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Abstract: The identification of the appropriate distribution of faults is important for ensuring the
reliability of a software system and its maintenance. It has been observed that different distributions
explain faults in different types of software. Faults in large and complex software systems are best
represented by Pareto distribution, whereas Weibull distribution fits enterprise software well. An
analysis of faults in open-source software endorses generalized Pareto distribution. This paper
presents a model, called the Tsallis distribution, derived using the maximum-entropy principle,
which explains faults in many diverse software systems. The effectiveness of Tsallis distribution is
ascertained by carrying out experiments on many real data sets from enterprise and open-source
software systems. It is found that Tsallis distribution describes software faults better and more
precisely than Weibull and generalized Pareto distributions, in both cases. The applications of the
Tsallis distribution in (i) software fault-prediction using the Bayesian inference method, and (ii) the
Goal and Okumoto software-reliability model, are discussed.

Keywords: software systems; fault distribution; maximum-entropy principle; Tsallis entropy; Pareto
distribution; Weibull distribution; software reliability

1. Introduction

The study of faults in software systems is important as it has a direct impact not only
in determining its quality and reliability but also on overall management. The terms fault,
bug, and defect are used interchangeably in the field of software engineering. Software
fault is a problem leading either to its crash or undesirable output [1]. Thus, what should be
considered as a fault varies and is primarily dependent on the requirements and standards
of that software product. No software is free from faults, and hence their analysis has
been an active area of research in software engineering [2]. One important aspect relates
to the probability distribution of faults over modules in a software system, known as
fault distribution. The module can be a class in an object-oriented system, a function in
procedural languages, or a file in Python. The identification of fault distribution helps in
prioritizing and analyzing those modules that have more impact on the overall quality
of the software system. Additionally, the knowledge of the fault distribution facilitates
developers to identify error-prone modules as early as possible while developing software
in order to optimize resources and effective testing [3]. Moreover, this also helps in reducing
software management costs post delivery because fixing a fault is far more economical
during the earlier phases of the software development life cycle [4,5]. Knowledge of the
underlying probability distribution of faults can be used to predict faults in future releases
of the software as well [6].

1.1. Motivation

Finding an appropriate mathematical model that explains the empirical data of faults
in a software system has a long history [3]. Some earlier investigations of faults in software
systems favored exponential and logistic models. Later, the Pareto model became widely
accepted, particularly in large [7] and complex software [8,9]. This essentially means
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that 80% of the faults are contained in 20% of the modules. A replicated study estab-
lishes that the Weibull model describes software faults more effectively than the Pareto
model [10]. However, another such analysis on complex software systems endorses the
Pareto model [11]. The application of the bounded generalized Pareto model is evaluated
in [3] for open-source software. The feasibility of the variant of Pareto models such as the
double Pareto has also been explored [12].

In spite of the availability of numerous models for fault distributions, there is no single
accepted model that can explain faults in a variety of software. It has been asserted that
the distribution of faults in software systems depends on the environment and that only
the replicated studies can validate a model [13]. Hence, there is a clear requirement for a
generic mathematical model that can describe the underlying fault distribution across a
variety of software systems viz. enterprise, open source, large, and complex. Such a model
will eliminate the existing diversity in the domain of analysis of software faults and will
help the software developers and management to focus their efforts on quality assurance
rather than investing time in finding appropriate models.

1.2. Contributions

The paper makes the following contributions:

• A generalized mathematical model, called Tsallis distribution, is derived using the
maximum-entropy principle.

• Tsallis distribution is fit to fault data sets of enterprise and open-source software, and
it is found to be a generic model.

• Applications of the Tsallis distribution in software fault-prediction and the software-
reliability model are also outlined.

The paper is organized into six sections. The related work on fault distributions is
presented in Section 2. The methodology of the study along with the data sets is described
in Section 3. The Tsallis distribution is derived using a maximum entropy framework in this
section. Additionally, a procedure to estimate the parameters of the Tsallis distribution is
developed. Section 4 contains the results of the experiments conducted on real data sets to
validate the efficacy of the Tsallis distribution in describing software faults. The discussion
of the results and the applications of the analysis is also presented. Threats to the validity
of the analysis are discussed in Section 5. The last Section 6 contains the conclusion.

2. Related Work

The study of the distribution of faults has been a topic of importance in software
engineering, primarily because of its role in predicting faults and hence in ensuring the
quality and reliability of software [14]. One of the techniques adopted for software fault-
prediction is Probit regression, which is a binary classification model [15]. Harter et al. [16]
have applied Probit analysis to study the severity of faults with respect to the software
improvement process. Many other research studies have a consensus on the applicability
of the Pareto principle in explaining faults in software. This principle, also known as the
80-20 law, implies that the majority of the faults reside in a small number of modules.
After analyzing the fault data of very extensive telecom software, Ericsson, Fenton, and
Ohlsson [8] suggest that the empirical distribution of faults there obeys the Pareto principle
. Later on, Andersson and Runeson [17] replicate this study and validate the applicability
of the Pareto principle. The suitability of the Pareto principle in another similar study
on Motorola’s telecom software is verified in [18]. In a large inventory software system,
Ostrand and Weyuker [7] establish the appearance of Pareto distribution in the number
of faults. Another replicated analysis of fault distribution in a complex software system
endorses the Pareto principle [13]. A comparison of Pareto, lognormal, Weibull, double
Pareto, and Yale-Simon distributions in fitting the empirical distribution of faults in a pro-
prietary complex system is carried out in [11]. Their study finds double Pareto distribution
to be more efficient than others in explaining faults.
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In the enterprise Eclipse software system, Zhang [10] observes that Weibull distribu-
tion provides a better fit to faults than Pareto in both pre-release as well as post release.
Concas et al. [19] investigate the distribution of faults in six releases of Eclipse by using
Yale-Simon, double Pareto, lognormal, and Weibull distributions and conclude that the
generative model of the Yale-Simon distribution better describes faults than the others. The
Weibull distribution is also found to perform well in explaining faults in four releases of
the Windows operating system [20]. In the case of open-source software, Hunt and John-
son [21], after analysing faults in projects at sourceforge, endorse the Pareto distribution.
However, Kuo and Huang [3] find that the bounded generalized Pareto distribution (BGPD)
provides the best fit to the empirical fault distribution of many open-source software. In a
recent study on fault distribution, Sriram et al. [12] examine the fault data of 74 versions
of various open-source and proprietary types of software. They conclude that the double
Pareto distribution outperforms all of the others in the case of proprietary software systems.
For open-source software systems, the double Pareto, BGPD, and Weibull result in an
almost similar performance with negligible differences.

It can be noted here that no single distribution can explain the faults in different types
of software. In particular, it can be easily observed that the Pareto principle is applied to
large and complex software, whereas Weibull distribution is useful for enterprise software.
In contrast to both of these, BGPD is better for open-source software. A pertinent question
then arises concerning whether it is possible to explain faults in these diverse software
systems in a uniform way. If so, then a single model can be developed for predicting faults.
This is the main motivation for this study.

3. Methodology

This section presents details of the methodology adopted in this study. The first step
is the collection of the fault data of various types of software. The data-collection process
and data sets are described in the following subsection.

3.1. Data Collection

The first data set used is from Eclipse 2.0, 2.1, and 3.0 pre-releases and post-releases.
This data set was first presented in [22], and later on it was proven in [10] that the distri-
bution of software faults in this data set is better explained by the Weibull distribution.
Eclipse is an enterprise software. Additionally, the data from three consecutive releases of
the same software helps in checking the persistence of the results in software. The details
of Eclipse data set are presented in Table 1.

Table 1. Details of Eclipse software data set.

Software Number of Modules Number of Pre-Release Number of Post-Release
Faults Faults

Eclipse 2.0 376 4152 2049
Eclipse 2.1 433 2007 1394
Eclipse 3.0 431 3312 2151

Besides this, fault data of Equinox and KAA enterprise software, gcc, samba, Python,
and Firefox open source are included in this study, as given in Table 2. The data have been
gathered from [23–28] and are up to 18 February 2020. The status of all the included faults
is resolved and fixed. These faults are reported by users and thus correspond to the user
utilization phase of the software life cycle.

The next step is to identify the candidate probability distributions to be included in
this study. The next subsection provides details of them.
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Table 2. Details of other software data sets.

Software Type Number of Modules Number of Faults

Equinox enterprise 313 3120
KAA enterprise 30 711

gcc version 10 open source 23 290
samba version 3.0 open source 35 2519
samba version 4.0 open source 19 2523
samba version 4.1 open source 133 2398
Python version 3.9 open source 74 841
Firefox version 2.0 open source 46 10,000

Firefox for Android open source 29 10,000

3.2. Generalized Pareto Distribution

The 2-parameter generalized Pareto distribution has been employed to analyze the
fault distribution of open-source software in [29]. If random variable X represents the num-
ber of faults then the probability distribution function (pdf) of the 2-parameter generalized
Pareto distribution is given by

p(x) =
1
b

(
1 +

ax
b

)− 1
a−1

, a, b > 0, (1)

where a is the shape parameter and b is the scale parameter.

3.3. Weibull Distribution

The importance of the Weibull distribution in modeling faults was first highlighted
in [10] for enterprise Eclipse software. Thereafter, it has been part of many empirical
studies [11,12,20]. The pdf of the Weibull distribution is

p(x) =
(µ

λ

)( x
λ

)µ−1
e−(x/λ)µ

, x > 0, (2)

where µ is shape parameter and λ is the scale parameter.

3.4. Maximum Entropy Tsallis Distribution

The notion of entropy is linked to the theory of statistical mechanics in physical
systems. However, Shannon [30] developed a measure of randomness or uncertainty of
a system in the context of communication theory, which is mathematically similar to the
one in statistical mechanics, and called it Shannon entropy. For a system S with states
n = 0, 1, ... with probability pn, the Shannon entropy is defined as

S = −
∞

∑
n=0

pn log pn, 0 log 0 = 0. (3)

In the context of non-extensive dynamical systems, a generalized measure of entropy
known as Tsallis entropy was proposed [31]

Sq =
1−∑∞

n=0 pq
n

q− 1
(4)

with parameter q measuring the degree of non-extensivity in the system. Tsallis entropy
reduces to Shannon entropy as the parameter q→ 1,

S1 = lim
q→1

Sq = −
∞

∑
n=0

pn ln pn. (5)
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Tsallis entropy has found applications in various domains [31]. It is to be noted that a
software system can also be treated as a physical system [32].

It is imperative to mention that one of the ways to obtain a probability distribution
when some prior information is available, usually in the form of moments, is through
Jaynes maximum-entropy principle (MEP) [33]. MEP with Shannon entropy has been
used to model component-size distribution in software systems [32,34]. MEP with Tsallis
entropy has been applied to communication networks as well [35–38]. Recently, Sharma
and Pendharkar [39] have employed Tsallis entropy to study software-component sizes.

In this section, a closed-form of Tsallis distribution in terms of Hurwitz zeta function
is derived. Representing pn as the probability of n faults in a software system S and
assuming that the range of faults can be from 0 to ∞, the maximum entropy problem can
be formulated as

Max Sq = Max
1−∑∞

n=0 pq
n

q− 1
(6)

subject to the mean number of faults

∞

∑
n=0

npn = A (7)

and the normalization constant

∞

∑
n=0

pn = 1 (8)

as constraints. Defining the Lagrangian function

φq = Sq + α

(
1−

∞

∑
n=0

pn

)
+ β

(
A−

∞

∑
n=0

npn

)
(9)

where α and β are Lagrange’s multipliers corresponding to the normalization and the mean
number of fault constraints, and differentiating φq with respect to pn and equating to zero
results in

pn =
[1 + β(1− q)n]

1
q−1

∑∞
n=0[1 + β(1− q)n]

1
q−1

, n = 0, 1, 2, ... (10)

The finiteness of the normalization constant in (10) requires 1
1−q > 1, i.e., q > 0. The

probability distribution of the number of faults given by (10) can be rewritten as

pn =

[
1

β(1−q) + n
] 1

q−1

ζ
[

1
1−q , 1

β(1−q)

] , q > 0, n = 0, 1, 2, ... (11)

where ζ
[

1
1−q , 1

β(1−q)

]
denotes the Hurwitz zeta function defined by

ζ

[
1

1− q
,

1
β(1− q)

]
=

∞

∑
n=0

[
1

β(1− q)
+ n

] −1
1−q

. (12)
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The fault distribution given in (11) is regarded as a Tsallis distribution. The parameter
β in (11) can be estimated from the constraint given in (7) as

A =
ζ
[

q
1−q , 1

β(1−q)

]
ζ
[

1
1−q , 1

β(1−q)

] − 1
β(1− q)

, q >
1
2

. (13)

Cumulative distribution of faults:

The cumulative distribution of faults can be obtained from (11) as

P(X ≤ x) =
1

ζ
[

1
1−q , 1

β(1−q)

] x

∑
n=0

[
1

β(1− q)
+ n

] 1
q−1

(14)

Estimation of parameters:

For a given data set of faults, one can obtain the appropriate values of the Tsallis
parameter q and Lagrange’s parameter β so that the fault distribution (11) can be evaluated.
For this, first q is varied over a range, and for a specific value of q, the parameter β is
computed from (7) using the numerical method. The constraints (7) can be expressed as

∑
n
(n− A)pn = 0 (15)

Using (10) and (15), it can be rewritten as

∑
n
(n− A)[1 + β(1− q)n]

1
q−1 = 0. (16)

Equation (16) is of the form f (β) = 0 and can be solved through the Newton–Raphson
method from an initial approximation of β and by replacing it at each iteration by β + ∆β
where

∆β =
− f (β)

f ′(β)
(17)

which can be expressed as

∆β =

β(1− q)
{

ζ
[

q
1−q , 1

β(1−q)

]
−
[

1
β(1−q) + A

]
ζ
[

1
1−q , 1

β(1−q)

]}
ζ
[

q
1−q , 1

β(1−q)

]
−
[

2
β(1−q) + A

]
ζ
[

1
1−q , 1

β(1−q)

]
+ 1

β(1−q)

[
A + 1

β(1−q)

]
ζ
[

2−q
1−q , 1

β(1−q)

] (18)

till the sequence of iterates converges. Once the value of β is approximated for a value of q,
the fault distribution can be completely evaluated. Afterwards, the Kolmogorov–Smirov
(KS) statistic [40]

Dn = sup
x
| Fn(x)− F(x) | (19)

(where Fn(x) is the empirical cumulative distribution, F(x) is the fitted cumulative distribu-
tion, and supx is the supremum of the set of differences) is used to compute the difference
between empirical and cumulative distribution of faults (14). Then, the value of q and
corresponding β, which gives a minimum value of KS, is chosen. A similar method is
proposed by Clauset [41] for fitting power law distributions. The procedure is outlined in
Algorithm 1.
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Algorithm 1 Algorithm for Fitting Tsallis Distribution to Empirical Dataset of Soft-
ware Faults
Require: Empirical data
Ensure: Estimated values of q and β

Compute arithmetic mean A from the data
Compute empirical cumulative distribution of faults
Initialize Tsallis entropy parameter q
Give initial value to parameter β

while q < 1 do
compute ∆β using (18)
β ← β + ∆β
repeat above two steps till β converges
compute cumulative distribution of faults using (14)
compute KS statistics
increment q

end while
Choose minimum value KS and corresponding q and β

The next section describes the results of the experiments conducted to validate the
Tsallis distribution in modelling software faults.

4. Results and Discussion

The model developed viz. Tsallis distribution is validated by running experiments on
several data sets using the procedure described in Section 3.4. For comparative analysis,
generalized Pareto and Weibull distributions are also fitted. The goodness of the fit in
all the cases is checked by KS test [40]. The results of the experiments for the enterprise
software data set are presented in Tables 3 and 4.

Table 3. Comparison of fault distributions in enterprise software—Part I.

Generalized
Pareto Weibull

KS h Value p Value KS h Value p Value

Pre-release faults
Eclipse 2.0 0.1944 0 0.4603 0.3889 1 0.0059
Eclipse 2.1 0.1667 0 0.8608 0.3750 0 0.0506
Eclipse 3.0 0.1250 0 0.9868 0.2500 0 0.3873

Post-release faults
Eclipse 2.0 0.2353 0 0.6725 0.8824 0 0.2083
Eclipse 2.1 0.9091 1 8.1868 ×10−7 0.7083 1 4.0102 ×10−6

Eclipse 3.0 0.9412 1 1.0822 ×10−7 0.5833 1 2.7336 ×10−4

Equinox 1.0000 1 1.3029 ×10−21 1.0000 1 1.3029 ×10−21

KAA 0.0741 0 1.0000 0.0741 0 1.0000
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Table 4. Comparison of fault distributions in enterprise software—Part II.

Tsallis
KS h Value p Value q β

Pre-release faults
Eclipse 2.0 0.0811 0 0.9995 0.71 1.2978
Eclipse 2.1 0.1600 0 0.9896 0.75 1.6322
Eclipse 3.0 0.1111 0 0.9713 0.71 1.7671

Post-release faults
Eclipse 2.0 0.0556 0 1.0000 0.72 3.1030
Eclipse 2.1 0.0909 0 1.0000 0.82 2.9025
Eclipse 3.0 0.1176 0 0.9994 0.76 2.6499

Equinox 0.0435 0 1.0000 0.66 0.2850
KAA 0.0741 0 1.0000 0.51 0.1250

In these two tables, the h value of zero indicates that the given distribution fits well to
empirical data, whereas value one implies that the specified distribution is not a good fit. It
can be observed that Tsallis distribution provides the lowest value of the KS statistic in all
the cases. Simultaneously, the p value also needs to be given importance while deciding
about the goodness of fit [41]. It can be noted that the p value remains close to 1 for eclipse
pre-release faults for Tsallis distribution and is 1 for eclipse post-release faults. Thus, it can
be concluded that Tsallis distribution is a better fit than generalized Pareto and Weibull
distribution for the Eclipse data set.

To justify the efficacy of the Tsallis distribution further, the experiments are run on
fault data of open-source software as given in Table 2. The results of the experiments are
shown in Table 5.

Table 5. Comparison of fault distributions in open-source software.

Dataset Generalized Pareto Weibull Tsallis

KS h Value p Value KS h Value p Value KS h Value p Value q β

gcc version 10 0.1429 0 0.9971 0.2857 0 0.5407 0.1429 0 0.9971 0.70 0.1857
samba version 3.0 0.1111 0 0.9936 0.1111 0 0.9936 0.1111 0 0.9936 0.71 0.0327
samba version 4.0 0.1500 0 0.9655 0.1500 0 0.9655 0.1000 0 0.9999 0.71 0.0178
samba version 4.1 0.9474 1 1.3431 ×10−8 0.1053 0 0.9998 0.1053 0 0.9998 0.83 0.0158
Python version 3.9 1.0000 1 1.5659 ×10−9 1.0000 1 1.5659 ×10−9 0.1579 0 0.9563 0.56 0.6151
Firefox version 2.0 1.0000 1 1.3029 ×10−21 1.0000 1 1.3029 ×10−21 0.0652 0 0.9999 0.66 0.0143

Firefox for Android 1.0000 1 5.0391 ×10−14 1.0000 1 5.0391 ×10−14 0.1034 0 0.9961 0.57 0.0206

It can be again observed that Tsallis distribution provides same or better results than
both generalized Pareto and Weibull distributions in this case as well. The results of the
analysis can be summarized in Table 6.

Table 6. Comparative analysis of research work on distribution of faults.

Software Type Pareto and Its Variants Weibull Tsallis

Enterprise ×
√ √

Open source
√

×
√

It can be easily noted that Tsallis distribution describes faults in both types of software
viz. enterprise and open source successfully. Therefore, Tsallis distribution can be consid-
ered as a unified model that can explain faults in diverse types of software. One of the
reasons behind this is the fact that maximum entropy Tsallis distribution is the best distri-
bution satisfying the available information about the mean number of faults in software. As
pointed out by Hatton [32], software systems can be treated as physical systems; thus, the
theory of evolution of physical systems can be applied to them. Following this, software
systems too tend to move towards configurations that have maximum entropy. This may be
another reason behind the applicability of Tsallis distribution in modeling faults in diverse
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types of software. Further, the Tsallis entropy parameter governs the interactions within
the physical system. Identical or close values of parameter q signify that the underlying
dynamics of this software is similar even if it belongs to diverse types .

Precise knowledge of fault distribution helps in predicting faults during early phases
of the software life cycle in new similar projects. A framework based on the Bayesian
inference method has been proposed by Rana et al. [42] where fault distribution from
previous projects is used for prior fault prediction. The basis of Bayesian inference method
is the formula

f (κ|data) = C f (data|κ) f (κ) (20)

which relates the distribution of the number of faults f (κ|data) that needs to be estimated
from the available ‘data’ of the new project, also called posterior distribution, with the
likelihood f (data|κ) and prior f (κ). Here, C is the normalization constant. The prior f (κ)
now follows the Tsallis distribution. The details of the method are presented in [42].

Another application of this work is in software reliability, specifically in describing
software failures. One of the pioneering works in software reliability is the Goal and
Okumoto model [43], which deals with modeling the number of failures observed in a time
interval. Modeling the cumulative number of failures at time t, N(t) as a non-homogeneous
Poisson process (NHPP), Goal and Okumoto [43] derive an expression for the probability
of the number of failures as

P[N(t) = z] =
[m(t)]z

z!
e−m(t), z = 0, 1, ... (21)

where
m(t) = a

(
1− e−bt

)
. (22)

Here, a is a random variable representing the number of faults to be detected in a software,
and b is the fault-occurrence rate. The probability distribution of a can now be given by
(11), thus modifying (22) results in

m(t) =
∫ ∞

0
m(t|a) f (a)da =

(
1− e−bt

)
ζ
[

1
1−q , 1

β(1−q)

] ∫ ∞

0

[
1

β(1−q) + a
] 1

q−1

a
da (23)

which, after simplifying, gives

m(t) =
β

q
1−q

q ζ
[

1
1−q , 1

β(1−q)

] (1− q)
1

1−q
(

1− e−bt
)

, q > 1/2. (24)

The quantity m(t), the expected number of failures observed by time t, can now be in
terms of the Tsallis distribution parameters. For a given fault-occurrence rate, the expected
number of failures can now be easily computed. These results will be very useful to
software management.

5. Threats of Validity

This section addresses various threats of validity related to this study. The first one
is internal validity, which determines the causal relationship between two variables [11].
There are three possible threats of internal validity, such as many other empirical studies
on fault distribution [3,8,11,19]. The data-collection process is a threat, especially for open-
source software. These software are free, and sometimes the faults are not reported and
documented properly. Therefore, there may be incomplete and imprecise fault data for
open-source software. The other threat of internal validity is that the good fit of the Tsallis
distribution may be due to chance. There are two reasons to reject this threat in our study:
one, because the analysis has been carried out on different types of software and the
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Tsallis distribution is found to be a best fit with statistically high p values; two, the Tsallis
distribution is a maximum-entropy distribution, which is the most plausible one given the
information about the number of faults. The last threat of internal validity relates to the
fact that the Tsallis distribution may not be the generative model of faults even if it is a
good fit. This is a complex question that even has not been handled in other such studies
on fault distribution in the past [3,8,11,19].

The second threat of validity is construct validity, which ensures if the findings of one
software instance are sufficient to ascertain the behavior across all instances. For this, a
series of versions of the same Eclipse software are included in this study and are analyzed
to check the consistency of the Tsallis distribution. The analysis confirms the consistency
of the performance of the Tsallis distribution with a high p value both in pre-release and
post-release fault data of Eclipse.

The last threat of validity is external validity, which guarantees that the results of the
analysis are applicable across other software. It is believed that the Tsallis distribution is
generic enough to explain faults in other large and complex, enterprise and open-source
software. However, only further replications of this study can confirm this.

6. Conclusions

Despite the extensive research carried out on the analysis of the distribution of faults
in computer programs, there is no single model accepted that can explain faults in different
types of software. Using the maximum Tsallis entropy principle when information about
the mean number of faults is available as a constraint, the distribution of faults in a software
system is derived. A procedure to estimate the distribution parameters is also presented.
The performance of the Tsallis distribution in describing faults in many tyoes of enterprise
and open-source software is compared with popular generalized Pareto and Weibull
distributions. The Tsallis distribution is found to perform the same or better than the other
two, thus making it useful for various types of software, including open-source software.

Two applications of precise knowledge of fault distribution are discussed. The first one
relates to predicting faults in new similar projects during the early phase of the software
life-cycle, when limited fault data is available, using the Bayesian Inference method. The
Tsallis distribution is prior there, and investigating its impact on the accuracy of fault
prediction is an area of future study.

Expressing the probability distribution of a random variable representing the number
of faults as Tsallis in the famous software-reliability model by Goel and Okumoto, a closed
form of expression for the expected number of faults by time ’t’ has been derived in terms
of Tsallis distribution parameters. Applying these new results to real data and analyzing
the performance of the modified Goel–Okumoto model are tasks for future work.
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