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Abstract: In the literature, infinite-failure software reliability models (SRMs), such as Musa-Okumoto
SRM (1984), have been demonstrated to be effective in quantitatively characterizing software testing
processes and assessing software reliability. This paper primarily focuses on the infinite-failure
(type-II) non-homogeneous Poisson process (NHPP)-based SRMs and evaluates the performances
of these SRMs comprehensively by comparing with the existing finite-failure (type-I) NHPP-based
SRMs. In more specific terms, to describe the software fault-detection time distribution, we postulate
11 representative probability distribution functions that can be categorized into the generalized
exponential distribution family and the extreme-value distribution family. Then, we compare the
goodness-of-fit and predictive performances with the associated 11 type-I and type-II NHPP-based
SRMs. In numerical experiments, we analyze software fault-count data, collected from 16 actual de-
velopment projects, which are commonly known in the software industry as fault-count time-domain
data and fault-count time-interval data (group data). The maximum likelihood method is utilized to
estimate the model parameters in both NHPP-based SRMs. In a comparison of the type-I with the
type-II, it is shown that the type-II NHPP-based SRMs could exhibit better predictive performance
than the existing type-I NHPP-based SRMs, especially in the early stage of software testing.

Keywords: software reliability; infinite-failure models; non-homogeneous Poisson processes;
maximum likelihood estimation; goodness-of-fit performance; predictive performance

1. Introduction

In actual software development projects, clients frequently expect software products to
be of high quality. As software products tend to become more complex with increasing size,
software reliability is gradually gaining much attention from developers as an important
attribute of software quality. Therefore, in the modern software development process,
developers concentrate their human and material resources on the testing process to detect
and fix inherent faults as much as possible for the purpose of improving software reliability.
Due to the high cost of software testing, quantification of software reliability is also regarded
as a significant concern during the verification phase.

To the best of our knowledge, the probabilistic behavior of the fault detection and
correction process during the software testing phase in software reliability engineering
is usually characterized by any stochastic counting process. On the other hand, after the
software product is released, the probability of a product not experiencing any failure
caused by software faults over a specific time interval is usually defined as quantitative
software reliability. To measure the above software reliability, over the last five decades,
hundreds of probabilistic models known as software reliability models (SRMs) have been
implemented to quantitatively assess software reliability during the testing and operational
phases. Among the existing SRMs, the non-homogeneous Poisson process (NHPP)-based
SRMs are recognized as a very important class because of their mathematical tractability
and high applicability. By modeling the software failure time, Kuo and Yang [1] classified
NHPP-based SRMs into general order statistics SRMs and record value statistics SRMs. The
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same authors [1] proposed an alternative and more general classification by dividing NHPP-
based SRMs into two types; finite-failure (type-I) and infinite-failure (type-II) NHPP-based
SRMs with mean value functions, which are defined as the expected cumulative number of
software failures. The best-known finite-failure (type-I) NHPP-based SRM was proposed
by Goel and Okumoto [2], who assumed the exponential distribution as the fault-detection
time distribution in software testing. The mean value function there is in proportion to
the cumulative distribution function (CDF) of the exponential distribution. After that,
postulating the other fault-detection time distributions, several type-I NHPP-based SRMs
were proposed in the literature, such as the truncated-normal NHPP-based SRM [3], the log-
normal NHPP-based SRM [3,4], the truncated-logistic NHPP-based SRM [5], the log-logistic
NHPP-based SRM [6], the extreme-value NHPP-based SRMs [7,8], the gamma NHPP-based
SRM [9,10], and the Pareto NHPP-based SRM [11]. At the same time, introducing a series of
commonly used lifetime CDFs for modeling software failure time in reliability engineering,
a few infinite-failure (type-II) NHPP-based SRMs have also been developed and widely
used to quantitatively evaluate software reliability. The power-law process model [12–14]
and the logarithmic Poisson execution time model [15,16] are classified as type-II NHPP-
based SRMs. Note that the use of type-I NHPP-based SRMs does not necessarily imply that
all inherent software faults are detected over an infinite time horizon. In other words, the
precise number of inherent faults cannot be known, even if software testing is performed
for an indefinite period. Thus, the finiteness in the type-I NHPP-based SRMs holds in the
sense of the expectation of a cumulative number of detected faults. Unfortunately, a fair
comparison between the type-I and type-II NHPP-based SRMs has not been made in past,
because only a limited number of type-II NHPP-based SRMs have been considered in
the literature.

Our research question of this paper is “Are infinite-failure NHPP-based SRMs useful?”
More specifically, this paper investigates whether infinite-failure NHPP-based SRMs can
guarantee better goodness-of-fit performance for the fault-count data collected in the
software testing phase in comparison with finite-failure NHPP-based SRMS, and whether
they can guarantee more accurate performance in predicting the number of software
faults. Goodness-of-fit and predictive performance are generally recognized as the critical
factors determining which SRM should be practically applied to quantitatively assess
software reliability.

The original contribution of this paper is to investigate the type-II NHPP-based SRMs
with the representative 11 CDFs in the literature. Three of these type-II NHPP-based SRMs
are confirmed to be equivalent to the existing Cox-Lewis process, logarithmic Poisson
execution time model, and power-law process, while the remaining eight type-II SRMs are
novel SRMs. We confirm that the corresponding type-I and type-II NHPP-based SRMs can
be obtained by importing the same software fault-detection time distribution CDFs to the
finite- and infinite-failure assumptions, respectively. We make a comprehensive comparison
between the existing type-I NHPP-based SRMs and their associated type-II NHPP-based
SRMs. As shown in [17], it seems enough to consider 11 kinds of software fault-detection
time CDFs in making goodness-of-fit and predictive performance comparisons between
two different NHPP-based modeling frameworks.

The rest of this paper is organized as follows. Section 2 describes the definition of
NHPP and illustrates NHPP-based software reliability modeling under the finite-failure
and the infinite-failure hypotheses. We present 11 existing type-I NHPP-based SRMs based
on the finite-failure hypothesis in [17] and propose 11 type-II NHPP-based SRMs with
the same CDFs. The maximum likelihood approach to estimate the model parameters is
summarized. We confirm that maximum likelihood estimation can be used for parameter
estimation of our type-II NHPP-based SRMs for software fault-count time-domain data. We
also give specific expressions of likelihood function and log-likelihood function for software
fault-count time-interval data (group data), which are more common in the industry.

In the numerical examples in Section 3, we employ a total of 16 datasets collected
from 16 actual development projects. In each dataset, we investigate the goodness-of-fit
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performance and predictive performance of type-I NHPP-based SRMs and type-II NHPP-
based SRMs that have completed parameter estimation by maximum likelihood estimation.
In addition, we also use these SRMs to quantitatively evaluate software reliability over a
given time period, and analyze the applicability of the type-I NHPPs as well as the type-II
NHPPs in predicting software reliability. In Section 4, the paper is summarized with some
remarks and future directions.

2. Non-Homogeneous Poisson processes
2.1. Preliminary

As a well-known Markov process, a non-homogeneous Poisson process (NHPP) is
regarded as a generalization of the classical homogeneous Poisson process (HPP). If the
intensity at time point t in the definition of HPP is given by a function ˘(t) with respect to
t, then an HPP can be generalized to an NHPP. More specifically, if a stochastic counting
process {N(t), t ≥ 0} is non-negative and non-decreasing, it becomes an NHPP under the
following assumptions.

• NHPP has independent increments, so the number of occurrences in a specific time
interval depends on only the current time t and not on the past history of the process,
which is also known as the Markov property.

• The initial state of the process is given by N(0) = 0.
• The occurrence probability of one event in a given time period [t, t + ∆t) for an NHPP

is defined by Pr{N(t + ∆t)− N(t) = 1} = o(∆t) + ˘(t)∆t. ˘(t) is an absolutely con-
tinuous function, and is named the intensity function of NHPP. ∆t is recognized as an
infinitesimal period of time.

• NHPP has negligible probability for two or more events occurring in [t, t + ∆t), i.e.,

Pr{N(t + ∆t)− N(t) ≥ 2} = o(∆t), where lim
∆t→0

o(∆t)
∆t = 0 and o(∆t) is the higher-order

term of ∆t.
• As a typical Markov process, the Kolmogorov forward equations of NHPP can be

written as
d
dt

P0(t) = −˘(t; θ)P0(t), (1)

d
dt

Pn(t) = ˘(t; θ)Pn−1(t)− ˘(t; θ)Pn(t), n = 1, 2, · · · , (2)

with P0(0) = 1 and Pn(0) = 0, where θ represents the free parameter vector in the
transition rate function ˘(t; θ). By solving the above simultaneous equations, the
steady-state transition probability Pr{N(t) = n|N(0) = 0} = Pn(t) is given by

Pn(t) = exp(−M(t; θ))
{M(t; θ)}n

n!
, n = 0, 1, 2, . . . . (3)

Through the Poisson property, M(t; θ) is defined as the mean value function of NHPP
and represents the expected cumulative number of event occurrences during the inter-
val (0, t].

2.2. NHPP-Based SRMs

Most textbooks [16,18,19] have pointed out that when the mean value function was
used to characterize the cumulative number of software failures by time t, there were
two types of NHPP-based SRMs; finite-failure NHPP-based SRMs and infinite-failure NHPP-
based SRMs.

2.2.1. Finite-Failure (Type-I) NHPP-Based SRMs

In the software reliability modeling framework developed based on finite-failure
(type-I) NHPP, before testing, the remaining number of software faults is assumed to obey a
Poisson distribution with a positive mean µ0. Each software fault is assumed to be detected
at independent and identically distributed (i. i. d.) random times, and is fixed immediately
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after it is detected. For any t ∈ (0,+∞), F(t; α), a non-decreasing function, is applied to
describe the time distribution of each fault detection during the software testing phase,
which is also known as the cumulative distribution function (CDF). α indicates the free
parameter vector in the CDF. Then, a binomial distributed random variable with probability
F(t; α) with a Poisson distributed population with parameter µ0 is employed to characterize
the resultant software fault-detection process. From a simple algebraic manipulation, the
mean value function of NHPP can be derived as

M(t; θ) = µ0F(t; α), (4)

which can also be recognized as the cumulative number of faults detected by the software
testing at time point t with θ = (µ0, α) and lim

t→∞
M(t; θ) = µ0 (> 0). This property is

consistent with the assumption of software reliability modeling for type-I NHPP that the
number of initial remaining faults expected before software testing begins is finite. In
Table 1, we summarize 11 existing type-I NHPP-based SRMs with their associated CDFs
and bounded mean value functions, which were employed in the software reliability
assessment tool on the spreadsheet (SRATS) by Okamura and Dohi [17].

Table 1. The representative existing finite-failure (type-I) NHPP-based SRMs.

SRM & Time Distribution F(t;α) M(t;θ)

Exp [2]
(Exponential distribution) 1− exp(−µ1t) µ0F(t; α)

Gamma [9,10]
(Gamma distribution)

∫ t
0

µ
µ1
2 sµ2−1 exp(−µ2s)

Γ(µ1)
ds µ0F(t; α)

Pareto [11]
(Pareto distribution) 1−

(
µ1

t+µ1

)µ2
µ0F(t; α)

Tnorm [3]
(Truncated normal distribution)

1√
2πµ1

∫ t
−∞ exp

(
− (s− µ2)

2

2µ2
1

)
ds µ0

F(t; α)− F(0; α)

1− F(0; α)

Tlogist [5]
(Truncated logistic distribution)

1− exp(−µ1t)
1 + µ2 exp(−µ2t)

µ0
F(t; α)− F(0; α)

1− F(0; α)

Txvmax [8]
(Truncated extreme-value maximum distribution) exp

(
− exp

(
− t− µ2

µ1

))
µ0

F(t; α)− F(0; α)

1− F(0; α)

Txvmin [8]
(Truncated extreme-value minimum distribution) exp

(
− exp

(
− t− µ2

µ1

))
µ0

F(0; α)− F(t; α)

F(0; α)

Lnorm [3,4]
(Log-normal distribution) 1√

2πµ1

∫ t
−∞ exp

(
− (s− µ2)

2

2µ2
1

)
ds µ0F(ln t; α)

Llogist [6]
(Log-logistic distribution)

1− exp(−µ1t)
1 + µ2 exp(−µ2t)

µ0F(ln t; α)

Lxvmax [8]
(Log-extreme-value maximum distribution) exp

(
− exp

(
− t− µ2

µ1

))
µ0F(ln t; α)

Lxvmin [7]
(Log-extreme-value minimum distribution) exp

(
− exp

(
− t−µ2

µ1

))
µ0(1− F(− ln t; α))

(µ0 > 0, µ1 > 0, µ2 > 0); Γ(·): standard gamma function; erfc(·): complementary error function; ln(·): natural
logarithmic function.

Even though the type-I NHPP-based SRMs are recognized as plausible models in
term of software reliability growth phenomena, it must be acknowledged that reliability
engineers sometimes feel discomfort when handling finite-failure NHPPs, since the inter-
failure time distributions in the type-I NHPP-based SRMs are defective [20]. Let us suppose
that the random variables T1, T2, . . . , Tn represent the first, second, . . . , n-th failure times
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that occur after the software testing starts at T0 = 0. Let the random variables X1, X2, . . . , Xn
denote the inter-failure times between two consecutive failures:

Tn =
n

∑
j=1

Xj = Tn−1 + Xn, n = 0, 1, 2, . . . . (5)

From Equations (3) and (5), the CDF of Tn can be obtained as

Gn(t; θ) = P{Tn ≤ t (the n−th failure occurs up to t)}
= P{N(t) ≥ n (at least n failures occur before time t)}

=
t∫

0

˘(x;θ)[M(x;θ)]n−1

(n−1)! exp(−M(x; θ))dx

=
∞
∑

j=n

[M(t;θ)]j

j! exp(−M(t; θ))

= 1−
n−1
∑

j=0

[M(t;θ)]j

j! exp(−M(t; θ)).

(6)

Then, it is straightforward to see in the type-I NHPP-based SRMs that lim
t→∞

Gn(t; θ) < 1

for an arbitrary n. In other words, even if the testing time tends to be infinite, there still
exists a positive probability of the n-th failure not occurring. It is obvious that the CDF of
Tn is defective. Similarly, for realizations of Ti (i = 1, 2, . . . , n), t1, t2, . . . , tn, we can obtain
the CDF of the inter-failure time Xn in the time interval (tn−1, tn−1 + x) as follows.

Fn(x; θ) = 1− Pr{ N(tn−1 + x)− N(tn−1) = 0|N(tn−1) = n− 1}= 1− exp(−(M(tn−1 + x; θ)−M(tn−1; θ))), (7)

where Pr{ N(tn−1 + x)− N(tn−1) = 0|N(tn−1) = n− 1} denotes the probability that no
failure occurs in time interval (tn−1, tn−1 + x). Since the mean value function is bounded, i.e.,
lim
t→∞

M(t; θ) = µ0, when x is infinite, Equation (7) can be reduced to 1− e−(µ0−M(tn−1;θ)) < 1.

It means that regardless of the number of previous failures, the probability that the software
fails over an infinite time horizon is always non-zero. Hence, the inter-failure time CDF of
type-I NHPP is also defective. For the type-I NHPP-based SRMs, it is not meaningful to
discuss some reliability metrics, such as mean time between failures (MTBF), because the
finite moments of Tn and Xn always diverge.

2.2.2. Infinite-Failure (Type-II) NHPP-Based SRMs

Type-II NHPP assumes that a new software fault is not inserted at each software de-
bugging. However, this assumption may be somewhat specific, because so-called imperfect
debugging may occur in the actual software testing phases. When the possibility of imperfect
debugging is considered, the assumption of finiteness in the type-I NHPP-based SRMs
seems to be rather strong. Similarly to the classical preventive maintenance modeling [21],
if each software failure is minimally repaired through the debugging, the mean value
function of software fault-detection process is unbounded and is given by

M(t; α) = − ln(1− F(t; α)), (8)

where lim
t→∞

M(t; α)→ ∞ . It is obvious that the CDFs, Gn(t; θ) and Fn(x; θ) in Equations (6)

and (7) are not defective; for instance, lim
t→∞

Gn(t; θ) = 1 and lim
x→∞

FXi (x; θ) = 1. Hence, it

becomes significant to consider important metrics, such as MTBF. In this modeling frame-
work, investigating the residual number of software faults before testing has no significant
meaning, because it may increase by imperfect debugging through the software testing.

As far as we know, the Cox-Lewis process [22] is one of earliest type-II NHPPs. The un-
bounded mean value function of this model is given by M(t; α) = (exp(µ1 + µ2t)− exp(µ1))/
µ2 with the extreme-value distribution F(t; α) = 1− exp(exp(µ1 + µ2t)− exp(µ1))/µ2. This
distribution is also referred to as truncated extreme-value minimum distribution in [17].
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Another well-known type-II NHPP-based SRM is referred to as a power-law process
model [12–14], where mean value function and CDF are given by M(t; α) = µ2/µ1t(1/µ1)

and F(t; α) = 1 − exp
(
− exp

(
− µ2+ln(t)

µ1

))
, respectively. The latter is also recognized

as the log-extreme-value minimum distribution in [17]. Besides the above two repre-
sentative NHPPs, the well-known logarithmic Poisson execution time SRM [15,16] be-
longs to the type-II category, too. The mean value function of this model is given by
M(t; α) = µ2 ln((1 + t)/µ1) with the Pareto distribution F(t; α) = 1 − (µ1/(t + µ1))

µ2

in [17]. In Table 1, it is easy to see that the same CDFs are used for type-I Txvmin SRM v.s.
type-II Cox-Lewis SRM, type-I Lxvmin SRM v.s. type-II Power-law SRM, and type-I Pareto
SRM v.s. type-II Musa-Okumoto SRM, respectively. Hence, by substituting 11 software
fault-detection time CDFs in Table 1 into Equation (8), we can derive the corresponding
type-II NHPP-based SRMs in Table 2.

Table 2. Infinite-failure (type-II) NHPP-based SRMs.

SRM & Time Distribution F(t;α) M(t;θ)

Exp (HPP)
(Exponential distribution) 1− exp(−µ1t) µ1t

Gamma
(Gamma distribution)

∫ t
0

µ
µ1
2 sµ2−1 exp(−µ2s)

Γ(µ1)
ds ln(Γ(µ1))− ln

(
Γ
(

µ1, t
µ2

))
Pareto (Musa-Okumoto) [15,16]

(Pareto distribution) 1−
(

µ1
t + µ1

)µ2 −µ2(ln(µ1)− ln(µ1 + t))

Tnorm
(Truncated normal distribution)

1√
2πµ1

∫ t
−∞ exp

(
− (s− µ2)

2

2µ2
1

)
ds

ln

(
erf

(
µ2√
2µ1

)
+ 1

)
−

ln

(
erf

(
µ2 − t√

2µ1

)
+ 1

)
Tlogist

(Truncated logistic distribution)
1− exp(−µ1t)

1 + µ2 exp(−µ2t)

ln(exp(µ2/µ1) + exp(t/µ1))−
ln(exp(µ2/µ1) + 1)

Txvmax
(Truncated extreme-value maximum distribution) exp

(
− exp

(
− t−µ2

µ1

)) ln(1− exp(− exp(µ2/µ1)))

− ln
(

1− exp
(
− exp

(
µ2−t

µ1

)))
Cox-Lewis [22]

(Truncated extreme-value minimum distribution) exp
(
− exp

(
− t−µ2

µ1

))
− ln(exp(− exp(µ2/µ1)(exp(t/µ1)− 1)))

Lnorm
(Log-normal distribution)

1√
2πµ1

t∫
−∞

exp
(
− (s−µ2)

2

2µ2
1

)
ds ln(2)− ln

(
erf
(

µ2−ln(t)√
2µ1

)
+ 1
)

Llogist
(Log-logistic distribution)

1−exp(−µ1t)
1+µ2 exp(−µ2t) ln

(
exp(µ2/µ1) + t1/µ1

)
− µ2/µ1

Lxvmax
(Log-extreme-value maximum distribution) exp

(
− exp

(
− t−µ2

µ1

))
− ln

(
1− exp

(
− exp

(
µ2−ln(t)

µ1

)))
Power-law [12–14]

(Log-extreme-value minimum distribution) exp
(
− exp

(
− t−µ2

µ1

))
µ2/µ1t1/µ1

2.3. Parameter Estimation

For the existing type-I and type-II NHPP-based SRMs, the maximum likelihood (ML)
estimation is a typical technique that is widely applied in software reliability modeling.
The parameters of the maximized log-likelihood function (LLF) provide the ML estimates.
In addition, the LLF depends on the observed fault-count data, the intensity function
and/or the mean value function in the type-I and type-II NHPP-based SRMs. Next, we give
the likelihood functions for the software fault-count time-domain data and the software
fault-count time-interval data (group data).

2.3.1. Software Fault-Count Time-Domain Data

Consider that the total number of faults observed in the testing phase is mD before
the time observation point tmD , where the time sequence consisting of the time points at
which each fault is detected is given by D = {t1, t2, . . . , tmD}. This kind of time series is
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called software fault-count time-domain data. Generally, CPU time is used to measure
the time-domain data in software testing. Then, for the time-domain data, the likelihood
function of NHPP is as follows.

L(θ or α; D) = exp(−M(tmD ; θ or α))
mD

∏
i=1

λ(ti; θ or α). (9)

Taking logarithm of both sides in Equation (9), the log-likelihood function is obtained as

ln L(θ or α; D) =
mD

∑
i=1

ln λ(ti; θ or α)−M(tmD ; θ or α). (10)

The ML estimate, θ̂ or α̂, is given by argmaxθ ln L(θ; D) or argmaxα ln L(α; D).

2.3.2. Software Fault-Count Time-Interval Data (Group Data)

Software fault-count time-interval data (group data) consist of the number of detected
faults in a set of calendar-time-based time intervals (ti−1, ti] (i = 1, 2, . . . , mI). Each record
in these types of data is composed of the observation time point ti and ni, the cumulative
number of faults detected in the time interval (0, ti], written as (ti, ni). Calendar time is usu-
ally measured as testing days or weeks. When the group data I = {(ti, ni), i = 1, 2, . . . , mI}
are available, the likelihood function and LLF are given by

L(θ or α; I) = −
mI
∏
i=1

exp[M(ti; θ or α)

−M(ti−1; θ or α)]
[
[M(ti ;θ or α)−M(ti−1;θ or α)]ni−ni−1

(ni−ni−1)!

] (11)

and

ln L(θ or α; I) =
mI
∑

i=1
(ni − ni−1) ln{M(ti; θ or α)−M(ti−1; θ or α)}

−
mI
∑

i=1
ln{(ni − ni−1)!} −M(tmI ; θ or α),

(12)

respectively. The ML estimate, θ̂ or α̂, is given by argmaxθ ln L(θ; I) or argmaxα ln L(α; I).

3. Performance Comparison
3.1. Datasets

In the selection of data sources for numerical experiments, we selected the well-known
benchmark software fault-count datasets in software reliability engineering, which are
observed in mission-critical systems. Although the evolution of these systems may be
slower than that of business-oriented systems, the effects of a failure are much greater.
Hence, reliability is particularly important for the developers of these mission-critical
systems. In the industry, the software fault-count data observed in the distributed test
environment for mission-critical systems can be divided into two categories: software
fault-count time-domain data and software fault-count time-interval data (group data). We
selected eight sets of each type of data, which have been widely utilized as fault-count data
in software reliability engineering. The details of these datasets are shown in Tables 3 and 4,
respectively.
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Table 3. Software fault-count time-domain datasets.

Data Source Nature of System Testing Length
(CPU Time)

Numbers of
Detected Faults

TDDS1 SYS2 [23] Real-time command and control system 108708 54

TDDS2 S10 [23] Real-time command and control system 233700 38

TDDS3 SYS3 [23] Military application 67362 38

TDDS4 S27 [23] Single-user workstation 4312598 41

TDDS5 SYS4 [23] Operating system 52422 53

TDDS6 Project J5 [18] Real-time command and control system 5090 73

TDDS7 S17 [23] Single-user workstation 19572126 101

TDDS8 SYS1 [23] Single-user workstation 88682 136

Table 4. Software fault-count time-interval datasets (group data).

Data Source Nature of System Testing Length
(Week)

Numbers of
Detected Faults

TIDS1 SYS2 [23] Real-time command and control system 17 54

TIDS2 NASA-supported project [24] Inertial navigating system 14 9

TIDS3 SYS3 [23] Military application 14 38

TIDS4 DS3 [25] Embedded application for printer 30 52

TIDS5 DS2 [25] Embedded application for printer 33 58

TIDS6 Release 3 [26] Tandem software system 12 61

TIDS7 DS1 [25] Embedded application for printer 20 66

TIDS8 Release 2 [26] Tandem software system 19 120

3.2. Goodness-of-Fit Performance

Assuming that the parameters of the SRMs were estimated by maximum likelihood
estimation, in the first experiment, we employed two criteria for evaluating the goodness-
of-fit performance of the 11 type-I and type-II NHPP-based SRMs, for instance, Akaike
information criterion (AIC):

AIC
(
θ̂ or α̂

)
= 2× (number of free parameters)− 2 ln L

(
θ̂ or α̂

)
(13)

and the mean squared error (MSE);

MSE
(
θ̂ or α̂; D

)
=

∑mD
i=1

(
i−M

(
ti; θ̂ or α̂

))2

mD
(14)

or

MSE
(
θ̂ or α̂; I

)
=

∑mI
i=1

(
ni −M

(
ti; θ̂ or α̂

))2

mI
, (15)

respectively. In Equations (14) and (15), ni is defined as the count of detected faults in the
time interval (0, ti], mD and mI are the lengths of time-domain and group data, and θ̂
and α̂ are the ML estimates by maximizing ln L(θ or α; D) and ln L(θ or α; I). The AIC with
ML estimates generally represented an approximation of the Kullback–Leibler divergence
between our proposed SRM and the empirical stochastic process behind the fault-count
data, while direct MSE exhibited a vertical distance between the estimated mean value
function and the fault-count data. A smaller AIC/MSE indicated that the SRM had a better
goodness-of-fit performance (showing a better fit to the underlying data).
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Figures 1 and 2 plot the behavior of the mean value functions of type-I and type-II
SRMs in the time-domain data, TDDS1, and the group data, TIDS7. The red curve and the
orange curve are plotted as the best SRMs selected from 11 type-II SRMs and 11 type-I SRMs
based on their AIC, respectively. Not surprisingly, the two modeling frameworks showed
slightly different growth trends. More specifically, the type-I (orange curve) always fitted
better to the actual data in the tail segment, in both the time-domain and the group data.
However, we still were not able to make a comprehensive assessment regarding which
SRM exhibited a better fitting ability over the whole dataset. It was therefore necessary to
think about AIC as well as MSE as such criteria. First, in Table 5, we make a more precise
comparison between our proposed type-II and the existing type-I on AIC and MSE. Without
comparing them with each other, it is evident that in the vast majority of cases, the best
models among the type-I SRMs were given by the extreme-value distributions. By contrast,
the type-II Pareto (Musa-Okumoto) SRM performed better than the other SRMs. In the
next step, by comparing the best type-I and type-II SRMs for each dataset, it is not difficult
to observe that in three cases (TDDS1, TDDS3, and TDDS6), the type-II SRMs provided a
smaller AIC than the type-I SRMs. However, in all the datasets, the type-I SRMs provided
a smaller MSE than the type-II SRMs.
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In Table 6, we compared the SRMs of our type-II NHPP with the existing type-I NHPP-
based SRMs in eight group datasets. It can be seen that our type-II SRMs could guarantee a
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smaller AIC than the existing type-I in three cases (TIDS2, TIDS3, and TIDS7), but at the
same time, it still could not outperform the type-I from the viewpoint of MSE for any group
dataset. We can therefore draw the conclusion that the type-II NHPP-based SRMs could not
consistently outperform the existing type-I NHPP-based SRMs in terms of goodness-of-fit
performance, but in some cases, especially in time-domain data, the three existing type-II
NHPP-based SRMs, Musa-Okumoto, Cox-Lewis, and power-law SRMs, could indicate the
better experimental results.

Table 5. Goodness-of-fit results in time-domain data.

Type-I NHPP Type-II NHPP

Best SRM AIC MSE Best SRM AIC MSE

TDDS1 Lxvmax 896.666 1.950 Musa-Okumoto 895.305 2.315

TDDS2 Lxvmax 721.928 1.442 Cox-Lewis 726.052 2.803

TDDS3 Lxvmax 598.131 1.705 Musa-Okumoto 596.501 1.809

TDDS4 Lxvmax 1008.220 5.970 Musa-Okumoto 1007.100 7.039

TDDS5 Txvmin 759.579 3.747 Cox-Lewis 759.948 5.509

TDDS6 Exp 757.869 18.985 Power-law 757.031 19.315

TDDS7 Pareto 2504.170 47.404 Musa-Okumoto 2503.370 63.699

TDDS8 Lxvmin 1938.160 6.570 Musa-Okumoto 1939.600 8.052

Table 6. Goodness-of-fit results in group data.

Type-I NHPP Type-II NHPP

Best SRM AIC MSE Best SRM AIC MSE

TIDS1 Llogist 73.053 4.115 Tlogist 85.339 48.269

TIDS2 Exp 29.911 0.118 Exp 27.753 0.186

TIDS3 Lxvmax 61.694 3.239 Llogist 60.674 3.557

TIDS4 Llogist 117.470 9.408 Llogist 148.438 45.178

TIDS5 Txvmin 123.265 2.122 Tlogist 138.029 24.847

TIDS6 Tlogist 51.052 1.968 Cox-Lewis 63.556 27.199

TIDS7 Lxvmax 108.831 22.514 Llogist 107.211 24.394

TIDS8 Tnorm 87.267 6.151 Cox-Lewis 91.919 31.232

3.3. Predictive Performance

Notably, according to the previous studies, SRMs with better goodness-of-fit do not
necessarily provide an excellent predictive performance. In other words, investigating
the predictive performance of the type-I and type-II NHPP-based SRMs is of significant
importance. Hence, in our second experiment, we employed the prediction mean squared
error (PMSE) to measure the predictive performance of our type-II SRMs, where

PMSE
(
θ̂ or α̂; D

)
=

∑m+l
i=m+1

(
i−M

(
ti; θ̂ or α̂

))2

l
, (16)

and

PMSE
(
θ̂ or α̂; I

)
=

∑m+l
i=m+1

(
ni −M

(
ti; θ̂ or α̂

))2

l
, (17)

for the time-domain and group data, respectively, where m or nm software faults were
observed in (0, tm], and the prediction length is given by l (= 1, 2, · · ·). θ̂ and α̂ are
the ML estimates at observation time tm for the type-I and type-II NHPP-based SRMs,
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respectively. Similarly to MSE, PMSE is also a metric that evaluates the mean squared
distance between the predicted number of detected faults and its (unknown) realization for
each prediction length.

For a comprehensive investigation of the predictive performance of SRMs at different
software testing phases, three observation points were set at 20%, 50%, and 80% of the total
length of each dataset to represent the early, middle, and late phases of software testing
and to predict the total number of software faults at the remaining 80%, 50% and 20% of
the time periods. Then, we calculated the PMSE for the type-I and type-II NHPP-based
SRMs. It was immediately evident that a larger observation point corresponded to a shorter
prediction length. In Figures 3–5, we plot the predictive behavior of the best existing type-I
and the best type-II NHPP-based SRMs in time-domain data, TDDS1, at three different
observation points. The red curve in each figure represents our best type-II NHPP, while
the orange curve denotes the best type-I NHPP. All the best SRMs were taken from the
type-I NHPP-based SRMs and the type-II NHPP-based SRMs with their smaller PMSEs
in TDDS1. It can be seen that both type-I and type-II tended to give almost the same
number of predicted software faults in the early and late testing phases. However, after the
mid-term of testing, the type-I NHPP-based SRM tended to make more optimistic software
fault predictions. In Figures 6–8, we also plot the predictive behavior of the best existing
type-I and the best type-II NHPP-based SRMs in group data, TIDS7. It can be seen that the
type-I still tended to falsely predict the number of software faults in the early and middle
testing phases. More specifically, in Figures 6 and 7, the type-II NHPP-based SRMs showed
an increasing trend, the opposite was true for the type-I, whose predictive trend for future
phases becomes very flat. However, in Figure 8, the type-I and type-II showed more similar
predictive trends. In general, prediction of unknown trend changes over longer periods of
time in the future is essentially difficult for both the type-I NHPP and the type-II NHPP.
In contrast, prediction of trend changes over a short period of time is relatively easy, but
absolute accuracy cannot be guaranteed.
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In Table 7, we present the PMSEs of the best type-I SRM compared to the best type-II
SRM in each set of time-domain data. We compared the PMSEs in 11 type-I SRMs and 11
type-II SRMs by selecting the models with the smaller PMSEs as the best SRMs at each
observation point. It can be seen that at the 20% observation point, our type-II SRMs
provided smaller PMSEs than the existing type-I SRMs in three cases (TDDS2, TDDS6, and
TDDS7). During the middle testing phase (at the 50% observation point), we observed that
our type-II SRMs outperformed the type-I SRMs in four datasets (TDDS4, TDDS6~TDDS8).
As the test proceeded to the late phases (at the 80% observation point), type-II SRMs were
able to guarantee smaller PMSEs in TDDS1, TDDS4, and TDDS7. On the other hand, it was
found that the best type-II SRMs with better predictive performance than the type-I were
all provided by logistic distribution, Musa-Okumoto SRM, and power-law SRM. Upon
comparing PMSEs in time-domain data, we believe that the type-II SRMs could become a
good alternative to the type-I SRMs.
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Table 7. Prediction results in time-domain data.

20% Observation Point

Type-I NHPP Type-II NHPP

Best SRM PMSE Best SRM PMSE

TDDS1 Lxvmax 5.073 Musa-Okumoto 6.420

TDDS2 Txvmin 83.964 Llogist 79.614

TDDS3 Tnorm 42.104 Musa-Okumoto 145.648

TDDS4 Lxvmax 32.217 Llogist 207.592

TDDS5 Lnorm 56.477 Musa-Okumoto 198.490

TDDS6 Exp 9177.670 Tlogist 467.320

TDDS7 Lxvmax 1852.520 Lnorm 1474.020

TDDS8 Lxvmax 32.131 Power-law 1417.110

50% Observation Point

Type-I NHPP Type-II NHPP

Best SRM PMSE Best SRM PMSE

TDDS1 Pareto 6.118 Musa-Okumoto 6.420

TDDS2 Lxvmax 10.493 Llogist 30.944

TDDS3 Txvmin 5.874 Llogist 11.747

TDDS4 Exp 4480.620 Llogist 18.425

TDDS5 Tlogist 103.504 Cox-Lewis 106.282

TDDS6 Llogist 193.903 Tlogist 77.498

TDDS7 Txvmin 3569.230 Musa-Okumoto 45.344

TDDS8 Pareto 11.712 Musa-Okumoto 10.283

80% Observation Point

Type-I NHPP Type-II NHPP

Best SRM PMSE Best SRM PMSE

TDDS1 Lxvmax 5.772 Power-law 3.432

TDDS2 Lxvmax 2.041 Lxvmax 3.697

TDDS3 Lxvmax 0.588 Musa-Okumoto 0.819

TDDS4 Txvmin 6.875 Power-law 4.291

TDDS5 Txvmin 4.253 Cox-Lewis 4.258

TDDS6 Lxvmax 21.715 Power-law 51.677

TDDS7 Lxvmax 57.901 Power-law 9.268

TDDS8 Lxvmax 9.419 Power-law 819.992

As shown in Table 8, when testing in the early phase (at the 20% observation point),
it was immediately noticed that our type-II SRMs showed smaller PMSEs than the type-I
SRMs in seven out of eight group datasets (except in TIDS3). In addition to logistic-based
SRM, Musa-Okumoto SRM, and power-law SRM, which were proven to perform better
in Table 7, we observed that Cox-Lewis SRM was also appropriate in some cases of group
data (TIDS4 and TIDS5) in terms of predictive performance. At the 50% observation point,
we found that the type-II SRMs could guarantee better predictive performance than the
type-I SRMs in three cases (TIDS3, TIDS6 and TIDS7). In the late testing phase (at the 80%
observation point), only in TIDS2 did our Tlogist type-II SRMs give the smallest PMSE in
the future prediction phase. In the group data, the predictive performance of the type-II
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SRMs decreased as the software testing proceeded. Hence, it is possible to conclude that
the infinite-failure NHPP-based SRMs outperformed the existing finite-failure NHPP-based
SRMs for software fault-detection prediction in the early testing phase when group data
were available.

Table 8. Prediction results in group data.

20% Observation Point

Type-I NHPP Type-II NHPP

Best SRM PMSE Best SRM PMSE

TIDS1 Gamma 220.732 Power-law 218.763

TIDS2 Pareto 2.628 Musa-Okumoto 2.625

TIDS3 Lxvmax 29.244 Llogist 47.377

TIDS4 Txvmin 448.935 Cox-Lewis 423.360

TIDS5 Exp 387.694 Cox-Lewis 67.730

TIDS6 Exp 142.854 Tlogist 86.083

TIDS7 Tlogist 98.903 Llogist 25.613

TIDS8 Gamma 820.049 Gamma 171.702

50% Observation Point

Type-I NHPP Type-II NHPP

Best SRM PMSE Best SRM PMSE

TIDS1 Txvmin 96.992 Musa-Okumoto 159.545

TIDS2 Exp 0.344 Musa-Okumoto 0.347

TIDS3 Txvmin 30.786 Power-law 3.722

TIDS4 Txvmin 29.097 Llogist 156.329

TIDS5 Lxvmax 22.894 Gamma 27.045

TIDS6 Exp 101.303 Musa-Okumoto 101.258

TIDS7 Pareto 365.493 Gamma 18.825

TIDS8 Lxvmax 564.782 Gamma 849.736

80% Observation Point

Type-I NHPP Type-II NHPP

Best SRM PMSE Best SRM PMSE

TIDS1 Lnorm 1.762 Llogist 8.736

TIDS2 Tnorm 0.224 Lxvmax 0.090

TIDS3 Exp 0.464 Cox-Lewis 0.464

TIDS4 Tnorm 0.864 Llogist 6.333

TIDS5 Txvmin 6.118 Llogist 17.300

TIDS6 Lxvmax 1.850 Llogist 18.985

TIDS7 Lnorm 3.432 Llogist 6.144

TIDS8 Tnorm 0.331 Cox-Lewis 41.228

3.4. Software Reliability Assessment

Our final research question for NHPP-based Type-II SRMs is how to utilize them to
quantitatively assess the software reliability. In general, in NHPP software reliability mod-
eling, the reliability of software at a given time point tr can be calculated by R(tr; θ or α);
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that is, the probability that the software will be failure-free during time interval tr − tm,
which can be written as

R(tr; θ or α) = Pr{N(tr)− N(tm) = 0}
= exp(−[M(t + x; θ or α)−M(t; θ or α)]),

(18)

where for time data and group data, tm is defined as the time point of the last fault detected
during the software test and the calendar time when the test was stopped, respectively. m
is the total number of detected faults before the time point tm. In this numerical experiment,
we assumed that tr = tm. The software reliability in each software development project
was predicted quantitatively by importing the mean value functions of type-I NHPP and
type-II NHPP into Equation (18), respectively.

In Tables 9 and 10, we compare the quantitative software reliability of the best type-I
SRMs and the best type-II SRMs in the time-domain data and group data, respectively. We
selected the type-I SRM and the type-II SRM with the smaller AIC in each time domain
and group dataset as the best SRMs. We can see that in almost all datasets (except in
TDDS1 and TIDS7), the type-I SRMs tended to predict software reliability than our type-II
SRMs. In other words, during the time period tr − tm, the probability of software failure
predicted by the type-II NHPP was much higher than the type-I NHPP. This observation
indicates that our type-II SRMs tended to make more conservative decisions than the type-I
SRMs in software reliability assessment. It is important to note that optimistic reliability
estimates are often undesirable. This is because software faults are additionally detected as
the ex-post results after each observation point in all the datasets.

Table 9. Software reliability assessment in time-domain data.

Type-I NHPP Type-II NHPP

Best SRM Reliability Best SRM Reliability

TDDS1 Lxvmax 2.631× 10−6 Musa-Okumoto 2.674× 10−6

TDDS2 Lxvmax 3.283× 10−4 Cox-Lewis 4.694× 10−8

TDDS3 Lxvmax 3.687× 10−3 Musa-Okumoto 3.751× 10−7

TDDS4 Lxvmax 2.453× 10−4 Musa-Okumoto 2.398× 10−4

TDDS5 Txvmin 4.573× 10−1 Cox-Lewis 3.231× 10−3

TDDS6 Exp 1.035× 10−5 Power-law 2.596× 10−8

TDDS7 Pareto 8.971× 10−6 Musa-Okumoto 7.736× 10−6

TDDS8 Lxvmin 4.592× 10−5 Musa-Okumoto 2.516× 10−10

Table 10. Software reliability assessment in group data.

Type-I NHPP Type-II NHPP

Best SRM Reliability Best SRM Reliability

TIDS1 Llogist 4.152× 10−3 Tlogist 2.217× 10−25

TIDS2 Exp 9.832× 10−4 Exp 1.234× 10−4

TIDS3 Lxvmax 7.236× 10−5 Llogist 6.264× 10−5

TIDS4 Llogist 6.373× 10−1 Llogist 4.052× 10−10

TIDS5 Txvmin 9.633× 10−1 Tlogist 1.280× 10−27

TIDS6 Tlogist 2.816× 10−1 Cox-Lewis 3.221× 10−27

TIDS7 Lxvmax 1.939× 10−7 Llogist 3.892× 10−7

TIDS8 Tnorm 3.865× 10−2 Cox-Lewis 2.203× 10−23
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4. Conclusions

Under the infinite-failure assumption, in addition to the well-known Musa-Okumoto
model, Cox-Lewis model, and power-law model, in this work we proposed another eight
type-II NHPP-based SRMs with eight different software fault-detection time CDFs. By
analyzing eight software fault-count time-domain datasets and eight software fault-count
time-interval datasets (group data), we investigated the goodness-of-fit performance and
predictive performance of our SRMs. We also compared these SRMs with 11 existing type-I
NHPP-based SRMs under the finite-failure assumption. The important point to note is that
the type-I and type-II NHPP-based SRMs considered in this paper had the same software
fault-detection CDFs, which has never been addressed in the past literature.

The experimental results confirmed that our type-II NHPP-based SRMs showed better
goodness-of-fit performance in some cases. On the other hand, for the group data, the
type-II NHPP-based SRMs exhibited rather better predictive ability than the existing type-I
NHPP-based SRMs in the early testing phase. However, as software testing progressed,
it was found that the advantages of type-II NHPP in terms of predictive performance
were diminished. Hence, we can conclude that the type-II NHPP-based SRMs are a good
complement to the type-I NHPP-based SRMs for describing the fault-detection process of
software systems, while at the same time, they have greater potential in the early software
testing phase. On the other hand, we also confirmed that the type-II NHPP tended to make
more conservative predictions than the type-I NHPP in software reliability assessment.

We do not believe that there are any significant limitations to the validity in this work.
The datasets used for the numerical experiments were collected during the software/system
testing phase under careful supervision and with specific objectives. They have been
proven to be of high quality [18,23–26]. Both the finite-failure software reliability modeling
assumptions and the infinite-failure software reliability modeling assumptions have been
shown to be well-founded. The experimental results exhibited by type-I NHPP-based
SRMs and type-II NHPP-based SRMs, such as software reliability, also match the actual
situation. There is no evidence so far that our proposed SRMs are inapplicable in any type
of software.

In the future, we will introduce virtual testing time in the type-II NHPP-based SRMs,
which will be beneficial as we continue to explore the potential of the type-II modeling hy-
pothesis.

Author Contributions: Conceptualization, S.L., T.D. and H.O.; methodology, S.L., T.D. and H.O.;
validation, S.L., T.D. and H.O.; writing—original draft preparation, S.L.; writing—review and editing,
T.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by JST SPRING, Grant Number JPMJSP2132.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kuo, L.; Yang, T.Y. Bayesian computation for nonhomogeneous Poisson processes in software reliability. J. Am. Stat. Associ. 1996,

91, 763–773. [CrossRef]
2. Goel, A.L.; Okumoto, K. Time-Dependent Error-Detection Rate Model for Software Reliability and Other Performance Measures.

IEEE Trans. Reliab. 1979, R-28, 206–211. [CrossRef]
3. Okamura, H.; Dohi, T.; Osaki, S. Software reliability growth models with normal failure time distributions. Reliab. Eng. Syst. Saf.

2013, 116, 135–141. [CrossRef]
4. Achcar, J.A.; Dey, D.K.; Niverthi, M. A Bayesian approach using nonhomogeneous Poisson processes for software reliability

models. In Frontiers in Reliability; World Scientific: Hackensack, NJ, USA, 1998; pp. 1–18. [CrossRef]

http://doi.org/10.1080/01621459.1996.10476944
http://doi.org/10.1109/TR.1979.5220566
http://doi.org/10.1016/j.ress.2012.02.002
http://doi.org/10.1142/9789812816580_0001


Software 2023, 2 18

5. Ohba, M. Inflection S-Shaped Software Reliability Growth Model. In Stochastic Models in Reliability Theory; Springer:
Berlin/Heidelberg, Germany, 1984; pp. 144–162. [CrossRef]

6. Gokhale, S.S.; Trivedi, K.S. Log-logistic software reliability growth model. In Proceedings of the Third IEEE International
High-Assurance Systems Engineering Symposium (Cat. No. 98EX231), Washington, DC, USA, 13–14 November 1998; pp. 34–41.

7. Goel, A.L. Software reliability models: Assumptions, limitations, and applicability. IEEE Trans. Softw. Eng. 1985, SE-11, 1411–1423.
[CrossRef]

8. Ohishi, K.; Okamura, H.; Dohi, T. Gompertz software reliability model: Estimation algorithm and empirical validation. J. Syst.
Softw. 2009, 82, 535–543. [CrossRef]

9. Yamada, S.; Ohba, M.; Osaki, S. S-Shaped Reliability Growth Modeling for Software Error Detection. IEEE Trans. Reliab. 1983,
R-32, 475–484. [CrossRef]

10. Zhao, M.; Xie, M. On maximum likelihood estimation for a general non-homogeneous Poisson process. Scand. J. Stat. 1996,
23, 597–607.

11. Abdel-Ghaly, A.A.; Chan, P.Y.; Littlewood, B. Evaluation of competing software reliability predictions. IEEE Trans. Softw. Eng.
1986, SE-12, 950–967. [CrossRef]

12. Crétois, E.; Gaudoin, O. New Results on Goodness-of-Fit Tests for the Power-Law Process and Application to Software Reliability.
Int. J. Reliab. Qual. Saf. Eng. 1998, 5, 249–267. [CrossRef]

13. Duane, J.T. Learning Curve Approach to Reliability Monitoring. IEEE Trans. Aerosp. 1964, 2, 563–566. [CrossRef]
14. Littlewood, B. Rationale for a modified Duane model. IEEE Trans. Reliab. 1984, R-33, 157–159. [CrossRef]
15. Musa, J.D.; Okumoto, K. A logarithmic Poisson execution time model for software reliability measurement. In Proceedings of the

7th International Conference on Software Engineering, Orlando, FL, USA, 26–29 March 1984; pp. 230–238.
16. Musa, J.D.; Iannino, A.; Okumoto, K. Software Reliability, Measurement, Prediction, Application; McGraw-Hill: New York, NY,

USA, 1987.
17. Okamura, H.; Dohi, T. SRATS: Software reliability assessment tool on spreadsheet (Experience report). In Proceedings of the

2013 IEEE 24th International Symposium on Software Reliability Engineering (ISSRE), Pasadena, CA, USA, 4–7 November 2013;
pp. 100–107.

18. Lyu, M.R. Handbook of Software Reliability Engineering; IEEE Computer Society Press: Los Alamitos, CA, USA, 1996; Volume 222.
19. Min, X. Software Reliability Modeling; World Scientific: Singapore, 1991.
20. Jun, H.; Shigeru, Y.; Shunji, O. Reliability assessment measures based on software reliability growth model with normalized

method. J. Inf. Process. 1991, 14, 178–183.
21. Barlow, R.E.; Proschan, F. Mathematical Theory of Reliability, 1965; SIAM: Philadelphia, PA, USA, 1996.
22. Cox, D.; Lewis, P.A.W. The Statistical Analysis of Series of Events; Springer: Dordrecht, The Netherlands, 1966.
23. Musa, J.D. Software Reliability Data; Technical Report in Rome Air Development Center; 1979.
24. Vouk, M.A. Using reliability models during testing with non-operational profiles. In Proceedings of the 2nd Bellcore/Purdue

Workshop on Issues in Software Reliability Estimation; IEEE: Manhattan, NY, USA, 1992; pp. 103–111.
25. Okamura, H.; Etani, Y.; Dohi, T. Quantifying the effectiveness of testing efforts on software fault detection with a logit software

reliability growth model. In Proceedings of the 2011 Joint Conference of the 21st International Workshop on Software Measurement
and the 6th International Conference on Software Process and Product Measurement, Nara, Japan, 3–4 November 2011; pp. 62–68.

26. Wood, A. Predicting software reliability. Computer 1996, 29, 69–77. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/978-3-642-45587-2_10
http://doi.org/10.1109/TSE.1985.232177
http://doi.org/10.1016/j.jss.2008.11.840
http://doi.org/10.1109/TR.1983.5221735
http://doi.org/10.1109/TSE.1986.6313050
http://doi.org/10.1142/S0218539398000236
http://doi.org/10.1109/TA.1964.4319640
http://doi.org/10.1109/TR.1984.5221762
http://doi.org/10.1109/2.544240

	Introduction 
	Non-Homogeneous Poisson processes 
	Preliminary 
	NHPP-Based SRMs 
	Finite-Failure (Type-I) NHPP-Based SRMs 
	Infinite-Failure (Type-II) NHPP-Based SRMs 

	Parameter Estimation 
	Software Fault-Count Time-Domain Data 
	Software Fault-Count Time-Interval Data (Group Data) 


	Performance Comparison 
	Datasets 
	Goodness-of-Fit Performance 
	Predictive Performance 
	Software Reliability Assessment 

	Conclusions 
	References

