activity B
must occur as well (but B may occur without or before A). In turn, Precedence(A,B) requires
that activity B may only occur after activity A.

Software 2023, 2 85

The constraint Exclusive_1_Of_2(A,B) is a choice constraint which expresses that only
one of the connected activities must be executed, i.e., either A or B. Note that Table 8 depicts
only a small subset of the Declare constraints. Other types of constraints enable, for example,
the specification of direct successors (e.g., Chain_Response(A,B) meaning that A must be
followed by B). Negation constraints can force the absence of an activity in a certain scope
(e.g., Not_Response(A, B)—B must not follow A). Finally, there are branched constraints
indicating a disjunction of the branched activities.

Figure 5 depicts the rules relevant to the process model as Declare constraints and their
mapping onto LTL. Declare focuses on the process control flow and, hence, is not able to
cover details of compliance rules that refer to data and resources. Although the original
purpose of Declare is the specification and verification of process models, Declare is also
applicable to the specification and verification of compliance rules (e.g., [58]). In partic-
ular, Declare is able to express compliance rules R1 and R8 by using a Precedence and a
Responded_Existence constraint, respectively. An Existence constraint can express that the
activity provide brochures must occur at least once (cf. R2).

Receive
customer

data

Perform
risk

assessment

R1: Precedence

Provide
brochures

1..n

R2: Existence

Provide
brochures

Ensure
acknow

ledgement

R3: Response

Conclude
custody
account
contract

Send legiti-
mation &
custody
account

documents

R4: Response

Check
suspected

money-
laundering

case

Conclude
custody
account
contract

R7: Precedence

Customer
Contact

Update
customer

infor-
mation

R8: Responded_Existence

Invoice
stockless
custody
account

Dissolve
custody
account

Payment

1 of n

Security
purchase

Reactivate
account

R9: Choice and Response

Figure 5. Formalised requirements in Declare patterns.

The Response constraint in R3 and R4 specifies that the activities provide brochures and
conclude custody-account contract require a corresponding successor. In turn, the Precedence
constraint depicted in R7 ensures that the activity check suspected money-laundering case
must be executed before activity conclude custody-account contract. However, Declare only
partially covers the meaning of compliance rules R2–R4 and R7. In particular, information
about resources and data involved cannot be modelled (e.g., brochure WpHG customer
information in R2 and R3 or the resource customer adviser in R2, R3 and R7). In the context
of R9, temporal constraints (e.g., per year) could not be considered. However, combining

Software 2023, 2 86

a Branching_Response and an Exclusive constraint, Declare is capable of expressing that
either activity dissolve custody account or activity payment must occur after activity invoice
stockless custody account. Finally, R5 and R6 constitute pure resource constraints which
cannot be represented by Declare. Table 9 shows Mapping of formalised requirements using
Declare constraints to LTL

Table 9. Mapping of formalised requirements using Declare constraints to LTL.

ID Pattern and LTL Representation

R1 Precedence(Receive customer data,Perform risk assessment)

(F Receivecustomerdata)→ (¬Receivecustomerdata U Per f ormriskassessment)

R2 Existence(ProvideBrochures)

F(ProvideBrochures)

R3 Response(ProvideBrochures,Ensure Acknowledgement)

F(ProvideBrochures)↔F(EnsureAcknowledgement)

R4 Response(ConcludeContract,Send Documents)

F(ConcludeContract)↔F(SendDocuments)

R5 R5 cannot be modelled with Declare semantics.

R6 R6 cannot be modelled with Declare semantics.

R7 Precedence(Check Suspected Case,Conclude Contract)

(F CheckSuspectedCase)→ (¬CheckSuspectedCase U ConcludeContract)

R8 Responded_Existence(CustomerContact,Update Customer Information)

F(CustomerContact)→F(UpdateCustomerIn f ormation)

R9 Branched_Response(InvoiceStocklessCustodyAccount,(Payment,DissolveCustodyAccount))

G(InvoiceStocklessCustodyAccount→F(Payment∨DissolveCustodyAccount))

Exclusive_1_Of_2(Payment,DissolveCustodyAccount)

Exclusive_1_Of_2(Payment,DissolveCustodyAccount)

Response(SecurityPurchase,Reactivate Account)

F(SecurityPurchase)↔F(ReactivateAccount)

5.4. eCRG

The extended Compliance Rule Graph (eCRG) language is a graph-based notation for
compliance rules [26,55]. It builds on the Compliance Rule Graph (CRG) language [59,60]
and provides support for various process perspectives. eCRG follows an if-then-else se-
mantics and, accordingly, is composed of an antecedence pattern and one or multiple
consequence pattern:
• The antecedence pattern corresponds to the if part and describes the scope of a

compliance rule, i.e., to which situations the rule is applied or when it is triggered.
• The consequence pattern corresponds to the then and else parts and describes how the

rule can be satisfied once it is triggered.
In other words, each match of the antecedence pattern requires a corresponding match

of at least one of the related consequence patterns. Both patterns can be specified using
different kinds of nodes, connectors, and attachments (cf. Figure 6). In general, nodes
correspond to the occurrence or absence of activities or messages. Resource, data, and point-
in-time nodes are used as place holders for resources, data objects, and points in time or as
references to existing or well-defined data objects, resources, or dates. Connectors allow
the constraining of the sequence flow, data flow, or the allocation of resources. Other
connectors support expressing relations between data objects or between resources. Most
eCRG elements can be further refined through the attachment of conditions (e.g., temporal
conditions or data conditions).

Software 2023, 2 87

To allow distinguishing between elements of the antecedence and consequence pat-
terns, nodes and connectors of the former pattern are drawn as solid, cornered boxes and
solid lines, respectively, whereas nodes and connectors of the latter pattern are drawn as
dashed, rounded boxes and dashed lines respectively. To express the absence of a certain
entity, respective nodes are crossed out. Multiple consequence patterns are distinguished
by annotating their elements with numbers that identify the respective pattern. The nodes
referring to particular resources or data objects are drawn as thick, solid, cornered boxes.

The formal semantics of the eCRG language is defined by a transformation eCRG
on First Order Logic (FOL). Further, the eCRG monitoring framework [26] provides the
execution semantics which enables compliance monitoring with eCRG and supports all
CMFs from [27]. The eCRG execution semantics annotates the nodes, connectors and
attachments of an eCRG with colours, texts and symbols. To deal with multiple, potentially
concurrent activations of a single compliance rule, not only one but multiples copies of an
eCRG might be used in parallel.

O
cc

u
re

n
ce

A
b

se
n

ce

Antecedence Consequence

 Task

 Task Task

Task

Data
Object

Data
Object

Data Nodes

Organizational
Unit

Staff
Member

Role

Organizational
Unit

Staff
Member

Role

Resource Nodes

Request
Radiology

Department

 ScientistMr X

 >2d

 >2d

< val ue

> val ueA
n

te
ce

d
e

n
ce

C
o

n
se

q
u

e
n

ce
In
st
an

ce

Antecedence Consequence Antecedence Consequence

Sender

Receiver
Message

Message

Sender

Message

Receiver

Message

Sender

Receiver
Message

Message

Sender

Message

Receiver

Message

Receive Message NodesSend Message Nodes

property

property

Activity Nodes

Point
in Time (Conditions)

Sequence

Sequence

Data Flow

Data Flow

Performing

Performing

assigned to
Relation

assigned to
Relation

Time

Data

Resource

Time

Data

Resource

 Connectors
Attachments

Figure 6. Excerpt of the eCRG language.

Figure 7 depicts the rules relevant to the process model as eCRGs. Table 10 provides
the FOL expressions that result from these eCRGs. The eCRG language incorporates a
large set of different elements. On the one hand, this large set of different elements
can overstrain users in the beginning; on the other hand, it also enables nearly straight-
forward modelling of the example rules. Thereby, R1–R5, R7 and R8 can be modelled as
a single eCRG expression, whereas R6 and R9 require two eCRGs. In particular, R1 uses
an antecedence occurrence node to indicate that activity perform risk assessment triggers
R1 and requires the previous receipt of customer data, as expressed by the corresponding
consequence occurrence message node and the connecting consequence sequence-flow
connector. This means that whenever the (antecedence occurrence) activity perform risk
assessment occurs, the consequence has to be fulfilled as well, i.e., message customer data
has to be received beforehand. The need for activity provide brochure in R2 is modelled by a

Software 2023, 2 88

consequence occurrence node. Note that R2 does not contain any antecedence elements, as
R2 is active in any case. The activity should use the brochures that are specified by two data
object instance nodes plus consequence data-flow connectors. The role of the performer is
specified by the resource instance node that refers to role customer advisor and is connected
by a consequence performing connector.

Customer

Customer
data

Perform risk
assessment

R1

Basic info. sec.
& cap. invest.

WpHG
customer

information

Provide
brochure

Customer
advisor

R2

Basic info. sec.
& cap. invest.

WpHG
customer

information

Provide
brochure

Ensure ac-
knowledgment

Customer
advisor

R3

Account
contract

Customer
legitimation

Conclude
custody
account
contract

Send legitima-
tion & custody

account documents

Market support

R4

Conduct
investment

advice

Customer
advisoris

Sec. comp.
≥ level C

R5

Conduct
customer

identification
& legitimation

Customer
advisor

Check sus-
pected money-

laundering
case

Anti money-
laundering officer

R6

Check sus-
pected money-

laundering case

Conclude
custody
account
contract

Customer
advisor

R7

Customer
contact

Update customer
information

R8

Account
contract

Conclude
custody
account
contract

customer

payment
Amount ≥ 5 (

stockless

Dissolve
custody
account

1

2

New year’s
day

New year’s
day

À =
1 year

Account
contract

Dissolve
custody
account

Customer

security
purchase

Dissolve
custody
account

R9

Figure 7. Formalised requirements in eCRG.

Software 2023, 2 89

Table 10. FOL expressions of eCRG patterns.

R1 ∀νi
1, νt

s1, νt
e1 :
((

Start(νt
s1, νi

1, perform risk assessment) ∧ End(νt
e1, νi

1) ∧ (νt
s1 ≤ νt

e1)
)

⇒ ∃νi
2, νt

2 :
(

Receive(νt
2, νi

2, customer data, customer) ∧ (νt
2 < νt

s1)
))

R2 ∃νi
1, νt

s1, νt
e1, νdv

1 , νdv
2 , νr

1 :
(
Start(νt

s1, νi
1, provide brochure) ∧ End(νt

e1, νi
1) ∧ (νt

s1 ≤ νt
e1) ∧ Read(·, νi

1, ·, νdv
1 , ·)

∧ (νdv
1 = basic info. sec. & cap. invest.) ∧ Read(·, νi

1, ·, νdv
2 , ·) ∧ (νdv

2 = WpHG customer information)

∧ Per f orm(νi
1, νr

1) ∧ InSta f f (customer advisor, νr
1)
)

R3 ∀νi
1, νt

s1, νt
e1, νdv

1 , νdv
2 :

((
Start(νt

s1, νi
1, provide brochure) ∧ End(νt

e1, νi
1) ∧ (νt

s1 ≤ νt
e1) ∧ Read(·, νi

1, ·, νdv
1 , ·)

∧ (νdv
1 = basic info. sec. & cap. invest.) ∧ Read(·, νi

1, ·, νdv
2 , ·) ∧ (νdv

2 = WpHG customer information)
)

⇒ ∃νi
2, νt

s2, νt
e2, νr

1 :
(
Start(νt

s2, νi
2, ensure acknowledgement) ∧ End(νt

e2, νi
2) ∧ (νt

s2 ≤ νt
e2)

∧Write(·, νi
1, customer legitimation, νdv

2 , ·) ∧ Per f orm(νi
2, νr

1) ∧ InSta f f (customer advisor, νr
1) ∧ (νt

e1 < νt
s2)
))

R4 ∀νi
1, νt

s1, νt
e1 :
((

Start(νt
s1, νi

1, conduct custody account contract) ∧ End(νt
e1, νi

1) ∧ (νt
s1 ≤ νt

e1)
)

⇒ ∃νi
2, νt

2, νdv
1 , νdv

2 , νdv
3 , νdv

4 , νdv
5 , νdv

6 :
(
Send(νt

2, νi
2, send legitimation and custody account documents, market support)

∧ (νt
e1 < νt

2) ∧Write(·, νi
1, account contract, νdv

1 , ·) ∧ (νdv
1 = νdv

3) ∧Write(·, νi
1, customer legitimation, νdv

2 , ·) ∧
(νdv

2 = νdv
4)

∧ Read(·, νi
2, account contract, νdv

5 , ·) ∧ (νdv
5 = νdv

3) ∧ Read(·, νi
2, customer legitimation, νdv

6 , ·) ∧ (νdv
6 = νdv

4)
))

R5 ∀νi
1, νt

s1, νt
e1, νr

1, νr
1 :
((

Start(νt
s1, νi

1, conduct investment advise) ∧ End(νt
e1, νi

1) ∧ (νt
s1 ≤ νt

e1)

∧ Per f orm(νi
1, νr

1) ∧ InSta f f (νr
2, νr

1)
)

⇒
(
consec_comp ≥ level C(ν

r
2) ∧ relis(νr

2, customer advisor)
))

R6-1 ∀νi
1, νt

s1, νt
e1 :
((

Start(νt
s1, νi

1, conduct customer identification and legitimation) ∧ End(νt
e1, νi

1) ∧ (νt
s1 ≤ νt

e1)
)

⇒ ∃νr
1 :
(

Per f orm(νi
1, νr

1) ∧ InSta f f (customer advisor, νr
1)
))

R6-2 ∀νi
1, νt

s1, νt
e1 :
((

Start(νt
s1, νi

1, check suspected money laundering case) ∧ End(νt
e1, νi

1) ∧ (νt
s1 ≤ νt

e1)
)

⇒ ∃νr
1 :
(

Per f orm(νi
1, νr

1) ∧ InSta f f (anti-money laundering officer, νr
1)
))

R7 ∀νi
1, νt

s1, νt
e1 :
((

Start(νt
s1, νi

1, conclude custody account contract) ∧ End(νt
e1, νi

1) ∧ (νt
s1 ≤ νt

e1)
)

⇒ ∃νi
2, νt

s2, νt
e2, νr

1 :
(
Start(νt

s2, νi
2, check suspected money laundering case) ∧ End(νt

e2, νi
2) ∧ (νt

s2 ≤ νt
e2)

∧ (νt
2 < νt

s1) ∧ Per f orm(νi
1, νr

1) ∧ InSta f f (customer advisor, νr
1)
))

R8 ∀νi
1, νt

s1, νt
e1 :
(

Start(νt
s1, νi

1, customer contact) ∧ End(νt
e1, νi

1) ∧ (νt
s1 ≤ νt

e1)

⇒ ∃νi
2, νt

s2, νt
e2 :
(
Start(νt

s2, νi
2, update customer information) ∧ End(νt

e2, νi
2) ∧ (νt

s2 ≤ νt
e2)
))

R9-1 ∀νi
1, νt

s1, νt
e1, νi

2, νt
s2, νt

e2, νt
3, νt

4, νdv
1 , νdv

2 :

((
Start(νt

s1, νi
1, conclude custody account contract) ∧ End(νt

e1, νi
1) ∧ (νt

s1 ≤

νt
e1)

∧Write(·, νi
1, account contract, νdv

1 , ·) ∧ (νdv
1 = νdv

2) ∧ constockless(ν
dv
2)

∧ relis(νt
3, New Year’s Day) ∧ relis(νt

4, New Year’s Day) ∧ (νt
e1 < νt

4) ∧ (νt
3 < νt

4) ∧ (νt
4 − νt

3 = 1y)
)

⇒
((
∃νi

5, νt
5, νdv

3 :
(

Receive(νt
5, νi

5, payment, customer) ∧ Parameter(νi
5, amount, νdv

3)

∧ con≥5Eur(ν
dv
3) ∧ (νt

3 < νt
5) ∧ (νt

5 < νt
4) ∧ (νt

3 < νt
5)
))

∨
(
∃νi

6, νt
s6, νt

e6, νdv
4 :

(
Start(νt

s6, νi
6, dissolve custody account) ∧ End(νt

e6, νi
6) ∧ (νt

s6 ≤ νt
e6)

∧ Read(·, νi
6, account contract, νdv

4 , ·) ∧ (νdv
2 = νdv

4) ∧ (νt
3 < νt

s6)
))))

Software 2023, 2 90

Table 10. Cont.

R9-2 ∀νi
1, νt

s1, νt
e1, νi

2, νt
2, νdv

1 , νdv
2 , νdv

3 :
((

Start(νt
s1, νi

1, dissolve custody account) ∧ End(νt
e1, νi

1) ∧ (νt
s1 ≤ νt

e1)

∧ Read(·, νi
1, account contract, νdv

1 , ·) ∧ (νdv
1 = νdv

2) ∧ Receive(νt
2, νi

2, security purchase, customer)

∧Write(·, νi
2, account contract, νdv

3 , ·) ∧ (νdv
3 = νdv

2) ∧ (νt
e1 < νt

2)
)

⇒ ∃νi
3, νt

s3, νt
e3, νdv

4 :
(
Start(νt

s3, νi
3, reactivate account) ∧ End(νt

e3, νi
3) ∧ (νt

s3 ≤ νt
e3)

∧ Read(·, νi
3, account contract, νdv

4 , ·) ∧ (νdv
2 = νdv

4) ∧ (νt
2 < νt

s3)
))

As opposed to R2, rule R3 is triggered whenever the two brochures are provided.
Thus, an antecedence occurrence node as well as antecedence data-flow connectors are
used for the activity provide brochure. A consequence occurrence node and a sequence-flow
connector specify the activity that has to follow. Similarly to R2, the latter activity has to be
performed by the customer advisor as expressed by the consequence performing connector
and instance resource node. The condition (i.e., antecedence pattern) of R4 consists of the
activity conclude custody account contract. Whenever this activity occurs, it has to create
or write two documents as indicated by the consequence data-flow connectors and data
objects. Both documents should be sent to the market support afterwards, as expressed by
the consequence occurrence message that accesses the data objects. In R5, the performer
of the triggering activity conduct investment advice is modelled as an antecedence resource
node and constrained by an attached consequence resource condition and a consequence
resource relation to the role customer advisor.

In brief, the two eCRGs for R6 and R7 express which roles should be held by performers
of activities conduct customer identification and legitimation, check suspected money-laundering
case, and conclude custody-account contract. In particular, only consequence performing
connectors link the activities with respective roles. In addition, the consequence occurrence
node and consequence sequence flow in R7 require the activity check suspected money-
laundering case to occur before any occurrence of the antecedence, i.e., activity conclude
custody-account contract. R8 is described by an eCRG whose nodes are not connected because
customer contact (i.e., antecedence) requires an update customer information (i.e., consequence).
However, the order of both activities does not matter, so that they are not connected by any
sequence-flow connector.

Finally, two eCRGs are needed to describe R9. The antecedence (i.e., trigger) of the
first eCRG consists of activity conclude custody-account contract which writes or creates a
stockless account contract as expressed by the data flow edge, data object, and the attached
data condition (all antecedence).

Furthermore, the two antecedent points in time describe any legal year due to their
fixed distance of one year. Note the time condition attachment on the sequence-flow
edge (both antecedence). Accordingly, this eCRG applies to every legal year that ends
after a stockless account contract was concluded. In this context, at least one of the two
consequences #1 or #2 must apply: either message payment with an amount ≥ 5 must be
received within the year (consequence receive-message node with data attachment) or
the custody account must be dissolved after the year has passed (consequence occurrence
node).

The second eCRG of R9 contains an antecedent-occurrence activity and receive-message
node which both are connected to the same data object, which is part of the antecedence as
well. Thus, when both activity dissolve custody account and message security purchase occur
in the specified order and access the same data object, then activity reactivate account has to
occur afterwards and access the same data object specified by the consequence-occurrence
node and connectors.

Two conceptual issues arise in the context of eCRG. First, the eCRG language needs
explicit specifications of time intervals through separate start and end points in time.
In order to express the simple phrase per year, more than five elements are required (cf. R9).
Second, eCRGs lack explicit support for the reuse of permissions.

Software 2023, 2 91

5.5. DMQL

The DMQL (Diagramed Model Query Language [35]) is a query language for process
models. In the context of this language, conceptual models are interpreted as graphs
composed of nodes and edges. Queries are specified using a graphical notation. In doing
so, queries can be formulated independently of the modelling language in use. With
regard to the theoretical background, DMQL is based on graph theory and combines
various graph algorithms. Fundamentally, algorithms for subgraph isomorphism and
subgraph homeomorphism have been combined and extended to accommodate the specific
requirements of a model query language. Among the requirements are the ability to analyse
the properties of nodes and to account for directed/undirected edges which may form a
path in a model. Regarding paths, an important feature that is implemented in DMQL is
the possibility to specify whether paths are allowed to overlap in cases where multiple
paths are specified in a query. This problem refers to subgraph isomorphism, which, in
theory, is known to be NP-complete [29]. However, DMQL makes use of algorithms that,
nevertheless, can return results for real-world models. For more detailed information about
the language (e.g., its syntax and semantics) as well as its prototypical implementation, we
refer to [35].

The basic notations of DMQL consist of nodes (or vertices), attributes and edges, as
illustrated in Table 11. Nodes correspond to constructs of a modelling language, such
as a task or gateway in the Business Process Model and Notation (BPMN). For each node
in the query, the range of allowed constructs of the underlying modelling language can
be specified and a small symbol is added at the bottom right of the node shape. In cases
where one construct is allowed, a small shape signifying this construct is added. In cases
where multiple constructs are allowed, an eye symbol is added instead (cf., also, Table 11).
Attributes correspond to properties of nodes, such as the name, description and other
attributes that can be captured by a construct of the modelling language in use. Attributes
are treated much like nodes, but for the sake of clarity, they are displayed using a rectangle
with rounded corners. Edges can represent a large number of relations between the
constructs of the modelling language in use. If BPMN is used, then edges may correspond
to, e.g., sequence flow or information flow. In addition, the direction of the edges can be
specified in relation to the direction of the edge in the original model. If the direction in the
original model is from left to right, then the meaning of edge directions can be specified as
depicted in Table 11. Moreover, multiple edges can also form paths.

Table 11. DMQL graphical notations.

Nodes Edge Directions

Node

Node
type(s)

indication

Attributes
none, original, opp

none, opposite

original, opposite
opposite

eid original

node

To signify a path, the solid line of the edges displayed in the concrete syntax in Table 11
would be dotted (the direction options remain the same). For paths, various properties can
be specified, among them

1. The minimum and maximum path length;
2. The minimum and maximum number of overlapping edges and nodes between

different paths contained in a query;
3. Required, allowed and forbidden nodes and edge types on the path, and
4. required, allowed or forbidden patterns on the path.

Software 2023, 2 92

Since DMQL is built on top of GMQL (Generic Model Query Language) [61], it relies
on the formalisms of GMQL when the query pattern is processed. In the following, the
formalisation is explained by referring to GMQL. The basic idea behind GMQL is that a
model consists of two sets of nodes, the set O of its objects and the set R of its relationships.
Queries are then expressed in terms of set-modifying functions and operators, which can
be processed efficiently by the developed algorithms implementing GMQL. Due to space
limitations, we will not explain all sets and operators available but instead refer to [61] for
an overview. Using these sets and operators, a formalisation of the first compliance rule R1
can be given as follows.

DirectedPaths(
ElementsWithTypeAttributeOfValue(

ElementsOfType(O, IntermediateEventReceiveMessage),
label, "Receive Customer Data")

ElementsWithTypeAttributeOfValue(
ElementsOfType(O, Activity),
label, "Risk Assignment"))

Since the query pattern essentially consists of specifying a path between two
known nodes, the GMQL-function DirectedPaths(), which matches paths between
two sets of nodes, is used. These two sets, in turn, are specified via the function
ElementsWithTypeAttributeOfValue(). This function takes a type definition given by the
function ElementOfType() as well as an attribute (label) and its value as input parameter.
GMQL also offers special functions for detecting the immediate neighbours and the relation-
ship(s) between elements as well as standard set operators such as union and intersection.
This is applied in the formalisation of compliance rule R2, given below.

ElementsDirectlyRelated(
ElementsWithTypeAttributeOfValue(

ElementsOfType(O, Activity), label, "Provide Brochure")
ElementsWithTypeAttributeOfValue(

ElementsOfType(O, Lane), label, "Customer Advisor"))
DirectSuccessors(

Union(
ElementsWithTypeAttributeOfValue(

ElementsOfType(O, Document), label, "WpHG Customer Information"),
ElementsWithTypeAttributeOfValue(

ElementsOfType(O, Document), label, "Basic Info. Sec. & Cap. Inv.")),
ElementsWithTypeAttributeOfValue(

ElementsOfType(O, Lane), label, "Provide Brochure")))

Whereas the function ElementsDirectlyRelated() is used to match sets of connected
nodes with undirected connections, DirectSuccessors() is used to match directed graph
elements. Note that the two different documents which are handed over to the customer
are aggregated to a set of nodes with the Union-operator. Figure 8 illustrates the DMQL
mapping of the given compliance rules. Since DMQL is geared towards querying conceptual
models, capturing compliance rules with DMQL also connotes selecting a modelling lan-
guage. For this reason, we select BPMN as a standardized, widely used process modelling
language. The chosen modelling language additionally specifies the semantics of the nodes
used to construct the patterns.

Most requirements are easy to model in DMQL, except for R3, R4 and R9. The receive-
event in R1 is modelled with a node representing a BPMN intermediate event of the type
“catch”, which has an outgoing path to the subsequent activity. An alternative model of
this rule would also allow activities that can receive messages, not just events. In this case,
the eye-symbol would be added to the node of the first pattern to express that multiple
types of model elements are allowed. For the following rules, we do not comment on these
sorts of decision since they are not relevant viewed from the perspective of semantics.

Software 2023, 2 93

Receive
customer

data

Risk
assessment

R1

Customer
advisor

Provide
brochure

Basic info.
sec. &

cap. inv.

WpHG
customer

information

R2

Check
acknowl-

edgment of
reception

Signature
form

Customer
advisor

Signed
= true

R3

Account
information

Receive
account

information

Customer
legitimation

Receive
customer

legitimation

Conclude
customer
account
contract

Market
support

�

�

R4

Check
acknowl-

edgment of
reception

Customer
advisor

Competence
level ≥ C

R5

Customer
advisor

Anti-money
laundering

officer

Handle
credentials

Check sus-
pected cases

Customer
ID & le-

gitimation

Information
on money
laundering

R6

Customer
advisor

Susp. money
laundering

case resolved

Conclude
custody
account
contract

R7

Customer

∗ Update
information

Customer data

(start) (n1)

R8

Custody
account is
stockless

Send in-
voice 5 (

Wait for
30 days

Payment
not received

Notify
customer

Wait 14 days
Customer

does not react
within 14 days

Dissolve
account

New securities
purchase

Reactivate
account

Market support

R9

Figure 8. Formalised requirements in DMQL

The provision of the brochures in R2 is modelled as an activity involving the two
brochures. This activity is executed by a lane named customer advisor—since BPMN does
not directly support the concept of a role or employee. Modelling it in this way is possible
because DMQL allows implicit edges, i.e., the fact that an activity resides in a specific pool
or lane and can be interpreted as an edge. R3 cannot be modelled in a straight-forward
manner, since it is unclear where and in which form the information that the customer has
acknowledged the reception of the two brochures is stored. It can, however, be concluded
that an acknowledgement may imply a signature on some form. The state of being signed,
in turn, can be modelled as an attribute of the signature form. Similarly, R4 cannot be
modelled directly, because sending information to an organizational unit is not possible in
BPMN (it may be possible in other languages). Instead, the required rule is modelled by
two sending and corresponding receiving activities, whereby the latter is associated with

Software 2023, 2 94

the pool market support via an edge. In this way, information can be sent to a department. R5
can be easily modelled. The fact that the competence level of the customer advisor is above or
equal to C can be expressed by simply relating an attribute to the node representing the lane
customer advisor. In order to model R6, we need to interpret the word “while” in the natural
language description as “and”, i.e., as conjunction, and not in a temporal sense. Then,
the rule can be represented by two activities processing the relevant information which are
associated with the correct lanes. R7 is modelled using a BPMN intermediate event of the
type “catch”, which waits until the process state is updated to suspected money-laundering
case is resolved. R8 is relatively easy to capture, since the description every future customer
interaction is translated to a place-holder node (i.e., a node of any type) which is connected
to a customer lane and which is on a path including an activity update information which
writes to a customer data object. R9 is more difficult to model due to the abstract formulation
of the rule. For example, instructions such as “charge with a fee of EUR 5 per year” leave
open if there is any invoice and a time frame for the payment. The modelled solution of this
compliance query could even be extended—for example, the customer should be notified
upon account dissolution or reactivation.

5.6. PCL

PCL (Process Compliance Language, [37]) is a formal logic for the specification of regu-
latory norms. The logic is based on defeasible logic [62,63] and A deontic logic of viola-
tions [64] which enables PCL to represent exceptions as well as modelling the violations
of obligations.

It consists of a set of atomic symbols: a numerable set of propositional letters a, b, c, . . .
representing state variables and the tasks of a process. The logic formulas are constructed
using the deontic operators: ¬ (negative) and ⊗ (a non-Boolean connective). The deontic
operators provide the support to specify the type of an obligation using subscripts and
superscripts, i.e., Ox

y where the superscript x is used to specify the obligation modality
(i.e., a specific type of obligation), and subscript y can be empty depending on the specific
type of an obligation.

Table 12 illustrates the various obligation operators PCL provides for representing
different types of obligations. Notice that PCL formulas can be can be transformed into
RuleML or its advanced normative version LegalRuleML which can be used for automated
processing [65,66]. The PCL formulas are written using the following construction rules:

(i) If every propositional letter is a literal (i.e., l), then its negation ¬l is also a literal;
(ii) If X is a deontic operator (i.e., a specific type of an obligation) and l is a literal, then Xl

and ¬Xl are deontic literals.

More intuitively, (an atomic) p and ¬p (its negation) is a proposition, while ∼p to
model negation p i.e., if p = l, then its complement ∼p = ¬l, and vice versa, if p = ¬l then
∼p = l. Accordingly, if p is a proposition, then Op (for obligation), Pp (for permissions) and
Fp (for prohibition) propositions, respectively. In addition, the logic also introduces the
notion of ⊗-expressions, (called reparation chains) so that every literal is an ⊗ expression;
if l1, . . . ,ln are literals, then l1⊗, . . . ,⊗ln is a reparation expression (see [37] for detailed
semantics of the logic).

Table 13 illustrates the PCL mapping of compliance rules. It is trivial to capture the
intuition of rules R1 through R4. Rule R2 provides the data condition where the investment
consultant must provide two mandatory brochures to the customer.

PCL does not provide operators (or patterns) that can be used to explicitly model data
conditions. However, constraints involving the process aspects (e.g., data, time, etc.) can be
defined as literals in the PCL formulas.

Software 2023, 2 95

Table 12. PCL obligation operators (adopted from [37]).

Operator Intuitive Reading

Oa,π
pr achievement, persistent, preemptive

[OAPP]
Oa,π

n−pr achievement, persistent, non-preemptive
[OAPNP]

Oa,τ
pr achievement, non-persistent, preemptive

[OANPP]
Oa,τ

n−pr achievement, non-persistent, non-preemptive
[OANPNP]

Om maintenance
[M]

Op punctual
[P]

Table 13. Formalised requirements in PCL [37].

ID Compliance Requirements

R1 Per f ormRiskAssessment =⇒[OAPNP] ObtainCustomerData

R2 NewCustomerAccount =⇒[OAPNP] ProvideBrochure1, ProvideBrochure2

R3 NewCustomerAccount, ReceivedBrochures =⇒[OAPNP] AcknowledgeReceptiono f Brochures

R4 NewCustomerAccount, ConcludeCustodyAccountContract =⇒[OAPNP] SendAccountDocuments,

SendCustomerLegitimation

R5 SecuritiesSta f f , CompetenceLevelCorAbove =⇒[P] ConductInvestmentAdvice

R6 (1) NewCustomer, CustomerAdvisor =⇒[OM] ConductCustomerIdenti f ication, ConductCustomerLegitimation

(2) NewCustomer, AntiMoneyLaunderingO f f icer =⇒[OM] CheckSuspectedMoneyLaunderingCase

R7 (1) NewCustomer, ResolvedMoneyLaunderingCase =⇒[P] ConcludeCustodyAccount

Alternatively

(2) NewCustomer, UnresolvedMoneyLaunderingCase =⇒[OM] ¬ConcludeCustodyAccount

R8 ExistingCustomer, CustomerContact =⇒[OM] UpdateCustomerIn f ormation

R9 (1) StocklessCustodyAccount =⇒[OM] Pay5EuroFee⊗ DissolveCustodyAccount

(2) DissolvedCustodyAccount, NewSecuritiesPurchase =⇒[OAPNP] ReactivateAccount

Alternatively

(1) StocklessCustodyAccount =⇒[OAPNP] Pay5EuroFee

(2) StocklessCustodyAccount,¬Pay5EuroFee =⇒[OM] DissolveCustodyAccount

(3) DissolvedCustodyAccount, NewSecuritiesPurchase =⇒[P] ReactivateCustodyAccount

R5, on the other hand, implicitly stipulates a prohibition preventing staff lower than
level C from providing securities advice. It is not possible to directly model prohibitions
with PCL semantics as it does not provide patterns (or operators) to express prohibi-
tions. Instead, they can be modelled as permissions, because deontic logic assume a
strong relationship between obligations and permissions, where permissions are consid-
ered as the lack of obligations. Hence, they can be modelled as the dual of each other
i.e., Oψ

def
= ¬P¬ψ or ¬O¬ψ

def
= Pψ (most variants of deontic logic largely assume that the du-

ality relation between permissions and obligations ensures the consistency between the sets
of norms [67,68].), and O and P are operators for obligations and permissions. This relation-
ship can be written as: Oψ −→ Pψ. Essentially, the formula is equivalent to Oψ −→ ¬O¬ψ,
meaning that the prohibition of obligation Oψ is not to do Oψ i.e., Fψ = ¬Oψ. Notice that
for a permission to be effective, a prohibition must exist.

Software 2023, 2 96

R6 prescribes the typical segregation of duty (SoD) constraint where a suspected
money-laundering case is handled by the anti-money-laundering officer. Essentially,
the SoD constraints ensure that the relevant activities are assigned to the right/appro-
priate personnel. While R6 is a structural rule, we need to model it separately because PCL
does not provide structural patterns (or operators) to cover such constraints. Instead, it can
be broken down into two distinct PCL formulas, each covering a case for both customer
advisor and the anti-money-laundering officer.

In contrast, R7 expresses an exception in which customers can conclude a custody
account if a resolution of an unresolved money-laundering case is achieved. Essentially,
the language must have the ability to model exceptions, which is important to correctly
understand the distinction between strong and weak permissions. In particular, in law,
strong permissions express exceptions to obligation while a permission provides an ex-
ception to a prohibition [69,70]. Hence, R7 can be modelled as either a permission or a
maintenance obligation, where the permission represents the exception to the obligation.
In contrast, modeling the rule as a maintenance obligation of not concluding a custody
account until a money-laundering case is solved represents a prohibition. It has been
argued [25] that maintenance obligations are suitable for representing prohibitions since
maintenance obligations must be complied with for all the instants of the interval in which
the obligation is in force.

Rules R8 and R9 specify temporal and data conditions. The rules present maintenance
obligations, which must be complied with at all instances. As discussed previously, it is not
possible to explicitly model the conditions of the rule relevant to process aspects; instead,
such conditions can be represented as literal directly within the PCL formulas by means of
control tags [5]. While control tags facilitate annotating various constraints, the data for the
control tags can be provided either by the analysts or they can be directly extracted from
the databases attached to the process [71]. While PCL is able to properly capture majority
of rules, the language is not able to capture perdurant obligations [72], which was later
addressed. In addition, nested rules and recursive compensations cannot be modelled in
the current variant of PCL.

5.7. PENELOPE

PENELOPE (Process Entailment from Elicitation of Obligations and Permissions, [39]) is a
framework which captures compliance requirements relevant to tasks of business processes.
The framework validates the compliant behaviour of processes at design-time, for which it
uses a proprietary algorithm which computes all active deontic assignments to generate
control flow and state space. The generated state space is a set of deontic assignments which
are active in a particular task. The interaction between the generated process models flows
from state to state, and all the states are computed until no obligation or permission holds
at a state, or a violation cannot be compensated. Upon computing all states, the algorithm
draws the BPMN model in which tasks represent a set of obligations fulfilled by a role,
and errors and end events model violations of an obligation or permission by a role
at a state.

Table 14 illustrates that the deontic assignments in PENELOPE are modelled using a
well-known event-based logic, EC (Event-Calculus, [73,74]). The logic, which provides a
rich set of predicates, expresses various types of states of event occurrences e.g., Happens
(occurrence of an event at a time point), Initiates (an event triggers the property of a
system), Terminates (an event terminates the property of the system), and HoldsAt (that
the property of a system holds at a time-point). In addition, some auxiliary predicates
express the premature termination (Clipped) and resumption (Declipped) of an event at a
particular point in time between the interval. The InitiallyTrue and InitiallyFalse allows
the modelling of the system’s states where only partial information about the domain
is available. In contrast, the domain-independent axioms describe the states in which a
variable (fluent) holds or does not hold at a particular point in time; see [74] for detailed
semantics of EC.

Software 2023, 2 97

Table 14. PENELOPE’s deontic properties [39].

Terms Meanings

Oblig(π, α, δ) agent π must perform the activity α by due date δ

Per(π, α, δ) agent π can perform the activity α prior to due date δ

CC(π, α1, δ1, α2, δ2) agent π must perform activity α2 by due date δ2
after activity α1 is performed prior to the due date δ1

(A) Terminates(α, Oblig(π, α, δ), τ)←− τ ≤ δ

(B) Terminates(α, Per(π, α, δ), τ)←− τ ≤ δ

(C) Happens(violation(Oblig(π, α, δ)), δ)←− HoldsAt(Oblig(π, α, δ))∧ ∼ Happens(α, δ)

(D) Initiates(α1, Oblig(π, α2, δ2), τ)←− τ ≤ δ1 ∧HoldsAt(CC(π, α1, δ1, α2, δ2)), τ)

Table 15 depicts the mapping of rules relevant to the process model using PENELOPE
properties. (In presenting the mappings, we use PENELOPE properties that are based
on the standard variant of EC; however, there are other variants of EC giving different
set of predicates and events; see [75] for details.) There are a number of issues with
this representation—in particular, from the representation and reasoning perspective of
norms. For example, modeling rules R1 through R3 is straight forward but R5, which
prescribes an explicit permission, cannot be properly represented because PENELOPE’s
permission predicate Per(π, α, δ) provides a parameter for specifying deadlines, i.e., δ. Since
permissions cannot be violated [72], no deadlines are required. Essentially, modelling R5 as
permission is semantically correct, but it does not correctly capture the intuition of the rule,
and is, thus, incorrect from a reasoning perspective.

In contrast, rules R6 and R8 prescribe a maintenance obligation which must be fulfilled
for all instances of the interval in which the obligation is in force. Currently, PENELOPE
semantics only provide temporal information, i.e., a deadline to detect the violations
which cannot be used for reasoning about the maintenance obligation. A deadline for
a maintenance obligation would signal the obligation is no longer in force [76], but a
maintenance obligation remains in force for the whole duration of the interval in which it
is in force.

R4 and R7 can be simply modelled as conditional commitments, for which PENELOPE
provides conditional patterns, i.e., CC, whose main idea, as in most business scenarios
and concrete applications, is that an entity commits itself to another entity so that it can
produce some effects required to correctly execute that entity. Essentially, conditional
patterns can be useful from a structural perspective, since a conditional commitment might
model the absence of an occurrence of an activity, meaning that entity B cannot occur until
the occurrence of entity A [25]. In addition, R7 is a maintenance obligation, which cannot
be explicitly modelled with PENELOPE. However, in PENELOPE, prohibitions are not
considered under the close world assumption [77], and are implicitly assumed when no
obligations or permissions can be derived. PENELOPE does not provide deontic properties
for modelling prohibitions. However, one possible way to model prohibitions with PENE-
LOPE semantics could be modelling them as negative permissions, since permissions and
obligations have a duality relation (cf. Section 5.6). However, modelling R7 as a negative
permission would not properly capture the intuition of the rule. Finally, modelling R9 is
easy as it prescribes an achievement obligation which PENELOPE can effectively model.

Software 2023, 2 98

Table 15. Formalised requirements using PENELOPE patterns in EC.

ID Compliance Requirements

R1 Initiates(ObtainedCustomerData(Advisor, NewCust), Oblig(Advisor, Per f ormRiskAssessment, δ), τ)←−
Happens(ObtainedCustomerData, τ) ∧ HoldsAt(ObtainedCustomerData, τ) ∧ τ ≤ δ

R2 Initiates(NewCustAccount, Oblig(Advisor, Provide(Broch1, Broch2†), δ), τ)←−
Happens(NewCustAccount, τ) ∧ HoldsAt(NewCustAccount, τ) ∧ τ ≤ δ

R3 Initiates(ProvidedIn f oBrochures, Oblig(Advisor, EnsureAcknolwedgement, δ), τ)←−
Happens(ProvidedIn f oBrochures, τ) ∧ HoldsAt(ProvidedIn f oBrochures, τ) ∧ τ ≤ δ

R4 Initiates(ConcludedCAC, Oblig(Advisor, SendMarketSupport(ADs, CL), δ2), τ)←−
HoldsAt(CC(Advisor, ConcludedCAC, δ1, SendMarketSupport(ADs, CS), δ2), τ) ∧ τ ≤ δ

R5 Initiates(NewIA, Per(Advisor, ConductNewIA, δ), τ)←−
HoldsAt(NewIA, τ)∧HoldsAt(Advisor(ComptenceLevelCorAbove), τ) ∧ τ ≤ δ

R6 R6 provides a maintenance obligation which cannot be modeled with PENELOPE semantics.

R7 Initiates(ResolvedAMLCase, Oblig(Advisor, ConcludeCustodyAccount, δ2), τ)←−
HoldsAt(CC(Advisor, ResolvedAMLCase, δ1, ConcludeCustodyAccount, δ2), τ) ∧ τ ≤ δ1

R8 R8 is a maintenance obligation, which cannot be modeled with PENELOPE semantics.

R9 Initiates(UnpaidFee, Oblig(MarketSupport, DissolveAccount, δ), τ)←−
HoldsAt(StocklessAccount, τ) ∧ (Happens(UnpaidFee, τ) ∧ HoldsAt(UnpaidFee, τ)) ∧ τ ≤ δ

Naming convention used in the mappings: Brochure1 (WpHG Customer Information), Brochure2 (Basic Informa-
tion Securities and Capital Investment), ADs (account documents), CAC (custody-account contract), CS (customer
legitimation), IA (investment advice), AML (anti-money laundering), PI (portfolio investment).

6. Evaluation of Compliance Languages Based on the Formalisation Results

In this section, we adopt the normative classification framework from [72] to compare
the different languages from a legal reasoning perspective. In the second part of this
section, we investigate the textual complexity of compliance rules which were discussed in
Section 5. As this aspect has not been addressed by compliance research so far, we start
with an outline and reflection on the different metrics before evaluating the complexity of
language patterns based on Halstead’s complexity metrics [78].

6.1. Expressiveness

Norms prescribe how individuals ideally should or should not behave, or, in other
words, what they are permitted to do and what they have a right to do [79]. This idea of
human behaviour includes the possibility that actual behaviour may deviate from the ideal
from time to time and, thus, result in a violation of duties or, more precisely, obligations.
Deontic logic is an area of logic that is concerned with representing and reasoning about
the distinction between the actual and the ideal [80]. In linguistics, the word “deontic” is
a modality that indicates how desirable, believable, obligatory, or veritable a proposition
is [81]. The difference between a norm and normative proposition is that the former is
prescriptive while the latter can be seen as descriptive [82].

Deontic logic has, hence, evolved into a formal system where normative concepts
apply according to which a compliance rule can be forged from a number of theoretical
constructs, i.e., obligation, permission or prohibition, logical connectors and constants for
representing certain deontic concepts [83]. Defeasible logic extends the view of deontic
modalities to reason about non-monotonic, i.e., defeasible, inferences, which allow for a
distinction between cause and effect and the withdrawal of contradicting conclusions in
light of new evidence [84,85]. In terms of compliance, the use of this particular family of
logics implies that rules can be checked independently from any other modelling language
using only the proof theory itself [86]. The approach proposed in [72] combines deontic

Software 2023, 2 99

and defeasible logic to elicit differences in the legal understanding of norms that cannot
be easily captured by temporal logic [87]. By adopting the approach, we aim to explore to
what extent the selected languages support the modelling of these normative concepts.

Figure 9 illustrates the relevant classes and conditional relationships of deontic
modalities. The framework builds on the three deontic rule types—obligation, prohibition,
and permission—proposed by [88]. It is extended by a notion for compensations derived
in [62]. Obligations are always considered in the context of a possible violation. A process
is non-compliant if an obligation cannot be compensated. This means a previous specified
action can replace and, hereby, compensate a violated obligation which would otherwise
result in a violation. Prohibitions are the inverse of an obligation, meaning a prohibition of
A is the obligation of ¬A and vice versa [89]. Permissions state what someone is entitled to
do, and, thus, a permission can never be violated. In the following, we run through several
examples to illustrate the different deontic effects.

violated obligation/prohibition
may/may not perdure

OBLIGATION/
PROHIBITION

Non-persistent Punctual

Persistent

Maintenance

Achievement

Non-preemptive

Preemptive

PERDURANCE

Non-perdurant

Perdurant

COMPENSATION

Non-compensable

Compensable

Violation

is type of
Normative

Requirements

PERMISSION

is type of

is type of can be
violated

may or may not
be compensated

no oblig/pro-
hib holds

cannot be
violated

can be
violated

Figure 9. Classification of normative requirements (adopted from [72]).

Persistence: An important distinction is whether an obligation is terminated or removed.
Consider an update of your online banking account. As soon as you have filled
out all mandatory text fields, the punctual obligation expires and your session is
terminated (non-persistent). We speak of a persistent obligation if the action linked to
the obligation is removed, such as the standing order for a credit being terminated
when it is completely paid back. Both achievement and maintenance are persistent
obligations.

Achievement: This obligation type refers to a period of time in which the obligation
must be met at least once. It can be further distinguished into preemptive and non-
preemptive obligations. In general, it is obligatory for a train conductor to identify
her/himself by means of a service card.

If the conductor presented a service card before conducting the ticket inspection, then
the obligation to show the service card requested by the passenger during the ticket
inspection has already been fulfilled and is categorised as a preemptive obligation.

Maintenance: This obligation type refers to a period of time in which the obligation
must be continually met. Paying the monthly flat rate is an example of a periodical
expenditure, whether it be the apartment rent or the high-speed internet.

Software 2023, 2 100

Perdurance: A perdurant obligation persists after being violated. The payment of an
invoice for an online purchase is, first of all, a perdurant obligation, but in case the
purchase has to be returned to the retailer, this obligation becomes non-perdurant.

The formal definitions of all obligations types are given in [25]. Based on this formal
distinction, we evaluate the rules modelled in Section 5. The results of the comparison
are summarized in Table 16. A ‘+’ symbol indicates which language intuitively captures
the notion and provides full modelling support. Parentheses ‘(+)’ are used to distinguish
languages that do not explicitly support the deontic modality but feature a conceptual
solution to the modelling task. The ‘−’ symbol suggests that the deontic modality is either
not supported, or not considered by the respective language.

The evaluation shows that the majority of languages is able to represent, essentially,
three deontic modalities, namely, achievement, obligation, prohibition and violations of
these. Beyond that, the comparison underlines that particularly punctual and perdurant
obligations as well as permissions are only supported by a few languages. This shortcoming
relates primarily to approaches using a language of the temporal logics family. These are
being criticised as divagating from the norms’ actual meaning and, thus, are not suitable
to model certain normative requirements such as permissions [87]. The relevance of
permissions, though, can be levelled in comparison to the other deontic modalities as they
cannot be violated, and, therefore, would not hint at any compliance violation. Instead,
they can be used to indicate that there are no obligations or prohibitions in effect [90]. A
rather unexpected result of this evaluation is that, even though a corresponding deontic
modality exists [25], in some cases a deviation seems to be unavoidable in order to grasp
all the information encoded in the requirements. Consequently, an exact mapping between
the deontic effects and a language’ properties is not only a formal matter, but also a
language-dependent choice.

The two pattern-based approaches BPMN-Q and CRL support achievement and main-
tenance obligations as well as prohibitions, violations and compensations.

For modelling the sample requirements in CRL, we use the LeadsTo, Precedes and Frees
patterns; the resource patterns PerformedBy and SegregatedFrom as well as a LeadsTo-Else
compensation. Contrary to the normative representation suggested in Table 13, we model
R1, R3 and R4 not as achievement obligation but with patterns that depend on the relation
between two activities. R5 constitutes a permission, which is substituted by a resource
pattern. Likewise, the two maintenance obligations described in R6 are summarised under
one resource pattern. R7 can either be modelled as negated permission or maintenance
obligation (cf. Table 13). However, the rule has been treated as an exception as it seems to
have a similar effect in this particular case. R8 describes a maintenance obligation, but, due
to its implied ordering relation, we decided to model the rule by an order pattern instead.

Table 16. Expressiveness from a legal-reasoning perspective.

Language

Deontic Modalities

Pu
nc

tu
al

A
ch

ie
ve

m
en

t

Pr
ee

m
pt

iv
e

N
on

-p
re

em
pt

iv
e

M
ai

nt
en

an
ce

Pe
rd

ur
an

t

Pe
rm

is
si

on

Pr
oh

ib
it

io
n

V
io

la
ti

on

C
om

pe
ns

at
io

n

BPMN-Q − + − − + − − + + (+)
CRL (+) + − − + − − + + +
Declare (+) + + + + − − + + (+)
DMQL + + + + − − − + (+) (+)
eCRG + + + + + + (+) + + +
PCL + + + + + + + + + +
PENELOPE − + − − − − + − − −

Software 2023, 2 101

In the case of BPMN-Q, we chose between the Before-scope/Global-scope Presence and
Conditional Presence/Response patterns to capture the given compliance rules. Owing to the
absence of an activity or a start/end event in the textual requirement, the data conditions
modelled in R2 and R7 follow no explicit BPMN-Q pattern. Hence, a mapping to the
deontic modalities is not possible. Unlike CRL, the resource perspective is not supported by
BPMN-Q resulting in the omission of R5 and R6. With regard to their normative meaning,
we deviated only in R4, which is modelled with a Conditional Response pattern instead of an
achievement obligation.

Violations are handled differently by the two languages. BPMN-Q defines anti-patterns
of the existing pattern set that are structurally matched to the process model and verified
after relevant areas have been transformed into a Petri-net.

CRL patterns, on the other hand, are annotated to the process model and then verified
on the basis of the event log. To model compensations, such as R9, CRL proposes a com-
posite pattern, composed of the LeadsTo (or DirectlyFollowedBy) pattern and the conditional
Else, which is followed by one or more repairing actions [33]. The repairing actions are
enabled if the predecessor is violated. In BPMN-Q, compensations can only be imitated by
repeating the respective pattern. Beyond that, CRL verbalizes exceptions to explicate under
which condition an activity holds [91]. Such exceptions are initiated by the Frees pattern.
In addition to the discussed deontic modalities, BPMN-Q and CRL also propose several in-
tuitive control-flow patterns which are commonly used for the ordering of activities [28,44].
However, these patterns target the behavioural relation between two activities and do not
correspond to any of the described deontic modalities.

In DMQL, punctual requirements can be modelled as directly connected nodes (or
nodes connected with a path of specified maximum length). Achievements and prohibitions
can be modelled via a combination of paths, and allowed or forbidden elements on paths.
If, thereby, a path is established between a specified node and an arbitrary (i.e., place-holder)
node, then this implicitly equals a before-scope or after-scope pattern known from other
languages, such as BPMN-Q. In this way, preemptive obligations can be modelled by a
path going from the start event of a process model to the activity that fulfils the obligation,
followed by a path of either DMQL or BPMN constructs. Violations and compensations, in
contrast, can be represented implicitly using the BPMN constructs of attached events for
capturing violations occurring at run-time or compensating activities for compensation.

Declare supports achievement and maintenance obligations as well as prohibitions, viola-
tions and compensations. Achievement obligations are specified by the Responded_Existence
constraint (cf. R8) and other similar constraints. In particular, preemptive obligations
are expressed by Precedence constraints (e.g., in R1) and non-preemptive obligations are
expressed by Response constraints (e.g., in R4). Further, Existence constraints can be used
to specify maintenance obligations (cf. R2). Prohibitions, on the other hand, are repre-
sented by negations of other constraints, such as the Responded_Absence (i.e., negation
of Responded_Existence). The Chain_Succession constraint supports specifying punctual
obligations. In order to detect violations, Declare is mapped onto LTL expressions that can
be verified using model checking and related techniques. Note that Declare provides only
limited support for compensations that can only be realized by using choice templates.
However, an order between the different solutions cannot be specified. Finally, Declare does
not provide support for perdurant obligations or permissions.

eCRG supports describing and deciding on most obligations. Punctual obligations
can be modelled by combining activity or point-in-time nodes with data and resource
conditions as well as relations (cf. R5). The specification of maintenance obligations is
realized through antecedence occurrence nodes (cf. R6 and R7). In turn, consequence
sequence-flow connectors support all kinds of achievements (cf. R1, R3). In particular,
the combination of sequence-flow connectors with temporal conditions also enables spec-
ifying perdurant obligations. Moreover, eCRG models preemptive and non-preemptive
obligations based on antecedence and consequence occurrence nodes and consequence
sequence-flow connectors. In cases of a preemptive obligation, the sequence-flow connector

Software 2023, 2 102

shows from the consequence to the antecedence node (e.g., R1), and vice versa in the case of
a non-preemptive obligation (e.g., R4). Prohibitions are expressed by consequence-absence
nodes. However, eCRGs lack explicit support for the reuse of permissions as, for example,
provided by PCL. As a consequence, eCRGs have to explicitly remodel the conditions of
a certain permission, when earlier specified permissions are used for defining the scope
or trigger of another compliance rule (e.g., an agent with permission for activity A is
prohibited from performing activity B). The eCRG monitoring framework [26] describes
how various copies of eCRGs are annotated with symbols, colours and text, in order to
reflect its current state and to detect compliance violations. Finally, eCRG supports the
modelling of compensations through the use of multiple consequence patterns (cf. R9).
This solution is technically correct as it allows the exact recognition of compliant traces.
However, the information about the desired consequence is lost as well as the order in
which compensations are considered. Note that, as a workaround, the numbers of the
different consequence patterns may be used to indicate this information (e.g., consequence
pattern 1 is, per convention, the desired consequence, and pattern 2 the first compensation
in case 1 is violated).

PCL can represent and reason about all obligation modalities, thanks to its deontic and
non-monotonic properties and the formal logic it uses. Apart from intuitively modelling
basic modalities, PCL is also able to effectively reason about the violations and, especially,
time-varying properties of obligations, e.g., achievement, punctual obligation and the per-
sistent effects over time. For example, for R2, we chose to model the violation. The second
part, on the other hand, is modelled as achievement obligation. In contrast, R8 provides
an interesting case of exception and is modelled as permission. As discussed above, for a
permission to be effective a prohibition must exist. In case of R8, it is prohibited to conclude
a custody account until a solution to the unresolved money-laundry case is reached. Since
prohibitions can be expressed as negative obligations such that, since Oψ ← ¬O¬ψ, if it
is obligatory to perform ψ, then its negation ¬ψ is not (in legal theory, a permission is
considered as the absence of the obligation to the contrary [25].). Thus, modelling the
prohibition as permission is a natural choice. In the alternative representation, a prohibi-
tion is modelled as maintenance obligation because it has been argued that maintenance
obligations are suitable to represent prohibitions (see [87] for details). As far as perdurant
obligations are concerned, the current variant of PCL is not able to represent perdurant
obligations [72]. However, this issue has been addressed in [86], enabling PCL to effectively
capture all types of normative requirements.

PENELOPE, on the other hand, is able to represent achievement obligations and
permissions while other requirements cannot be modelled. This is due to EC, which is
a first-order logic. It has been argued that only higher order logic can properly capture
deontic notions [92]. In addition, EC’s Initiates(E, X, T) predicate meaning is that the event
E at time T initiates the fluent X, and the fluent starts to hold from the next instant of time.
This would effectively mean that an obligation does not start to hold from the time when
the event is triggered, but from the next instant, which might not be the case for legal norms.
Hence, it is not possible to capture when the obligation becomes effective. On the same
note, there might be cases where a norm becomes effective at the same time instant as the
triggering event occurs. However, EC’s Initiates predicate is not able to capture such cases
(such as punctual obligations) [76]. This is similar for EC’s other predicates, such as the
Terminates predicate suffering from the same problems as the Initiates predicate because it
takes the same number of parameters. Hence, the Terminate predicate may not properly
represent when an obligation Terminates. Although, with PENELOPE, it is possible to detect
violations, it is currently not possible to correctly reason about violations. For example,
in PENELOPE, violations are generally detected at deadline, i.e., δ, which is not correct
from the reasoning perspective. In case of an achievement obligation, the violation must be
detected at δ + 1 not at δ. Nor are compensations and perdurant obligations supported [25].
In addition, the notion of a permission cannot be expressively represented by PENELOPE’s
patterns, even though the notion is explicitly supported by the language.

Software 2023, 2 103

6.2. Complexity

Metrics are traditionally applied in software engineering to manage the complexity
of software, and thereby provide means to improve the software development process
and assure software quality [93]. Along with object-oriented programming and program
modularisation, metrics have become an important measure to analyse and reduce software
complexity at virtually all stages of the software development process. The best known
examples are Halstead’s Complexity [78], McCabe’s Cyclomatic Complexity [94], Henry
and Kafura’s Information Flow [95] and, finally, the many variants of Lines of Code (LOC) [96].
Their usefulness for the detection and prediction of errors in process models has been
investigated in [97], where metrics are picked up to retrieve patterns that are less likely to
result in formal modelling errors. However, measuring the complexity of compliance rules
creates a new application area for these metrics and, with it, new problems.

Halstead was one of the first to develop a measure for the effort required to generate
a program from simple counts of distinct operators and operands and their total frequen-
cies [98]. A main point of criticism, though, is that the metrics lack a theoretical foundation
which clearly states what to count to make the results more comparable [99]. Another
restriction is that the metrics merely concentrate on the lexical complexity rather than the
program’s structure. McCabe’s metric, on the other hand, is computed based on the control-
flow graph of a program [94,100]. It measures the number of paths that exist to traverse a
code sequence, and hereby serve as an indicator of the unstructuredness of a program [99].
In this regard, the nodes of a graph correspond to a set of indivisible code sequences, while
a directed edge indicates a link between two nodes if the second code sequence can be
executed directly after the first one [100]. Given the restriction to the process structure and
the semantic discrepancy between graph and program code [101], the metric (in its current
state) seems to be inappropriate to differentiate between the diverse process perspectives
with which compliance rules are concerned.

The importance of measuring inter-modular factors is stressed by Henry and Kafura,
who calculate the data flow as incoming and outgoing data calls with respect to the LOC of
the different modules of a program [95]. LOC counts the number of semicolons in a method,
except for those within comments and string literals. Although many variations, including
Source Lines of Codes (SLOC) or Lines of Codes Equivalents (LOCE) [100], have been proposed,
the measure can hardly be transferred to the generally much more compact compliance
rules, which neither benefit from their segmentation into lines (SLOC) nor from weights for
the nesting of code (LOCE), without conceptual groundwork.

Thus, even if, in general, metrics can be considered a powerful measuring instrument
to estimate a program’s complexity, only Halstead’s metrics appear to be directly transfer-
able to compliance rules without further modifications. Being formerly contested for its
universality for programming languages, its classification into operators and operands now
facilitates a comparison across different languages requiring only an a-priori declaration
of operators and operands. Hence, we decided to apply Halstead’s metrics to estimate
the complexity of the effort to write (or read) a compliance rule. The Halstead metrics are
defined as follows:

Vocabulary n = n1 + n2 (1)

Length N = N1 + N2 (2)

Volume V = N · log2(n) (3)

Difficulty D =
n1

2
· N2

n2
(4)

Effort E = D ·V (5)

where n1 (n2) is the number of unique operators (operands) and N1 (N2) is the total number
of operators (operands).

To achieve a uniform evaluation basis, we limited operators in compliance rules to
commands and structuring elements such as patterns, literals, logical connectors, start/end

Software 2023, 2 104

events, flows or parentheses; and operands to elements that have a (fixed) value such as
variables or constants, which are usually represented by activities or data attributes. Note
that Halstead’s metrics are not calculated per language, but per concrete program in respect
to the characteristics of the language. Accordingly, all operators and operands are counted
per compliance rule. As this paper’s focus lies on the end-user perspective, the metrics
are only applied to the high-level language. The following example demonstrates how the
measures for the metrics are counted.

Example: Figure 10 shows three different compliance rules. The graph is modelled in
BPMN 2.0 while the textual rules are specified in CRL and PCL. Activities are simply
represented by the letters A, B and C. According to the definition of the metrics, R10
can be expressed by five operators: n1 = {xor-split, xor-join, start event, end event,
sequence flow} = 5 and two operands: n2 = {A, B} = 2. After defining the language’s
properties, their occurrence can be counted. The operators defined in n1 result in
ten, as there are multiple sequence flows, two gateways and two events to consider:
N1 = 10; whereas the operators defined in n2 appear only once each, and, hence, result
in two: N2 = 2. Similarly, R11 can be decomposed into three operators: n1 = {pattern,
and, parentheses} = 3, where the parentheses are counted as a pair; and three operands:
n2 = {A, B, C} = 3 resulting in: N1 = 3, respectively N2 = 3. Analogously, R12 can be
determined by three different operators: n1 = {deontic modality, ⊗-reparation} = 2,
and three operands: n2 = {A, B, C} = 3 resulting in: N1 = 2, respectively N2 = 3.

A

B

R10 R11 R12

Either A or B is performed next.
A precedes the exe-
cution of B and C.

If A holds, then it is a
maintenance obligation
to do B whose violation

is compensated by C.

A Precedes (B and C).
A=⇒[OM] B ⊗ C.

Figure 10. Example of the operator and operand count

Following this example, the metrics calculation results in two lists per language (cf.
Appendix A). The first list details the assumptions which quantify the rules, while the
second list compiles the individual values for R1 to R9. The metrics compute the effort
based on the number of operators and operands that take part in the evaluation of the
rule. Simply speaking, the vocabulary (length) of a language increases depending on the
elements (size) of the rules.

As can be seen from Table 17, the lowest efforts (E = 15.76/16.36; E = 15.92) are
computed for PCL and Declare. This fact could be linked to the linear complexity of
deontic and defeasible logic as the base language of PCL. The complexity of the overall
compliance problem is NP-complete, though. Declare on the other hand, cannot depict
the data conditions or resource constraints given in R5 and R6, which naturally limits
the complexity of expressions. Looking at the measures used to calculate the effort, it
becomes clear that both volume (V = 62.05; V = 44.31) and difficulty (D = 3.94; D = 4.44)
are significantly higher for PENELOPE and eCRG, which ultimately lead to the highest
efforts (E = 267.51; E = 440.70). In contrast to PCL, the complexity of the standard EC
used in PENELOPE is exponential, assuming the relative time and partial order nature
of the EC. Furthermore, each operator has its own complexity level, which contributes
to the overall complexity. In addition, in the case of PENELOPE, we also have nested
predicates which not only increase the size of the predicate but also the complexity level.
In the context of eCRG, the specification of the time intervals in R9 is the main driver for
this issue. Only considering R1–R9 significantly reduces the effort (E = 91.93), volume
(V = 24.21) and difficulty (D = 3.02) of eCRG. DMQL shows a remarkable high volume

Software 2023, 2 105

(V = 22.43) at a comparably low difficulty (D = 1.54) leading to the second highest effort
(E = 47.75). BPMN-Q (E = 67.03) and CRL (E = 31.17) come to more moderate and even
similar results for difficulty, which can be explained by the fact that both approaches share
a subset of patterns.

Table 17. Complexity measured by metrics proposed in [78].

Language n N V D E SD Min. Max.

BPMN-Q 4.67 8.00 16.89 2.79 67.03 100.76 R7 R9

CRL 3.44 5.11 9.66 2.25 31.17 41.49 R1/R8 R9

Declare 2.57 3.86 5.81 1.43 15.92 34.45 R2 R9

DMQL 5.67 8.56 22.43 1.54 47.75 64.20 R1 R9

eCRG 8.22 12.89 44.31 4.44 440.70 1,051.10 R8 R9

PCL 5.67 5.89 13.03 1.81 15.76/16.36 * 6.86/6.73 * R1 R5

PENELOPE 12.14 17.29 62.05 3.94 267.51 197.73 R5 R4
* Two alternatives for R6 and R9. n, N, V, D and E are calculated as mean over R1 to R9 of the tables given in
Appendix A. SD, Min. and Max. are calculated for E.

Examining the effort of the individual rules shows that it decreases for R1 while it
increases for R4 and R9. R1 relates to a quite common control-flow rule, for which most
languages provide a predefined modelling construct so that the effort does not increase
for most languages. The compensation incorporated in R9, on the other hand, affects the
effort due to its higher semantical complexity. Remarkable, in this context, is that apart
from R9, a simple sequence flow, such as described in R4, seems to raise the effort as well.
The reason for this might be that R4 features two activities and two data conditions at
once, though the languages realise this rather differently. Overall, our analysis shows
that the chosen modelling approach leads to varied outcomes not only by means of their
expressiveness (cf. Section 6.1), but also with regard to their lexical complexity.

7. Related Work

In this section, we compare the presented evaluations to several existing surveys and
evaluation studies reported in the literature. The presented work is complementary and
different from existing evaluations. It is complementary in the sense that it provides more
insights into the state of affairs in the compliance-requirements modelling domain. In
contrast to other evaluations (such as the work of [91,102]), ours includes more frameworks
and formal languages than any other work, and, thus, has a wider scope.

El Kharbili [103] analyses operational and (non-)functional aspects of regulatory com-
pliance management (RCM) from a business-process management perspective using three
categories as evaluation criteria. Using one of these criteria of the compliance dimensions,
they extract three distinct types of rules, namely, structural, temporal and contractual rules,
which are supported by the modelling languages. However, their evaluation lacks a sys-
tematic evaluation of “legal requirements” for compliance checking—in particular, from a
reasoning perspective for compliance checking. Furthermore, they do not make any dis-
tinction between the classes of norms [72]; and they do not consider the specific class of
norms and how they can be properly represented.

In the context of the larger project Reasoning on the Web with Rules and Seman-
tics (REWERSE) Bonatti et al. [104] investigate the state of affairs for logic-based modelling
languages for representing policy, trust, actions and business rules in the security and policy
domains. Ly et al. [105] evaluate the core functionalities of existing compliance monitoring
approaches. Their evaluation is based on ten core compliance-monitoring functionalities,
including modelling the compliance requirements related to control flow, data, and hu-
man resources. However, the scope of their work is limited only to the functionalities of
monitoring approaches, while the functionalities of design-time and post-execution-time

Software 2023, 2 106

approaches are left out. In addition, their evaluation includes checking the expressiveness
of modelling languages to model typical compliance patterns. Fenech et al. [106] evaluate
the expressiveness of CTL, LTL and CSP with the deontic-based contract language CL [107]
for modelling the full specifications of electronic contracts.

Our survey is different from [106] in the sense that we are evaluating the expressive-
ness of existing languages using more complex compliance rules but [106] only consider
simple rules. In contrast, [107] evaluates the electronic contracts for only functional and
behavioural requirements, which are more relevant to conformance checking, while we
evaluate compliance requirements from a legal perspective.

Caron et al. [42] provide a comprehensive rule-based compliance checking and risk
management with a process-mining framework. The authors also evaluate the expressive-
ness of rule-based languages for modelling different compliance rule patterns consisting of
a rule-restriction focus (e.g., cardinality-based rules, co-existence rules) and rule patterns
pertaining to various process aspects (e.g., data, resources). The pragmatic, semantic and
syntactic foundations of visual modelling languages are discussed in [108]. Moreover, Otto
and Antón [102], study existing compliance approaches to extracting the required informa-
tion for modelling compliance requirements. Whereas the authors of COMPAS-Project [3]
provide an overview of the state of the art of the compliance languages with an emphasis
on languages for regulatory and legislative provisions. This work is closely related to the
work of Elgammal et al. [91] but does not cover complex patterns and various process
perspectives, as we do. In contrast, [109] focuses on how modelling languages are used to
align the compliance requirements for business processes. In addition, the authors discuss
various graphical, logic-based, mark-up languages and constraint-based languages for
representing compliance rules pertaining to data, resources and temporal rules.

Turki and Bjekovic-Obradovic [110] investigates the practices of regulation analysis
for extracting key information from legal sources for the information system engineering.
Their work also includes the analysis of existing practices in the compliance rules domain
for achieving and maintaining the compliance of e-Government services and IS pertaining
regulations. However, the downside of their work is that they focus only on goal-oriented
modelling approaches, e.g., SecureTropos [111] and goal-oriented requirement language
(GRL) [112,113]. The SecureTropos is based on the i∗ framework, and involves the extraction
and modelling of various types of goals, activities and resources expressing obligations.
Whereas GRL, which combines URN (User Requirements Notation [114]) and UCM (Use
Case Map [115]), represents the requirements from legal sources in terms of actors, goals
and tasks.

A rather similar work is reported in Otto and Antón [102], where the authors examine
various approaches to regulation modelling languages and the extraction of key legal concepts
from legal documents. Contrary to [102,110], we go beyond the goal-oriented languages and
analyse formal and visual languages with complex requirements patterns from both spheres
of the compliance problem. Furthermore, in contrast to [102], we exclude mark-up based
languages from our analysis because, although such languages (e.g., REGNET-Project [116],
Standard Generalized Markup Language (SGML: https://www.w3.org/TR/WD-html40-97
0708/intro/sgmltut.html, accessed on 20 September 2020.), OASIS LegalRuleML (http://docs.
oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/csprd02/legalruleml-core-spec-v1.0
-csprd02.html, accessed on 20 September 2020)) can capture the structure of the regulations,
and meta-data regarding various sections of the legal documents, they do not provide enough
details on the underlying representations of the compliance requirements.

The work by Elgammal et al. [91] reports a comparative analysis of modelling lan-
guages from temporal and deontic families of logics and evaluates three languages, LTL,
CTL and FCL. Their comparison includes the eleven features that a modelling language
should have, including formality, expressiveness, declarativeness and non-monotonicity, to name
but a few. They also discuss the strengths and weaknesses of the evaluated languages—
in particular, the expressiveness and computational complexity, and the complexity of
the sources of the compliance requirements. Hashmi and Governatori [25], on the other

https://www.w3.org/TR/WD-html40-970708/intro/sgmltut.html
https://www.w3.org/TR/WD-html40-970708/intro/sgmltut.html
http://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/csprd02/legalruleml-core-spec-v1.0-csprd02.html
http://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/csprd02/legalruleml-core-spec-v1.0-csprd02.html
http://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/csprd02/legalruleml-core-spec-v1.0-csprd02.html

Software 2023, 2 107

hand, reported a rather similar work where the authors investigated seven CMFs and
evaluated their conceptual foundations to gain a better understanding of whether they
provide reasoning support of legal norms. As CMFs build on weak conceptual foundations,
the authors used predefined evaluation criteria and obligation modalities [72] to check the
one-to-one mappings between the types of obligations and modelling patterns provided by
the language used in a CMF. Although these works are similar to the one presented here,
they are different in the sense that Elgammal et al.’s work does not include graph-based lan-
guages in their analysis such as DMQL or BPMN-Q. It, thus, has a limited scope. BPMN-Q is
a CTL-based (CTL is a superset of LTL; hence, the characteristics of LTL can be generalized
to CTL. See Vardi [117] for details on the pros and cons of linear and branching time logics,
though such discussions are not related to their ability to represent legal norms.) query
language; hence, their comparative results can be generalized to BPMN-Q only—but not to
DMQL, which is based on graph theory. In contrast, Hashmi et al.’s [72] evaluation is close
to ours but has limited scope, as we also include graph-based, primitive-based and visual
modelling languages, e.g., DMQL and eCRG, on top of logic-based modelling languages.
In addition, their evaluations do not consider compliance requirements related to data,
or functional and structural process information.

Apart from these focused evaluations, other surveys accumulating understanding of
compliance management from a variety of perspectives have been mentioned in the litera-
ture. For example, Becker et al. [23] present a literature study based on the generalisability
and applicability of business-process compliance frameworks, and only cover the aspect of
the implementation results of the surveyed frameworks. Fellmann and Zasada [24] survey
the dominating trends and issues in business-process compliance through four dimen-
sions. These include variables in general business-process modelling (e.g., information,
location, resources), temporal aspects and a distinction between the approaches based
on the formality, that is, whether the approach is a verification or a validation approach.
Hashmi et al. [118], on the other hand, accumulate a holistic view of the state-of-affairs in
the compliance domain. They review the literature across 13 dimensions including the
expressiveness of formal language for representing and reasoning about legal norms, rules
pertaining to process aspects (i.e., data, time, resource etc.), and highlight intriguing issues
faced by the domain. In contrast, Sackmann et al. [119] examine BPC approaches in relation
to their suitability to support the compliance management (CM) life-cycle phases (proposed
in [120]) for their interoperability with business processes in the context of the digitali-
sation of the compliance function. Casanovas et al. [121], on the other hand, investigate
the existing literature and research projects into compliance by design (CbD) and clarify the
double process of converging trends in the legal theories, legal technologies including AI,
and spreading process-management approaches to other domains. Moreover, the authors
discuss the relationships and differences between various domains and proposals. Based
on their analysis, the authors classify CbD into business-, legal- and regulatory-driven
compliance problems. Their analysis is somewhat similar to the work of [24,118], but their
preliminary focus is on differentiating the concept of CbD to achieving compliance through
design (CtD). The authors also implicitly discuss the expressiveness of various compliance
modelling languages. However, no formal expressiveness and complexity analysis is con-
ducted, and, thus, they have a different orientation. Goedertier et al. [122], on the other
hand, evaluate different approaches, principles to declarative process modelling ranging
from imperative models to representing declarative modelling approaches. Mostly, the
evaluated approaches differ from the business concern, state space and the constraints
types they are able to model, and the modelling and reasoning framework they use—yet
their objective remains the same. In addition, this work is limited in scope as it focuses
only on declarative process-modelling paradigms and does not consider the compliance
concerns, as is achieved in [56].

Software 2023, 2 108

8. Discussion

This study was conducted to compare and evaluate compliance rules languages in
two ways: semantical expressiveness and textual complexity. Due to the quite heteroge-
neous pool of language artefacts, we chose to organize our approach into three phases.
In Phase 1, we selected twelve languages during a systematic literature review and classified
them according to their different conceptual foundations. In Phase 2, we modelled a sample
of compliance requirements with a subset of seven languages. In Phase 3, we evaluated
the formally specified rules with regard to their expressiveness and complexity. In the
remainder of this section, we focussed on the formalisation aspect, i.e., the coverage of
process perspectives and deontic effects as well as the languages’ textual complexity.

8.1. Summary of Results

As the formalisation showed, all languages feature the decomposition of a requirement
into singular constraints, and provide a mapping to formal conditionals addressing one or
more compliance concerns in either textual or visual form, or a combination of both. Our
investigation reveals that most approaches facilitate the modelling of control-flow and
data-flow requirements that are an integral part of every process description. However,
compliance rules can also be assessed by their normative meanings, which go beyond the
formal representation of process elements and the functional relation between them.

In this regard, the analysis helped diversify the results and to pinpoint languages that
are more sophisticated in displaying the different normative concepts, when evaluated on
the given framework. Interestingly, not only a language designed to capture such premises
such as PCL, but also eCRG as a visual language, is able to differentiate themselves from
the other languages. Although both can be seen as fairly expressive compliance languages,
eCRG copes with the complexity and redundancy imposed by its many constructs. This
aspect becomes even more interesting considering the effect on users in terms of time and
effort, which are likely to influence the modelling performance. PENELOPE, however,
did not achieve its full potential in a legal-reasoning context due to its narrowed focus on
compliance modelling. Note that the user perspective, which clearly plays an important
role in developing a holistic view of every modelling language, is linked to this research,
but not considered explicitly.

Coming from the generic classification used in Table 1, there is no obvious trend
concerning the pattern-based approaches such as CRL, or the hybrid approaches Declare
and BPMN-Q, which combine visual patterns with a formal representation in temporal
logics. Remarkably, all pattern-based languages convince by offering a manageable size
of language elements and the ease of use of predefined mappings, which is also clear
from the complexity discussion. As for the deontic modalities, the main concepts can be
modelled with some semantic losses concerning permissions, and (non)preemptive as well
as perdurant obligations. Similar to the user perspective, the implications of bypassing or
substituting the intended normative meaning are beyond the scope of this research. Based
on our evaluation, we assume that certain constructs from the control-flow or resource
perspective express the intuitive meaning of the compliance requirements correctly, even if
they deviate from the legal theory. This has been demonstrated for resource and composite
patterns. From the sample of pattern approaches, Declare is the one language that turns
out to be less expressive in terms of the other process perspectives, but more capable of
adopting the varied normative concepts.

For query-based languages such as DMQL (and to some extent for BPMN-Q), the rule
formalisation showed that it is possible to implement compliance rules in a systematic
and appealing way. Especially for simple order and occurrence as well as time-related
compliance requirements, the construction of a DMQL query for checking BPMN models
is rather straight-forward. In contrast, data flow and compensation-related compliance
rules are much harder to capture. Most of the issues occur due to the interpretation of
abstract compliance rules in terms of constructs of a concrete modelling language such as
BPMN. In some cases, translating an abstract compliance rule means creating new process

Software 2023, 2 109

knowledge and describing it in terms of a query pattern. To do so, many design decisions
have to be made (e.g., inserting timer events and intermediate events). Finally, since DMQL
is a query language intended for retrieving the specified patterns, enforcing compliance
rules on process models would mean searching for violations or the absence of compliant
behaviour. In this regard, the patterns have to be negated.

8.2. Implications for Research and Practice

Implications of this work pertain to both research and practice. First, from a research
perspective, the survey reveals a plethora of approaches but no common evaluation basis.
There is no comparable study to ours that goes beyond the conceptual investigation of
a language’s constructs evaluating their expressiveness on the one hand and normative
implications, on the other. The approach also facilitates a more conscious use of different
languages such as graphs, patterns, queries or logics. Moreover, we were able to provide
new insights into the complexity of compliance languages. By combining these two essen-
tial evaluation tools, we devise a systematic procedure to evaluate compliance languages,
and invite researchers to rethink their design decisions to be more user-aware. In this direc-
tion, we encourage consideration of the trade off between expressiveness, complexity and usability.
Our approach to measuring complexity is scalable to a large number of compliance rules
and transferable to other compliance-specific, or non-specific process modelling languages.

Second, its relevance for practice is shown by the applicability to a real business
process. We argue that apart from the financial domain, the approach is sufficiently flexible
to be easily adapted to many other domains. In addition, the deontic notion of obligations
adds to the correct understanding of regulations by decomposing a requirement into the
most important normative principles, and thereby helps to overcome weaknesses such as
under-/over-specification. In addition, in general, less complex languages that are easy to
write and read save time and money. A measure for evaluating modelling languages in
this regard, and even a language-independent one, is, hence, a desirable feature. Moreover,
metrics for the compliance domain have not been exploited so far and have huge potential
to estimate the compliance effort and identify problem areas arising from complex process
structures. More precisely, accessing and modulating frequently occurring structures in
compliance rules might be excellent levers to decrease the overall complexity.

8.3. Limitations

As with every research, there are limitations to be taken into account in order to present
the findings in the proper proportions. We seek to reflect on the results in, essentially,
four areas, that related to the literature review, the business process and compliance rules,
the formalisation itself as well as the two evaluation criteria: expressiveness and complexity.

All in all, seven languages were included in this evaluation, which means that five
languages resulting from the literature review had to be dismissed out of practical reasons.
Thereby, some languages and pattern systems relevant to the BPC area remain open to
further research (cf. Table 1). The approach to the language selection is restricted by the
applied filtering criteria which, by all exercised care might occasionally have lead to the
exclusion of suitable approaches (cf. Figure 2). Finally, using only one scholarly database,
no alternative queries and only the title search, might have limited the pool of languages,
although this does not conflict with the general qualitative notion of this research. In
addition, future empirical studies could shed light on how practitioners used the languages
that we compared in our work or which other instruments they use to solve compliance
problems, i.e., include sources from outside academia.

The running example is linked to a process of the financial domain, and, hence, is
driven by domain semantics and restricted by the number of compliance rules. The eval-
uation was carried out using real-life compliance requirements. Each of them represents
a different process perspective and carries another deontic modality, which for some re-
quirements yielded more than one possible normative meaning. The remaining deontic
effects not covered by the sample were mapped to language constructs suitable to support

Software 2023, 2 110

the normative concepts. Thus, the practical application of the compliance languages could
only be carried out for those concepts included in the sample. As the formalisation shows,
not all critical process perspectives were modelled exactly as indicated by the classifica-
tion in Table 2. In fact, some process perspectives (i.e., data, time) had to be interpreted
more intuitively.

Furthermore, the adopted metrics are fundamentally designed to check the complexity
of software languages, not formal languages. Each software design language may have dif-
ferent semantics, syntax and pragmatics. Since formal languages have different semantics,
as well as patterns, they might not necessarily be fully analysed with software complexity
analysis tools such as Halstead’s metrics. The main problem, however, arises from the
individual classification of operators and operands. In this regard, we tried to unwrap
variables, constants and structuring elements as best as possible, and created a glossary (cf.
Appendix A) to keep record of all definitions.

9. Conclusions

Requirements modelling is an important part of the overall compliance problem. In
particular, the gap between legal formulations and process description requires extensive
interpretation, whether essential compliance information has been mapped, what conse-
quences a compliance violation may have, or which remedies exist. Modelling languages
should, therefore, guide the modelling process and, above all, be expressive enough to cap-
ture the different concepts, but not so complex that modelling becomes overly demanding.
Our research was driven by an interest in the extent to which existing languages control
this element.

In a nutshell, our evaluation provides a holistic view of the state of affairs in the
compliance-requirements modelling domain, accumulates a detailed understanding and
highlights the strengths and weaknesses of the existing modelling languages—especially,
from the perspective of their expressive power and complexity. In addition, it underpins
what the challenges are that need to be investigated in order to provide full reasoning and
representation support for the modelling of compliance requirements.

Future research calls for user studies on the usability of compliance languages and
the comprehension of formal representations. Experimental investigations in this area
are, so far, targeting well-established visual notations such as BPMN, while compliance
languages lack user evaluation of any kind. Surprisingly, many approaches make use, for
this purpose, of formal patterns without questioning their relevance to the process or how
users would be able to handle them. Here, the question of how efficiently users apply these
languages in terms of performance and time poses the main challenge. With this additional
information, it should be possible to either improve existing tools or invent new solutions
to then well-known problems.

Author Contributions: Conceptualization, A.Z. and M.H.; methodology, A.Z. and M.H.; formal
analysis, A.Z., M.H., M.F. and D.K.; resources, A.Z., M.H., M.F. and D.K.; writing—original draft
preparation, A.Z., M.H., M.F. and D.K.; writing—review and editing, A.Z., M.H., M.F. and D.K.;
funding acquisition, All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Software 2023, 2 111

Appendix A. Complexity Measures for Evaluated Languages

Table A1. Definitions on BPMN-Q.

ID n1 n2

R1 {pattern, sequence flow} {activity}

R2 {data flow} {activity, data}

R3 {pattern, sequence flow, data flow} {activity, data}

R4 {pattern, sequence flow, data flow} {activity, data}

R5 n.a. n.a.

R6 n.a. n.a.

R7 {data flow} {activity, data}

R8 {pattern, start event, sequence flow} {activity}

R9 {pattern, sequence flow, data flow} {activity, data}

Table A2. Metrics calculations for BPMN-Q.

ID n1 n2 n N1 N2 N V D E

R1 2 1 3 2 2 4 6.34 2.00 12.68

R2 1 2 3 2 3 5 7.92 0.75 5.94

R3 3 2 5 3 3 6 13.93 2.25 31.35

R4 3 2 5 4 4 8 18.58 3.00 55.73

R5 · · · · · · · · ·
R6 · · · · · · · · ·
R7 1 2 3 1 2 3 4.75 0.50 2.38

R8 3 1 4 3 1 4 8.00 1.50 12.00

R9 3 2 5 9 9 18 41.79 6.75 282.11

Table A3. Definitions on CRL.

ID n1 n2

R1 {pattern} {activity}

R2 {pattern, and, parenthesis} {activity}

R3 {pattern} {activity, data}

R4 {pattern, and, parenthesis} {activity}

R5 {pattern} {activity, data, resource}

R6 {pattern, and, parenthesis} {activity}

R7 {pattern} {activity, data}

R8 {pattern} {activity}

R9 {pattern, else, parenthesis} {activity, data}

Software 2023, 2 112

Table A4. Metrics calculations for CRL.

ID n1 n2 n N1 N2 N V D E

R1 1 1 2 1 2 3 3.00 1.00 3.00

R2 3 1 4 3 2 5 10.00 3.00 30.00

R3 1 2 3 1 2 3 4.75 0.50 2.38

R4 3 1 4 3 3 6 12.00 4.50 54.00

R5 1 3 4 1 3 4 8.00 0.50 4.00

R6 3 1 4 3 3 6 12.00 4.50 54.00

R7 1 2 3 1 3 4 6.34 0.75 4.75

R8 1 1 2 1 2 3 3.00 1.00 3.00

R9 3 2 5 6 6 12 27.86 4.50 125.38

Table A5. Definitions on DECLARE.

ID n1 n2

R1 {Precendence} {activity type}

R2 {Existence} {activity type, multiplicity label}

R3 {Response} {activity type}

R4 {Response} {activity type}

R5 n.a. n.a.

R6 n.a. n.a.

R7 {Precedence} {activity type}

R8 {Responded_Existence} {activity type}

R9 {Branched_Response,Response,Choice} {activity type, choice label}

Table A6. Metrics calculations for DECLARE.

ID n1 n2 n N1 N2 N V D E

R1 1 1 2 1 2 3 3.00 1.00 3.00

R2 1 2 3 1 2 3 4.75 0.50 2.38

R3 1 1 2 1 2 3 3.00 1.00 3.00

R4 1 1 2 1 2 3 3.00 1.00 3.00

R5 · · · · · · · · ·
R6 · · · · · · · · ·
R7 1 1 2 1 2 3 3.00 1.00 3.00

R8 1 1 2 1 2 3 3.00 1.00 3.00

R9 3 2 5 3 6 9 20.90 4.50 94.04

Software 2023, 2 113

Table A7. Definitions on DMQL.

ID n1 n2

R1 {arc path} {node event, node task}

R2 {arc non-directed, arc original/opposite direction} {node lane, node task, node data}

R3 {arc non-directed, arc original/opposite direction, attribute relation} {node lane, node task, node data, attribute}

R4 {arc path, arc non-directed, arc original/opposite direction} {node lane, node send, node receive, node task}

R5 {arc non-directed} {node lane, node task, attribute}

R6 {arc non-directed, arc original/opposite direction} {node lane, node task, node data}

R7 {arc non-directed, arc original/opposite direction} {node lane, node task, node event}

R8 {arc non-directed, arc path non-directed, arc original/opposite direction} {node lane, node various, node task, node data}

R9 {node event, node send, node timer, node, node task} {node event, node send, node timer, node, node
task}

Table A8. Metrics calculations for DMQL.

ID n1 n2 n N1 N2 N V D E

R1 1 2 3 1 2 3 4.75 0.50 2.38

R2 2 3 5 3 4 7 16.25 1.33 21.67

R3 3 4 7 3 4 7 19.65 1.50 29.48

R4 3 4 7 6 6 12 33.69 2.25 75.80

R5 1 3 4 2 3 5 10.00 0.50 5.00

R6 2 3 5 4 6 10 23.22 2.00 46.44

R7 2 3 5 2 3 5 11.61 1.00 11.61

R8 3 4 7 3 4 7 19.65 1.50 29.48

R9 3 5 8 10 11 21 63.00 3.30 207.90

Table A9. Definitions on PCL.

ID n1 n2

R1 {operatorType, deontic modalityType} {(activity)literal}

R2 {operatorType, deontic modalityType, operatorType} {literal}

R3 {operatorType, deontic modalityType} {literal, (activity)literal}

R4 {operatorType, deontic modalityType, operatorType} {literal, (activity)literal}

R5 {operatorType, deontic modalityType, operatorType} {literal, literal, literal, OR}

R6(1) {operatorType, deontic modalityType, operatorType} {literal, literal}

R6(2) {operatorType, deontic modalityType, operatorType} {literal, (resource)literal}

R7 {operatorType, deontic modalityType, operatorType} {literal, literal}

R8 {operatorType, deontic modalityType, operatorType} {literal, (resource)literal}

R9(1) {operatorType, deontic modalityType, operatorType} {literal}

R9(2) {operatorType, deontic modalityType, operatorType} {literal, (activity)literal}

Software 2023, 2 114

Table A10. Metrics calculations for PCL.

ID n1 n2 n N1 N2 N V D E

R1 2 1 3 3 1 4 6.34 1.00 6.34

R2 3 1 4 3 1 4 8.00 1.50 12.00

R3 2 2 4 2 3 5 10.00 1.50 15.00

R4 3 3 6 3 2 5 12.92 1.00 12.92

R5 3 2 5 3 3 6 13.93 2.25 31.35

R6(1) 3 2 5 3 2 5 11.61 1.50 17.41

R6(2) 3 2 5 3 2 5 11.61 1.50 17.41

R7 3 2 5 3 2 5 11.61 1.50 17.41

R8 3 2 5 3 2 5 11.61 1.50 17.41

R9(1) 3 1 4 3 1 4 8.00 1.50 12.00

R9(2) 3 2 5 3 2 5 11.61 1.50 17.41

Table A11. Definitions on PENELOPE.

ID n1 n2

R1 {event, activity, pattern,logical operator,temporal operator, fluent, agent} {pattern type, event, fluent, time, AND, LEQ}

R2 {event, pattern, logical operator, temporal operator, fluent, agent} {pattern type, event, fluent, time, AND, LEQ}

R3 {event, pattern, fluent, agent, temporal operator, logical operator} {pattern type, resource, fluent, time, AND, LEQ}

R4 {pattern, activity, agent, fluent,temporal operator, logical operator} {pattern type, AND, LEQ, time, resource}

R5 {pattern, event, agent, temporal operator, logical operator} {pattern type, fluent, event, advisor, AND, OR,
LEQ, time}

R6 n.a. n.a.

R7 {pattern, event, agent, fluent, temporal operator, logical operator} {pattern type, activity, advisor, AND, LEQ, time}

R8 n.a. n.a.

R9 {pattern, agent, fluent, activity, temporal operator,logical operator} {pattern type, activity, fluent, AND, LEQ, time}

Table A12. Metrics calculations for PENELOPE.

ID n1 n2 n N1 N2 N V D E

R1 7 6 13 10 5 15 55.51 2.92 161.89

R2 6 6 12 9 5 14 50.19 2.50 125.47

R3 6 6 12 10 4 14 50.19 2.00 100.38

R4 6 5 11 79 13 22 76.11 7.80 593.64

R5 5 8 13 8 6 14 51.81 1.88 97.14

R6 · · · · · · · · ·
R7 6 6 12 9 10 19 68.11 5.00 340.57

R8 · · · · · · · · ·
R9 6 6 12 12 11 23 82.45 5.50 453.50

Software 2023, 2 115

Table A13. Definitions on eCRG.

ID n1 n2

R1 {activity AO, message CO, sequence flow C} {organization, message type, activity type}

R2 {activity CO, data flow CO, performing relation CO} {data, resource, activity type}

R3 {activity AO, activity CO, data object CO, data flow A, data flow C,
performing relation C, sequence flow C} {data, resource, activity type}

R4 {activity AO, message CO, data object C, data flow C, sequence flow C} {data, organization, message type, activity type}

R5 {activity AO, resource A, condition C, performing relation A, resource
relation C}

{resource, condition label, relation label, activity
type}

R6 {activity AO, resource relation C} {resource, relation label, activity type}

R7 {activity AO, activity CO, sequence flow C, performing relation C} {resource, activity type}

R8 {activity AO, activity CO} {activity type}

R9
{activity AO, activity CO, message AO, message CA, data object AO,
condition AO, condition CO, sequence flow AO, sequence flow CO, data
flow AO, dataflow CO, performing relation, xor}

{data, condition label, organization, unit, message
type, activity type}

Table A14. Metrics calculations for eCRG.

ID n1 n2 n N1 N2 N V D E

R1 3 3 6 3 3 6 15.51 1.50 23.26

R2 3 3 6 4 4 8 20.68 2.00 41.36

R3 7 3 10 8 6 14 46.51 7.00 325.55

R4 5 3 8 9 5 14 42.00 4.17 175.00

R5 5 4 9 5 4 9 28.53 2.50 71.32

R6 2 2 4 4 4 8 16.00 2.00 32.00

R7 4 2 6 4 3 7 18.09 3.00 54.28

R8 2 1 3 2 2 4 6.34 2.00 12.68

R9 14 8 22 28 18 46 205.13 15.75 3230.86

References
1. SOX, Sarbanes-Oxley Act of 30 July 2002, 15 USC 7201 Note, Public Law 107-204, 107th Congress, 116 Statistics Act, Section 404; Tech-

nical Report; 2002. Available online: https://www.govinfo.gov/app/details/PLAW-107publ204 (accessed on 2 August 2022).
2. Leone, A.J. Factors related to internal control disclosure: A discussion of Ashbaugh, Collins, and Kinney (2007) and Doyle, Ge,

and McVay (2007). J. Account. Econ. 2007, 44, 224–237. [CrossRef]
3. COMPAS-Project. D2.1 State-of-the-Art in the Field of Compliance Languages—Compliance-Driven Models, Languages, and Architectures

for Services; Report D2.1; Tilburg University: Tilburg, The Netherlands, 2008.
4. Bartolini, C.; Giurgiu, A.; Lenzini, G.; Robaldo, L. Towards Legal Compliance by Correlating Standards and Laws with a

Semi-automated Methodology. In Proceedings of the BNAIC 2016: Artificial Intelligence—28th Benelux Conference on Artificial
Intelligence, Amsterdam, The Netherlands, 10–11 November 2016; Bosse, T., Bredeweg, B., Eds.; Revised Selected Papers;
Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 765, pp. 47–62.
[CrossRef]

5. Sadiq, S.; Governatori, G.; Namiri, K. Modeling control objectives for business process compliance. In Proceedings of the
International Conference on Business Process Management (BPM’07), Brisbane, Australia, 24–28 September 2007; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 149–164.

6. Reichert, M.; Weber, B. Business Process Compliance. In Enabling Flexibility in Process-Aware Information Systems; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 297–320.

7. Liu, Y.; Muller, S.; Xu, K. A static compliance-checking framework for business process models. IBM Syst. J. 2007, 46, 335–361.
[CrossRef]

8. Häußler, M.; Esser, S.; Borrmann, A. Code compliance checking of railway designs by integrating BIM, BPMN and DMN. Autom.
Constr. 2021, 121, 103427. [CrossRef]

https://www.govinfo.gov/app/details/PLAW-107publ204
http://doi.org/10.1016/j.jacceco.2007.01.002
http://dx.doi.org/10.1007/978-3-319-67468-1_4
http://dx.doi.org/10.1147/sj.462.0335
http://dx.doi.org/10.1016/j.autcon.2020.103427

Software 2023, 2 116

9. Awad, A.; Decker, G.; Weske, M. Efficient Compliance Checking Using BPMN-Q and Temporal Logic. In Proceedings of the Inter-
national Conference on Business Process Management (BPM’08), Milan, Italy, 2–4 September 2008; Springer: Berlin/Heidelberg,
Germany, 2008; Volume 5240, pp. 326–341.

10. Ghanavati, S.; Amyot, D.; Rifaut, A. Legal Goal-Oriented Requirement Language (Legal GRL) for Modeling Regulations.
In Proceedings of the 6th International Workshop on Modeling in Software Engineering (MiSE 2014), Hyderabad, India,
31 May–7 June 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 1–6. [CrossRef]

11. Barnawi, A.; Awad, A.; Elgammal, A.; El Shawi, R.; Almalaise, A.; Sakr, S. Runtime Self-Monitoring Approach of Business Process
Compliance in Cloud Environments. Clust. Comput. 2015, 18, 1503–1526. [CrossRef]

12. Castellanos-Ardila, J.P.; Gallina, B.; Governatori, G. Compliance-aware engineering process plans: The case of space software
engineering processes. Artif. Intell. Law 2021, 29, 587–627. [CrossRef]

13. Ghanavati, S.; Hulstijn, J. Impact of Legal Interpretation on Business Process Compliance. In Proceedings of the 2015 IEEE/ACM
1st International Workshop on TEchnical and LEgal aspects of data pRivacy and SEcurity (TELERISE ’15), Florence, Italy, 18 May
2015; pp. 26–31.

14. De Masellis, R.; Maggi, F.M.; Montali, M. Monitoring Data-Aware Business Constraints with Finite State Automata. In Proceedings
of the 2014 International Conference on Software and System Process (ICSSP 2014), Nanjing, China, 26–28 May 2014; Association
for Computing Machinery: New York, NY, USA, 2014; pp. 134–143. [CrossRef]

15. Corea, C.; Delfmann, P. Detecting Compliance with Business Rules in Ontology-Based Process Modeling. In Proceedings of the
Towards Thought Leadership in Digital Transformation: 13. Internationale Tagung Wirtschaftsinformatik, WI 2017, St.Gallen,
Switzerland, 12–15 February 2017; Leimeister, J.M., Brenner, W., Eds.; 2017.

16. Gong, P.; Knuplesch, D.; Feng, Z.; Jiang, J. bpCMon: A Rule-Based Monitoring Framework for Business Processes Compliance.
Int. J. Web Serv. Res. (IJWSR) 2017, 14, 23. [CrossRef]

17. Loreti, D.; Chesani, F.; Ciampolini, A.; Mello, P. Distributed Compliance Monitoring of Business Processes over MapReduce
Architectures. In Proceedings of the ICPE ’17 Companion; Association for Computing Machinery: New York, NY, USA, 2017;
pp. 79–84. [CrossRef]

18. Tosatto, S.C.; Governatori, G. Computational Complexity of Compliance and Conformance: Drawing a Line Between Theory and
Practice. J. Appl. Logics—IfCoLog J. Logics Their Appl. 2021, 8, 1023–1064 .

19. Oyekola, O.; Xu, L. Verification and compliance in collaborative processes. In Proceedings of the Working Conference on Virtual
Enterprises; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–223.

20. Hamdani, R.E.; Mustapha, M.; Amariles, D.R.; Troussel, A.; Meeùs, S.; Krasnashchok, K. A combined rule-based and machine
learning approach for automated GDPR compliance checking. In Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Law, São Paulo, Brazil, 21–25 June 2021; pp. 40–49.

21. Cunha, V.H.C.; Caiado, R.G.G.; Corseuil, E.T.; Neves, H.F.; Bacoccoli, L. Automated compliance checking in the context of
Industry 4.0: From a systematic review to an empirical fuzzy multi-criteria approach. Soft Comput. 2021, 25, 6055–6074.

22. Krasnashchok, K.; Mustapha, M.; Al Bassit, A.; Skhiri, S. Towards privacy policy conceptual modeling. In Proceedings of the
International Conference on Conceptual Modeling; Springer: Berlin/Heidelberg, Germany, 2020; pp. 429–438.

23. Becker, J.; Delfmann, P.; Eggert, M.; Schwittay, S. Generalizability and applicability of model-based business process compliance—
Checking approaches: A state-of-the-art analysis and research roadmap. Bus. Res. 2012, 5, 221–247.

24. Fellmann, M.; Zasada, A. State-of-the-Art of Business Process Compliance Approaches: A Survey. In Proceedings of the 22st
European Conference on Information Systems, ECIS 2014, Tel Aviv, Israel, 9–11 June 2014.

25. Hashmi, M.; Governatori, G. Norms modeling constructs of business process compliance management frameworks: A conceptual
evaluation. Artif. Intell. Law 2018, 26, 251–305. [CrossRef]

26. Knuplesch, D.; Reichert, M.; Kumar, A. A framework for visually monitoring business process compliance. Inf. Syst. 2017,
64, 381–409. [CrossRef]

27. Ly, L.T.; Maggi, F.M.; Montali, M.; Rinderle-Ma, S.; van der Aalst, W.M. Compliance monitoring in business processes:
Functionalities, application, and tool-support. Inf. Syst. 2015, 54, 209–234. [CrossRef] [PubMed]

28. Van Der Aalst, W.M.; Pesic, M. DecSerFlow: Towards a truly declarative service flow language. In Proceedings of the 4th
International Workshop on Web Services and Formal Methods (WS-FM’06), Brisbane, Australia, 28–29 September 2007; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 1–23.

29. Garey, M.R.; Johnson, D.S. Computers and intractability: A guide to the theory of npcompleteness (series of books in the
mathematical sciences), ed. In Computers and Intractability; Freeman: San Francisco, CA, USA, 1979; Volume 340.

30. Webster, J.; Watson, R.T. Analyzing the past to prepare for the future: Writing a literature review. MIS Q. 2002, 26, xiii–xxiii.
31. Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software

engineering–a systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15.
32. Awad, A.; Weidlich, M.; Weske, M. Visually Specifying Compliance Rules and Explaining their Violations for Business Processes.

J. Vis. Lang. Comput. 2011, 22, 30–55. [CrossRef]
33. Elgammal, A.; Turetken, O.; van den Heuvel, W.J.; Papazoglou, M. Formalizing and appling compliance patterns for business

process compliance. Softw. Syst. Model. 2016, 15, 119–146.
34. Letia, I.A.; Goron, A. Model checking as support for inspecting compliance to rules in flexible processes. J. Vis. Lang. Comput.

2015, 28, 100–121. [CrossRef]

http://dx.doi.org/10.1145/2593770.2593780
http://dx.doi.org/10.1007/s10586-015-0494-0
http://dx.doi.org/10.1007/s10506-021-09285-5
http://dx.doi.org/10.1145/2600821.2600835
http://dx.doi.org/10.4018/IJWSR.2017040105
http://dx.doi.org/10.1145/3053600.3053616
http://dx.doi.org/10.1007/s10506-017-9215-8
http://dx.doi.org/10.1016/j.is.2016.10.006
http://dx.doi.org/10.1016/j.is.2015.02.007
http://www.ncbi.nlm.nih.gov/pubmed/26635430
http://dx.doi.org/10.1016/j.jvlc.2010.11.002
http://dx.doi.org/10.1016/j.jvlc.2014.12.008

Software 2023, 2 117

35. Delfmann, P.; Breuker, D.; Matzner, M.; Becker, J. Supporting Information Systems Analysis Through Conceptual Model
Query–The Diagramed Model Query Language (DMQL). Commun. Assoc. Inf. Syst. 2015, 37, 24. [CrossRef]

36. Knuplesch, D.; Reichert, M. A visual language for modeling multiple perspectives of business process compliance rules. Softw.
Syst. Model. 2017, 16, 715–736.

37. Governatori, G.; Rotolo, A. A Conceptually Rich Model of Business Process Compliance. In Proceedings of the 7th Asia-Pacific
Conference on Conceptual Modelling (APCCM’10), Brisbane, Australia, 18–21 January 2010; Volume 110, pp. 3–12.

38. Ramezani, E.; Fahland, D.; Van Dongen, B.; Van Der Aalst, W. Diagnostic Information in Temporal Compliance Checking; Technical
Report; BPM Center: San Pedro, Costa Rica, 2012.

39. Goedertier, S.; Vanthienen, J. Designing Compliant Business Processes with Obligations and Permissions. In Proceedings of the
4th Business Process Management Workshops: BPM 2006 International Workshops, BPD, BPI, ENEI, GPWW, DPM, semantics4ws,
Vienna, Austria, 4–7 September 2006; Eder, J., Dustdar, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 5–14. [CrossRef]

40. Yu, J.; Manh, T.P.; Han, J.; Jin, Y.; Han, Y.; Wang, J. Pattern Based Property Specification and Verification for Service Composition.
In Proceedings of 7th International Conference in Web Information Systems Engineering (WISE’06); Aberer, K., Peng, Z.,
Rundensteiner, E.A., Zhang, Y., Li, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 156–168.

41. Forster, A.; Engels, G.; Schattkowsky, T.; Van Der Straeten, R. Verification of business process quality constraints based on visual
process patterns. In Proceedings of the 1st Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE’07),
Shanghai, China, 6–8 June 2007; pp. 197–208.

42. Caron, F.; Vanthienen, J.; Baesens, B. Comprehensive rule-based compliance checking and risk management with process mining.
Decis. Support Syst. 2013, 54, 1357–1369.

43. Becker, J.; Delfmann, P.; Dietrich, H.A.; Steinhorst, M.; Eggert, M. Business process compliance checking–applying and evaluating
a generic pattern matching approach for conceptual models in the financial sector. Inf. Syst. Front. 2016, 18, 359–405.

44. Ramezani, E.; Fahland, D.; van der Aalst, W.M. Where did I misbehave? diagnostic information in compliance checking. In
Proceedings of the 10th International Conference on Business Process Management (BPM’12), Tallinn, Estonia, 3–6 September
2012; Springer: Berlin/Heidelberg, Germany; pp. 262–278.

45. Timm, F.; Zasada, A.; Thiede, F. Building a Reference Model for Anti-Money Laundering in the Financial Sector. In Proceedings
of the 18th Conference on Learning, Knowledge, Data, Analytics (LWDA’16), Potsdam, Germany, 12 September 2016.

46. Zasada, A.; Bui, T. More than meets the eye: A Case Study on the Role of IT Affordances in Supporting Compliance. In
Proceedings of the 24th Americas Conference on Information Systems (AMCIS’18), New Orleans, LA, USA, 16–18 August 2018.

47. Bank for International Settlements. A Global Regulatory Framework for More Resilient Banks and Banking Systems; Technical Report;
Bank for International Settlements: Basel, Switzerland, 2011.

48. Awad, A.; Barnawi, A.; Elgammal, A.; Elshawi, R.; Almalaise, A.; Sakr, S. Runtime detection of business process compliance
violations: An approach based on anti patterns. In Proceedings of the 30th Annual ACM Symposium on Applied Computing,
(SAC ’15), Salamanca, Spain, 13–17 April 2015; pp. 1203–1210.

49. Dwyer, M.B.; Avrunin, G.S.; Corbett, J.C. Patterns in property specifications for finite-state verification. In Proceedings of the 21st
International Conference on Software Engineering (ICSE’99), Los Angeles, CA, USA, 16–22 May 1999; pp. 411–420.

50. Elgammal, A.; Turetken, O.; van den Heuvel, W.J.; Papazoglou, M. Root-cause analysis of design-time compliance violations on
the basis of property patterns. In Proceedings of the International Conference on Service-Oriented Computing (ICSOC’10), Perth,
Australia, 13–15 December 2010; pp. 17–31.

51. Turetken, O.; Elgammal, A.; van den Heuvel, W.J.; Papazoglou, M.P. Enforcing compliance on business processes through
the use of patterns. In Proceedings of the 19th European Conference on Information Systems, (ECIS’11), Helsinki, Finland,
9–11 June 2011; p. 5.

52. Turetken, O.; Elgammal, A.; van den Heuvel, W.J.; Papazoglou, M.P. Capturing compliance requirements: A pattern-based
approach. IEEE Softw. 2012, 29, 28–36.

53. Elgammal, A.; Turetken, O.; Van Den Heuvel, W.J. Using patterns for the analysis and resolution of compliance violations. Int. J.
Coop. Inf. Syst. 2012, 21, 31–54. [CrossRef]

54. Pnueli, A. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science,
Washington, DC, USA, 30 September–31 October 1977; pp. 46–57.

55. Knuplesch, D.; Reichert, M.; Ly, L.T.; Kumar, A.; Rinderle-Ma, S. Visual modeling of business process compliance rules with
the support of multiple perspectives. In Proceedings of the 32nd International Conference on Conceptual Modeling (ER’13),
Hong-Kong, China, 11–13 November 2013; Lecure Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013;
Volume 8217, pp. 106–120.

56. Pesic, M.; Schonenberg, H.; van der Aalst, W. DECLARE: Full Support for Loosely-Structured Processes. In Proceedings
of the 11th IEEE International Conference on Enterprise Distributed Object Computing (EDOC’07), Annapolis, MD, USA,
15–19 October 2007; p. 287.

57. Pesic, M. Constraint-Based Workflow Management Systems: Shifting Control to Users. Ph.D. Thesis, Eindhoven University of
Technology: Eindhoven, The Netherlands, 2008.

58. Montali, M.; Maggi, F.M.; Chesani, F.; Mello, P.; Aalst, W.M.P.v.d. Monitoring Business Constraints with the Event Calculus. ACM
Trans. Intell. Syst. Technol. 2014, 5, 1–30. [CrossRef]

http://dx.doi.org/10.17705/1CAIS.03724
http://dx.doi.org/10.1007/11837862_2
http://dx.doi.org/10.1142/S0218843012400023
http://dx.doi.org/10.1145/2542182.2542199

Software 2023, 2 118

59. Ly, L.T.; Rinderle-Ma, S.; Dadam, P. Design and Verification of Instantiable Compliance Rule Graphs in process-aware In-
formation Systems. In Proceedings of the 22nd International Conference on Advanced Information Systems Engineering
(CAiSE’10), Hammamet, Tunisia, 7–11 June 2010; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2010; Volume 6051, pp. 9–23.

60. Ly, L.T. SeaFlows—A Compliance Checking Framework for Supporting the Process Lifecycle. Ph.D. Thesis, University of Ulm,
Ulm, Germany, 2013.

61. Delfmann, P.; Steinhorst, M.; Dietrich, H.A.; Becker, J. The generic model query language GMQL – Conceptual specification,
implementation, and runtime evaluation. Inf. Syst. 2015, 47, 129–177. [CrossRef]

62. Antoniou, G.; Billington, D.; Governatori, G.; Maher, M.J. Representation results for defeasible logic. ACM Trans. Comput. Log.
(TOCL’01) 2001, 2, 255–287. [CrossRef]

63. Antoniou, G.; Billington, D.; Governatori, G.; Maher, M.J. Embedding Defeasible Logic into Logic Programming. Theory Pract.
Log. Program. 2006, 6, 703–735. [CrossRef]

64. Governatori, G.; Rotolo, A. Logic of Violations: A Gentzen System for Reasoning with Contrary-To-Duty Obligation. Australas. J.
Log. 2006, 4, 193–215. [CrossRef]

65. Lam, H.P.; Hashmi, M.; Scofield, B. Enabling Reasoning with LegalRuleML. In Proceedings of the 10th International Symposium on
the Web: Research and Applications (RuleML’16), Stony Brook, NY, USA, 6–9 July 2016; Alferes, J.J., Bertossi, L., Governatori, G.,
Fodor, P., Roman, D., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 241–257. [CrossRef]

66. Governatori, G. Representing business contracts in RuleML. Int. J. Coop. Inf. Syst. 2005, 14, 181–216. [CrossRef]
67. Hansen, J.; Pigozzi, G.; van der Torre, L.W.N. Ten Philosophical Problems in Deontic Logic. In Proceedings of the Normative

Multi-Agent Systems, 19th European Summer School in Logic, Language and Information (ESSLLI 2007) Trinity College, Dublin,
Ireland, 6–17 August 2007.

68. Alchourrón, C.E. Philosophical Foundations of Deontic Logic and the Logic of Defeasible Conditionals. In Deontic Logic in
Computer Science; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994; pp. 43–84.

69. Governatori, G.; Olivieri, F.; Rotolo, A.; Scannapieco, S. Computing Strong and Weak Permissions in Defeasible Logic. J. Philos.
Log. 2013, 42, 799–829. [CrossRef]

70. Stolpe, A. Relevance, Derogation and Permission. In Proceedings of the Deontic Logic in Computer Science; Governatori, G.,
Sartor, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 98–115.

71. Hashmi, M.; Governatori, G.; Wynn, M.T. Business Process Data Compliance. In Proceedings of the 6th International Symposium
on Rules on the Web: Research and Applications (RuleML’12), Montpellier, France, 27–29 August 2012; pp. 32–46. [CrossRef]

72. Hashmi, M.; Governatori, G.; Wynn, M.T. Normative requirements for regulatory compliance: An abstract formal framework.
Inf. Syst. Front. 2016, 18, 429–455. [CrossRef]

73. Kowalski, R.; Sergot, M. A Logic-Based Calculus of Events. In Foundations of Knowledge Base Management; Schmidt, J.,
Thanos, C., Eds.; Topics in Information Systems; Springer: Berlin/Heidelberg, Germany, 1989; pp. 23–55.

74. Miller, R.; Shanahan, M. The Event Calculus in Classical Logic—Alternative Axiomatisations. Electron. Trans. Artif. Intell. 1999,
3, 77–105.

75. Sadri, F.; Kowalski, R. Variants of the Event Calculus. In Proceedings of the 12th International Conference on Logic Programming;
Sterling, L., Ed.; MIT: Cambrdige, MA, USA, 1995.

76. Hashmi, M.; Governatori, G.; Wynn, M.T. Modeling Obligations with Event-Calculus. In Proceedings of the 8th International
Symposium on Rules on the Web: Research and Applications (RuleML’14), Prague, Czech Republic, 18–20 August 2014;
pp. 296–310.

77. Kunen, K. Negation in logic programming. J. Log. Program. 1987, 4, 289–308.
78. Halstead, M.H. Elements of Software Science. Oper. Program. Syst. Ser. 1977, 7, 26 .
79. Carmo, J.; Jones, A.J. Deontic logic and contrary-to-duties. In Handbook of Philosophical Logic; Springer: Berlin/Heidelberg,

Germany, 2002; pp. 265–343.
80. Jones, A.J.; Sergot, M. On the characterisation of law and computer systems: The normative systems perspective. In Deontic

Logic in Computer Science: Normative System Specification; Association of Computing Machine (ACM): New York, NY, USA, 1993;
pp. 275–307.

81. Piqué-Angordans, J.; Posteguillo, S.; Andreu-Besó, J.V. Epistemic and deontic modality: A linguistic indicator of disciplinary
variation in academic English. LSP Prof. Commun. (2001–2008) 2002, 2, 49–65.

82. van der Torre, L.; Tan, Y.H. An update semantics for deontic reasoning. Norms Logics Inf. Syst. 1998, 73–90.
83. Hilpinen, R. Deontic logic. Blackwell Guide Philos. Log. 2001, 4, 159–182.
84. Strasser, C.; Antonelli, G.A. Non-Monotonic Logic. In The Stanford Encyclopedia of Philosophy; Edward, N.Z., Ed.; Metaphysics

Research Lab, Stanford University: Stanford, CA, USA, 2018 .
85. McCarty, L.T. Defeasible deontic reasoning. Fundam. Informaticae 1994, 21, 125–148. [CrossRef]
86. Allaire, M.; Governatori, G. On the Equivalence of Defeasible Deontic Logic and Temporal Defeasible Logic. In Proceedings of

the 17th International Conference on Principles and Practice of Multi-Agent Systems (PRIMA’14), Gold Coast, QLD, Australia,
1–5 December 2015; Dam, H.K., Pitt, J., Xu, Y., Governatori, G., Ito, T., Eds.; Springer International Publishing: Berlin/Heidelberg,
Germany, 2014; pp. 74–90.

http://dx.doi.org/10.1016/j.is.2014.06.003
http://dx.doi.org/10.1145/371316.371517
http://dx.doi.org/10.1017/S1471068406002778
http://dx.doi.org/10.26686/ajl.v4i0.1780
http://dx.doi.org/10.1007/978-3-319-42019-6_16
http://dx.doi.org/10.1142/S0218843005001092
http://dx.doi.org/10.1007/s10992-013-9295-1
http://dx.doi.org/10.1007/978-3-642-32689-9_4
http://dx.doi.org/10.1007/s10796-015-9558-1
http://dx.doi.org/10.3233/FI-1994-21128

Software 2023, 2 119

87. Governatori, G.; Hashmi, M. No Time for Compliance. In Proceedings of the 19th IEEE International Enterprise Distributed
Object Computing Conference (EDOC’15), Adelaide, Australia, 24–25 September 2015; pp. 9–18. [CrossRef]

88. Governatori, G.; Rotolo, A. A Gentzen system for reasoning with contrary-to-duty obligations: A preliminary study. In
Proceedings of the 6th International Workshop on Deontic Logic in Computer Science (Deon’02), London, UK, 22–24 May 2002;
pp. 97–116.

89. Governatori, G. An Abstract Normative Framework for Business Process Compliance. Inf. Technol. 2013, 55, 231–238. .
90. Governatori, G. The Regorous approach to process compliance. In Proceedings of the 19th IEEE International Enterprise

Distributed Object Computing Workshop (EDOCW’15), Adelaide, SA, Australia, 22–25 September 2015; pp. 33–40.
91. Elgammal, A.; Turetken, O.; van den Heuvel, W.J.; Papazoglou, M. On the Formal Specification of Regulatory Compliance:

A Comparative Analysis. In Proceedings of the 8th International Conference on Service-Oriented Computing (ICSOC’10), San
Francisco, CA, USA, 7–10 December 2010; pp. 27–38.

92. Herrestad, H. Norms and Formalisation. In Proceedings of the 3rd International Conference on Artificial Intelligence and Law
(ICAIL’91), Oxford, UK, 25–28 June 1991.

93. Yu, S.; Zhou, S. A survey on metric of software complexity. In Proceedings of the 2nd IEEE International Conference on
Information Management and Engineering (ICIME’10), Chengdu, China, 16–18 April 2010; pp. 352–356.

94. McCabe, T.J. A complexity measure. IEEE Trans. Softw. Eng. 1976, 4, 308–320. [CrossRef]
95. Henry, S.; Kafura, D. Software structure metrics based on information flow. IEEE Trans. Softw. Eng. 1981, 5, 510–518. [CrossRef]
96. Albrecht, A.J.; Gaffney, J.E. Software function, source lines of code, and development effort prediction: A software science

validation. IEEE Trans. Softw. Eng. 1983, 6, 639–648. [CrossRef]
97. Mendling, J. Detection and Prediction of Errors in EPC Business Process Models. Ph.D. Thesis, Vienna University of Economics

and Business Administrationa, Vienna, Austria, 2007.
98. Curtis, B.; Sheppard, S.B.; Milliman, P.; Borst, M.; Love, T. Measuring the psychological complexity of software maintenance tasks

with the Halstead and McCabe metrics. IEEE Trans. Softw. Eng. 1979, 2, 96–104. [CrossRef]
99. Shepperd, M.; Ince, D.C. A critique of three metrics. J. Syst. Softw. 1994, 26, 197–210. [CrossRef]
100. Ferrer, J.; Chicano, F.; Alba, E. Estimating software testing complexity. Inf. Softw. Technol. 2013, 55, 2125–2139. [CrossRef]
101. Cardoso, J.; Mendling, J.; Neumann, G.; Reijers, H.A. A discourse on complexity of process models. In Proceedings of the 4th

International Conference on Business Process Management (BPM’06), Vienna, Austria; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 117–128.

102. Otto, P.N.; Antón, A.I. Addressing legal requirements in requirement engineering. In Proceedings of the 15th IEEE International
Requirements Engineering Conference (RE’07), New Delhi, India, 15–19 October 2007; pp. 5–14.

103. El Kharbili, M. Business Process Regulatory Compliance Management Solution Frameworks: A Comparative Evaluation. In
Proceedings of the 8th Asia-Pacific Conference on Conceptual Modelling (APCCM’12); Australian Computer Society, Inc.: Wollongong,
NSW, Australia, 2012; Volume 130, pp. 23–32.

104. Bonatti, P.A.; Shahmehri, N.; Duma, C.; Olmedilla, D.; Nejdl, W.; Baldoni, M.; Baroglio, C.; Martelli, A.; Coraggio, P.;
Antoniou, G.; et al. Rule-Based Policy Specification: State of the Art and Future Work, REWERSE Project Report-i2-D1; Report;
Universitá di Napoli Fedrecio II: Naples, Italy, August 2004.

105. Ly, L.T.; Maggi, F.M.; Montali, M.; Rinderle, S.; van der Aalst, W. A Framework for the Systematic Comparison and Evaluation of
Compliance Monitoring Approaches. In Proceedings of the 17th IEEE International Enterprise Computing Conference (EDOC’13),
Vancouver, BC, Canada, 9–13 September 2013.

106. Fenech, S.; Pace, G.J.; Okika, J.C.; Ravn, A.P.; Schneider, G. On the Specification of Full Contracts. In Proceedings of the 6th
International Workshop on Formal Engineering approaches to Software Components and Architectures (FESCA’09), York, UK,
28 March 2009.

107. Prisacariu, C.; Schneider, G. A Formal Language for Electronic Contracts. In Proceedings of the 9th International Conference on
Formal Methods for Open Object-Based Distributed Systems (IFIP’07), Paphos, Cyprus, 6–8 June 2007; Springer: Berlin/Heidel-
berg, Germany; pp. 174–189.

108. John, T.; Kundisch, D.; Szopinski, D. Visual languages for modeling business models: A critical review and future research
directions. In Proceedings of the Thirty Eighth International Conference on Information Systems (ICIS), Seoul, Repulic of Korea,
10–13 December 2017 .

109. Cabanillas, C.; Resinas, M.; Ruiz-Cortés, A. On the identification of data-related compliance problems in business processes.
In Proceedings of the Jornadas Científico-Técnicas En Servicios Web Y SOA (JSWEB’10), Sevilla, Spain, 20–21 September 2010;
Volume 1, pp. 89–102.

110. Turki, S.; Bjekovic-Obradovic, M. Compliance in e-Government Service Engineering: State-of-the-Art. In Proceedings of the 1st
International Conference on Exploring Services Science (IESS’10), Geneva, Switzerland, 17–19 February 2010; Lecture Notes in
Business Information Processing; Springer: Berlin/Heidelberg, Germany; pp. 270–275.

111. Giorgini, P.; Massacci, F.; Zannone, N. Security and Trust Requirements Engineering. In Foundations of Security Analysis and Design
III: FOSAD 2004/2005 Tutorial Lectures; Aldini, A., Gorrieri, R., Martinelli, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 237–272. [CrossRef]

http://dx.doi.org/10.1109/EDOC.2015.12
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/TSE.1981.231113
http://dx.doi.org/10.1109/TSE.1983.235271
http://dx.doi.org/10.1109/TSE.1979.234165
http://dx.doi.org/10.1016/0164-1212(94)90011-6
http://dx.doi.org/10.1016/j.infsof.2013.07.007
http://dx.doi.org/10.1007/11554578_8

Software 2023, 2 120

112. Ghanavati, S.; Amyot, D.; Peyton, L. Towards a Framework for Tracking Legal Compliance in Healthcare. In Proceedings of the
19th International Conference on Advanced Information Systems Engineering (CAiSE’07), Trondheim, Norway, 11–15 June 2007;
Springer:Berlin/Heidelberg, Germany; pp. 218–232.

113. Ghanavati, S.; Amyot, D.; Peyton, L. A Requirements Management Framework for Privacy Compliance. In Proceedings of the
Anais do—Workshop em Engenharia de Requisitos (WER’07), Toronto, ON, Canada, 17–18 May 2007; pp. 149–159.

114. Amyot, D. Introduction to the User Requirements Notation: Learning by example. Comput. Netw. 2003, 42, 285–301. [CrossRef]
115. Amyot, D.; He, X.; He, Y.; Cho, D.Y. Generating scenarios from use case map specifications. In Proceedings of the 3rd International

Conference on Quality Software (QSIC’03), Dallas, TX, USA, 6–7 November 2003; pp. 108–115. [CrossRef]
116. Kerrigan, S.; Law, K.H. Logic-based Regulation Compliance-assistance. In Proceedings of the 9th International Conference on

Artificial Intelligence and Law (ICAIL’03), Scotland, UK, 24–28 June 2003; pp. 126–135. [CrossRef]
117. Vardi, M.Y. Branching vs. Linear Time: Final Showdown. In Tools and Algorithms for the Construction and Analysis of Systems;

Margaria, T., Yi, W., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2031, pp. 1–22.
[CrossRef]

118. Hashmi, M.; Governatori, G.; Lam, H.P.; Wynn, M.T. Are We Done With Business Process Compliance: State-of-the-Art and
Challenges Ahead. Knowl. Inf. Syst. 2018, 57, 79–133. [CrossRef]

119. Sackmann, S.; Kühnel, S.; Seyffarth, T. Using Business Process Compliance Approaches for Compliance Management with regard
to Digitization: Evidence from a Systematic Literature Review. In Proceedings of the 16th International Conference Business
Process Management (BPM’18), Sydney, NSW, Australia, 9–14 September 2018.

120. Ramezani, E.; Fahland, D.; van der Werf, J.M.E.M.; Mattheis, P. Separating Compliance Management and Business Process
Management. In Proceedings of the 9th International Workshops (BPM’11), Clermont-Ferrand, France, 29 August 2011; Revised
Selected Papers; Part II, pp. 459–464. [CrossRef]

121. Casanovas, P.; González-Conejero, J.; de Koker, L. Legal Compliance by Design (LCbD) and through Design (LCtD): Preliminary
Survey. In Proceedings of the 1st Workshop on Technologies for Regulatory Compliance Co-Located with the 30th International
Conference on Legal Knowledge and Information Systems (JURIX’17), Luxembourg, 17 September 2017; pp. 33–49.

122. Goedertier, S.; Vanthienen, J.; Caron, F. Declarative business process modelling: Principles and modelling languages. Enterp. Inf.
Syst. 2015, 9, 161–185. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S1389-1286(03)00244-5
http://dx.doi.org/10.1109/QSIC.2003.1319092.
http://dx.doi.org/10.1145/1047788.1047820
http://dx.doi.org/10.1007/3-540-45319-9_1
http://dx.doi.org/10.1007/s10115-017-1142-1
http://dx.doi.org/10.1007/978-3-642-28115-0_43
http://dx.doi.org/10.1080/17517575.2013.830340

	Introduction
	Research Approach
	Language Selection Process
	Running Example
	Process Model
	Compliance Requirements

	Language-Specific Compliance Rule Formalisation
	BPMN-Q
	CRL
	Declare
	eCRG
	DMQL
	PCL
	PENELOPE

	Evaluation of Compliance Languages Based on the Formalisation Results
	Expressiveness
	Complexity

	Related Work
	Discussion
	Summary of Results
	Implications for Research and Practice
	Limitations

	Conclusions
	Complexity Measures for Evaluated Languages
	References

