
Citation: Khanneh, S.; Anu, V.

Security Requirements Prioritization

Techniques: A Survey and

Classification Framework. Software

2022, 1, 450–472. https://doi.org/

10.3390/software1040019

Academic Editors: Sanjay Misra,

Robertas Damaševičius and

Bharti Suri

Received: 10 August 2022

Accepted: 25 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Security Requirements Prioritization Techniques: A Survey and
Classification Framework
Shada Khanneh and Vaibhav Anu *

Department of Computer Science, Montclair State University, Montclair, NJ 07043, USA
* Correspondence: anuv@montclair.edu

Abstract: Security requirements Engineering (SRE) is an activity conducted during the early stage
of the SDLC. SRE involves eliciting, analyzing, and documenting security requirements. Thorough
SRE can help software engineers incorporate countermeasures against malicious attacks into the
software’s source code itself. Even though all security requirements are considered relevant, imple-
menting all security mechanisms that protect against every possible threat is not feasible. Security
requirements must compete not only with time and budget, but also with the constraints they inflect
on a software’s availability, features, and functionalities. Thus, the process of security requirements
prioritization becomes an integral task in the discipline of risk-analysis and trade-off-analysis. A
sound prioritization technique provides guidance for software engineers to make educated decisions
on which security requirements are of topmost importance. Even though previous research has
proposed various security requirement prioritization techniques, none of the existing research efforts
have provided a detailed survey and comparative analysis of existing techniques. This paper uses a
literature survey approach to first define security requirements engineering. Next, we identify the
state-of-the-art techniques that can be adopted to impose a well-established prioritization criterion
for security requirements. Our survey identified, summarized, and compared seven (7) security
requirements prioritization approaches proposed in the literature.

Keywords: software engineering; requirements prioritization; software security; requirements engineering

1. Introduction

Security, in the context of information technology services and software engineering,
is becoming a topic that is garnering tremendous attention. The degree of ubiquity and
availability the world is witnessing in software driven services, networking, and shared re-
sources is recognizably higher in recent years. With that in consideration, security presents
itself as an integral part in developing a successful and reliable software system that in-
corporates the necessary measures for protecting stakeholders’ assets [1]. Requirements
Engineering (RE), which is the earliest and an essential stage of software development life-
cycle (SDLC), presents software developers with the opportunity to identify and document
security requirements for the software-being-built.

Security is a vast and complex concept that addresses within its folds many constraints
and quality aspects, including privacy, confidentiality, integrity, availability, and interoper-
ability. Security concerns must be addressed and accounted for in the early stages of the
software development lifecycle (SDLC) to avoid serious security faults in the system [2–8].
Furthermore, a clear process must be established and tailored for analyzing and address-
ing security requirements. The current practice in software development projects barely
allocate time to address the subject of security requirements analysis in the Requirements
Engineering (RE) phase of SDLC and instead push any security events analysis to the next
SDLC phase (i.e., the software design phase). However, leading researchers in the software
engineering literature recognized the need to address security concerns more adequately in
the RE phase itself so as to prevent security risks, attacks, and financial loss [2,4,9–12]. For

Software 2022, 1, 450–472. https://doi.org/10.3390/software1040019 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software1040019
https://doi.org/10.3390/software1040019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0000-0001-8104-4942
https://doi.org/10.3390/software1040019
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software1040019?type=check_update&version=1

Software 2022, 1 451

example, Mead et al. [11] reflected based on NIST reports, that software that is faulty in se-
curity and reliability costs the United States economy alone around $59.5 billion annually in
breakdowns and repairs. The costs of poor security requirements show that there would be
a high value to even a small improvement in this area. After an application is deployed and
is in its operational environment, it is difficult and expensive to significantly improve its
security. Bearing in mind these elements, security requirements engineering and elicitation,
was granted a specific area of knowledge in the information technology literature.

In view of security requirements, it naturally comes to mind that it is non-negotiable
and must be considered valuable. Furthermore, while all security requirements are relevant
and must be accounted for, the software industry is highly competitive and fast-paced.
Software engineers are bound to work with the constraints of schedule and budget. When
it comes to security requirements, they must compete not only with the limited resources
such as time, budget, restricted human power, etc., but also, with the constraints they
inflict on a software-application’s availability, features, and functionalities. Therefore,
security requirements prioritization is an extremely valuable activity. A well guided
prioritization technique can provide substantial guidance for software engineers to make
educated decisions on which security requirements are of topmost importance, which in
turn guarantees that at least the most critical security protection mechanisms are addressed.
Thus, it is essential to have a clear and comprehensive analysis process and selection criteria
to determine which security requirements are of topmost priority in early software releases,
and which can be either adopted later or not at all [3,12–19].

Security requirements engineering (SRE) is a time-intensive process that entails the
need to identify, analyze, and prioritize security requirements. In addition, while one might
argue that using well established requirements engineering and prioritization techniques
could be applied to security requirements (SR), there is no doubt that a need still exists to
alter these techniques to fit the reach and specificity of security requirements. Park et al. [20]
state that prioritization of requirements is often used in software engineering processes,
but the same methodologies cannot be used with efficiency when dealing with security
requirements because there are additional elements that are unique to security.

The current paper presents a literature survey approach to define security require-
ments engineering in the context of software applications and services with a focus on the
state-of-the-art techniques, currently available to impose a well-established prioritization
criterion for security requirements (SR). The work presented in this paper, aims to pro-
vide a summary of such techniques to aid software engineers determine the prioritization
approach that fits the specific nature of their software system’s security requirements, all
while balancing other constraints such as time, budget and quality.

The rest of this paper is organized as follows. Section 2 summarizes similar work.
Section 3 provides a background on security requirements engineering and prioritization.
A description of currently available prioritization techniques for security requirements (SR)
is provided in Section 4. A discussion of the findings of this work is presented in Section 5.
Conclusions and future work are described in Section 6.

2. Related Work

There exists some research related to security requirements engineering (SRE) that
mainly addresses the process of security requirements gathering (i.e., elicitation). It is
notable that there is a lack of surveys (and literature reviews) that specifically focus on
security requirements prioritization. However, this section highlights some work carried
out on surveying literature that focuses on establishing a unified definition of security
requirements and the techniques used for its elicitation.

In the context of defining security requirements engineering and the techniques used
for their elicitation, Tondel et al. [21] conducted a literature survey to identify and describe
concrete techniques for eliciting security requirements. Concrete, in this context refers
to techniques that can be recognized as simple, suitable, and immediate enough to be
used by ordinary software development projects (where security is not the most pressing

Software 2022, 1 452

concern). In search of these techniques, the authors derived a summary of some major
approaches to security requirements engineering in relation to tasks recommended as
part of the requirements phase. This led the authors to recognize that identifying threats,
assets, and security objectives, are the most recommended security requirements tasks.
A lightweight approach was then created and described to be convenient enough-due to
its lightweight- for average software developers to adopt for identifying and eliciting the
most critical set of security requirements. Some other prioritization techniques are briefly
touched upon in this article in Section 3.3. It should be noted that identifying the “most
critical” security requirements (using a well-defined prioritization technique and process)
remains somewhat vague and subject to the software developers’ skills and experience.

Previous research work also highlighted a lack of a unified and universally accepted
definition of security requirements (SR), and an agreement within the software community
on what is an SR [21]. This issue of multiple definitions of security requirements in
literature, was recognized by Haley et al. [22] and Turpe [23] as well. In addition to
the lack of consistency and the difficulty to understand satisfaction criteria, and how to
derive security requirements from business goals, Haley and his colleagues [22] proposed
a framework to address these needs, which provided a definition of security requirements
derived from the functional requirements of a system, and the security goals in operational
terms. This definition emphasizes on security requirements as constraints on the functional
requirement, and not as constraints themselves. In addition, the definition requires security
requirements to express the system’s security goals in operational terms, precise enough to
be given to a designer/architect. This notion advocates that security requirements, such as
functional requirements, are prescriptive, providing a specification (behavior in terms of
phenomena) to achieve the desired effect [22]. Salini et al. [6] seem to have accepted and
adopted this definition for SR. The authors carry on with that definition to establish the
activities that each security requirements engineering (SRE) process must account for as an
essential step in the process. These are: (a) Assets, threats, and vulnerabilities identification.
(b) Threat modeling (c) Risk analysis to prioritize the identified SR (d) Security requirements
specification using a security requirements specification language or modeling to remove
the identified errors (e) Requirements’ specification review/inspection. As a result of
this work the authors identified 11 SRE methods and derived a comparison based on
how these methods define SR and how much of the specified activities they cover. As a
conclusion the authors state that, based on their literature survey security requirements
should be considered as functional requirements. Additionally, they believe that SQUARE
and Security Requirements Engineering Process methods cover most of the important
activities of SRE. Thus, developers can adopt these SRE methods and easily identify the
security requirements for software systems.

With regards to the techniques used for SRE, researchers have conducted systematic
literature reviews to summarize literature related to SRE in light of what techniques are
available for the process of its elicitation. Mellado et al. [12] carried out a systematic
review concerning security requirements engineering in order to summarize the evidence
regarding this issue and to provide a background to appropriately position new research
activities. Anwar Mohammad et al.’s [2] systematic review work had a more specific
agenda of summarizing existing security requirements engineering (SRE) approaches to
derive a comparison along with the best practices adopted in the field of SRE. Another
systematic mapping study was established by Villamizar et al. [8] to outline the literature
stand on the issue of security requirements engineering in Agile environments. The authors
inferred that due to the conflict of concept between the philosophy of agile methodology
and that of SRE, a challenge arises on how to incorporate SRE in an agile environment.

However, none of these systematic reviews define a question to distinguish literature
and techniques that cater for the prioritization of security requirements (SR). It is also worth
mentioning here that none of the above-mentioned work focuses on surveying, analyzing,
and/or describing security requirements (SR) prioritization techniques. To that end, in our

Software 2022, 1 453

work we provide a comprehensive review of the published literature that addresses the
area of security requirements prioritization.

3. Definitions and Background

This section first defines Requirements Engineering (RE), followed by a discussion on
Security Requirements Engineering (SRE) in the context of software development process.
Finally, a discussion on security requirements prioritization is provided.

3.1. Requirements Engineering in Software Development

The software development life cycle or SDLC (shown in Figure 1) refers to a framework
where the process of software development is divided into stages as follows: requirements
engineering, design, implementation, testing, maintenance and support. Requirements
Engineering has been regarded as an essential step that must proceed the implementation
and development of the software’s architecture and code [24]. By the way of definition,
Requirements Engineering (RE) refers to the process of gathering/eliciting, analyzing,
documenting, and maintaining requirements in the software engineering process [25]. It
has been established that most of the work related to “correct requirements definition”
and “requirements fault removal” is carried out in the early stages of the SDLC. This is
due to the fact that addressing requirements errors, such as ambiguous, incomplete, or
omitted requirements, is more expensive to fix later in the software lifecycle. However, it
is important to note that requirements usually change and evolve during development as
well as after a system has been operational for some time, which is an important factor to
be considered in change management activities [16,25,26]. Figure 1 demonstrates the RE
process with respect to the SDLC.

Software 2022, 1, FOR PEER REVIEW 5

Figure 1. Requirements Engineering Process (as a part of the SDLC).

One of the most essential activities, carried out in the analysis phase of RE, is produc-
ing the requirements specification for the software-to-be. Traditionally, a part of this anal-
ysis is to distinguish the functional from the non-functional requirements. Functional re-
quirements are those that can directly relate to an action the software-to-be is expected to
perform as per the end-user expectations. Nonfunctional requirements, on the other hand
are more ambiguous to derive and normally refer to those requirements that express a
software-to-be’s constraint or quality, such as performance, reliability, efficiency, and se-
curity [26]. Security requirements, specifically, have been subject of controversy with re-
gards to their classification as a functional or non-functional requirement (this will be fur-
ther discussed in the next section). Table 1 provides examples of functional and non-func-
tional requirements to clarify the differences between the two concepts.

Table 1. Examples of Functional and Nonfunctional Requirements.

Example Software Requirement Requirement Category
Providing users with the capability to up-
load files

Functional requirement: allows for file up-
load action

Ability to process large files of up to 1 Gb Nonfunctional requirement: performance,
load

Users should receive emails of new mer-
chandises

Functional requirement: allows for email
sending action

The system should issue an email within
two seconds of adding new merchandise to
the database

Nonfunctional requirement: performance,
efficiency

Display warning messages and instruction
messages to the user

Functional requirement: allow for messages
display action

Figure 1. Requirements Engineering Process (as a part of the SDLC).

One of the most essential activities, carried out in the analysis phase of RE, is pro-
ducing the requirements specification for the software-to-be. Traditionally, a part of this
analysis is to distinguish the functional from the non-functional requirements. Functional

Software 2022, 1 454

requirements are those that can directly relate to an action the software-to-be is expected
to perform as per the end-user expectations. Nonfunctional requirements, on the other
hand are more ambiguous to derive and normally refer to those requirements that express
a software-to-be’s constraint or quality, such as performance, reliability, efficiency, and secu-
rity [26]. Security requirements, specifically, have been subject of controversy with regards
to their classification as a functional or non-functional requirement (this will be further
discussed in the next section). Table 1 provides examples of functional and non-functional
requirements to clarify the differences between the two concepts.

Table 1. Examples of Functional and Nonfunctional Requirements.

Example Software Requirement Requirement Category

Providing users with the capability to
upload files

Functional requirement: allows for file
upload action

Ability to process large files of up to 1 Gb Nonfunctional requirement: performance, load

Users should receive emails of
new merchandises

Functional requirement: allows for email
sending action

The system should issue an email within two
seconds of adding new merchandise to
the database

Nonfunctional requirement:
performance, efficiency

Display warning messages and instruction
messages to the user

Functional requirement: allow for messages
display action

Messages should be brief, clear, and readable in
plain English without disclosing any sensitive
information. Error messages should be colored
red. Instruction messages should be
colored green.

Nonfunctional requirement: reliability, user
experience, security.

3.2. Security Requirements Engineering

Security requirements (SR) is usually categorized under the general concept of non-
functional requirements. SRs are still recognized by leaders in the software engineering
industry as a constraint of a software system. This common definition is crucial and
has placed security requirements at the back of the queue when selecting requirements
that must be carefully considered and implemented (especially in the software’s first and
early releases). The competitive nature of software-based services locks designers and
business providers in a state where the delivery of functional requirements that satisfy the
stakeholders needs as soon as possible is of topmost priority. For decades, the focus has been
on implementing as much functionality as possible before the project deadline and patching
the inevitable bugs when it is time for the next release or hot fix [2,21,27]. However, security
breaches are notably increasing exponentially with the connectivity and extensive use of
information systems and are more likely to compromise software-applications today [2].
This makes security one of the most predictable concerns. It also enforces a shift in how
to consider and define security requirements. The literature recognized this dire need to
better define security requirements in a manner that brings it to the attention of software
engineers and developers.

The definition of security requirements (SR) must be adjusted to place it in its rightful
place as a necessity that stakeholders must not easily compromise or disregard. On that
notion, Haley et al. [22] derived a framework to define security requirements as a constraint
on the functions of the system, where these constraints operationalize one or more security
goals. In addition, while this definition still regards security requirements as nonfunctional
requirements. It does, however, expand the reach of SRs by demonstrating how they must
operationalize the security goals. Anwar Mohammad et al. [2] reflect that in the light of
this definition, security requirements are the security goals that have to be satisfied in the
context of the system’s environment rather than implementations of security measures

Software 2022, 1 455

and policies. They are dynamic in nature and evolve as the software is developed. The
reason that most of the researchers classify them as non-functional requirements is because
they do not have a clear-cut yes/no criteria for their specification and satisfiability. In this
regard, security as constraints, are preventative measures that express the system’s security
goals in operational terms, precise enough to be given to a designer/architect. Furthermore,
security requirements must be prescriptive, providing a specification (behavior in terms
of phenomena) to achieve the desired effect [22]. This is very similar to how functional
requirements are defined and expected to behave in software engineering. Kobilica et al. [4]
add that, although security belongs to a class of non-functional requirements (NFRs) related
to system dependability, many security requirements are functional in nature. Perhaps this
is why Salini et al. [6] took a more biased stand and concluded that security requirements
should be considered as functional requirements. Moreover, recently, researchers have
argued that considering security requirements along with functional requirements tends
to integrate security solutions into the system early, thereby avoiding serious flaws in the
final software product [2].

Defining security requirements purely as functions introduces a different argument of
misconceptions that might jeopardize the value of security requirements elicitation process.
Security requirements when expressed as standalone functions, could omit significant
information to the design mechanism used for implementing a specified security require-
ment. Firesmith [9] cautioned about confusing security requirements with the architectural
security mechanisms that are used to fulfill them as it could lead to unnecessarily constrain-
ing the security team from using the most appropriate security mechanisms for meeting
the true underlying security requirements. Defining requirements in terms of function
distances key information such as what objects need protecting and, more importantly, why
the objects need protecting [22]. Tondel et al. [21] extend on Firesmith’s [9] advice on how
to avoid binding security requirements to a design mechanism by focusing on defining the
who, what, when, and why rather than the how. Anwar Mohammad et al. [2] came to a
similar conclusion that, to develop a secure system, software engineers must first clarify
and decide what to secure, against whom, why and up to what extent of security is needed.
Table 2 demonstrates examples of security requirements and how they can be expressed as
functional or nonfunctional requirements.

Table 2. Examples of Security Requirements.

Security Requirement as
Functional Requirements

Security Requirements as
Nonfunctional Requirements

System must notify users when there is
a breach.

The system must protect the integrity of
personal data to prevent leakages and
unauthorized access, exposure, replication,
usage, or tampering

All passwords must be encrypted/hashed
when transmitted over the network and when
stored in the database

The system must be consistent where
information stored matches information
provided to users

All input fields must be sanitized and validated System assets must be available for
authenticated and authorized users only.

Even though researchers have different opinions on whether it is more beneficial to
define security requirements as functional requirements or as constraints that achieve a
goal, they agree on the importance of security requirements for software project success.
Overall, the literature agrees and emphasizes on the necessity of incorporating Security
Requirements Engineering (SRE) principles into each phase of the software development
lifecycle (SDLC). Most importantly, security requirements must be defined and analyzed in
the early stages, i.e., the requirements gathering and elicitation stage [2–8]. As mentioned
earlier, the ubiquity, complexity, and excessive use of software applications is also what
exposes them to more security threats. Software engineers can no longer afford outdated

Software 2022, 1 456

practices of cobbling up security features after the software is developed, where vulnera-
bilities are identified at a later stage and then patched after penetration testing (this is a
reactive approach and not prudent). Rather, a proactive approach is needed in the current
day scenario, where vulnerabilities along with the possible threats are identified, mitigated,
and resolved at the early stages of the SDLC.

3.3. Security Requirements Prioritization

Security requirements engineering (SRE) is still a vague and cumbersome process
with different considerations and approaches. As mentioned earlier, the literature has
no dearth of practices that software engineers can use to adequately analyze security
requirements. Tondel et al. [21] listed nine security requirements analysis approaches
discussed in literature. Amongst these nine frameworks only three include categorization
and prioritization as a step or a task to be carried-out in the process of eliciting security
requirements. Other work presented in literature, extended some of these nine approaches
or other approaches to cater for a prioritization technique. For example, Yoo et al. [19]
extended the misuse-cases solution and enhanced it to incorporate a method for prioritizing
security requirements, while addressing the problem of optimal risk management.

However, this absence of a prioritization step in engineering security requirements
in several approaches invokes the question: is it worth the effort? Or does this absence
contribute to the mistake of neglecting security requirements? Security is rarely at the
forefront of stakeholder’s concerns during software development, except perhaps to comply
with basic standards or legal requirements [12]. Security requirements benefits are normally
operating behind the scenes. Especially when compared to attractive, tangible, fast, and
easy to implement features and functionalities that interact with stakeholders and end-
users directly, security requirements fall victim to an emphasis on implementing functional
requirements. Furthermore, security requirements must also compete with budget and
time. Even though all security requirements are relevant and essential to the successful
implementation of a reliable system, adopting and implementing all security requirements
is onerous and almost impossible [13–15,19].

Prioritization is a common strategy adopted in software development to identify
the most valuable requirements so they can be implemented in the first releases. It is
also suitable to define which security requirements should be implemented first, or even
which ones are mandatory or optional depending on the context. This is a pragmatic
strategy to incrementally incorporate security aspects into the product and to create a
financial and operational plan, in which the most important requirements are handled first,
so the high-risk threats and issues are addressed as soon as possible [7,13]. Prioritizing
security requirements helps in determining the topmost critical security concerns that
must be addressed and implemented in the system’s early releases. Moreover, when
considered carefully, prioritization supports other tasks performed in SRE. For example,
adopting a SRE method with prioritizing security requirements in mind or as a goal
enforces the consideration of threats impact, the value of the assets being protected, the
vulnerabilities under question, and implementation cost to outcome value mapping. In
addition, the process of prioritizing security requirements emphasizes and sheds light on
their importance, thus solidifying their chances of being adopted and selected among other
competing requirements.

Ideally prioritization must be incorporated in the requirements engineering (RE) stage
of the SDLC. The absence of a properly tailored requirements prioritization process could
arguably lead to software development taking more time than it should (when compared
to a software development process supported by adequate prioritization). Most current
literature draws focus on tasks covering the definition of what a security requirement is and
concepts that correlate to it such as, assets, objects, threats, and vulnerabilities. However,
without proper prioritization the establishment of these definitions alone does not support
time-efficient software development. The optimal purpose of security requirements is to
support the objectives of a project and the overall value of a project’s quality and success.

Software 2022, 1 457

What prioritization offers in terms of risk-analysis and trade-off-analysis is valuable for
stakeholders and software engineers to make educated trustworthy decisions regarding:
which security requirements are more critical and implemented first when developing
a software.

3.4. Terms and Definitions

For the reader’s convenience, Table 3 provides definition of important concept that are
frequently mentioned in the upcoming sections of this paper.

Table 3. Security Requirements Prioritization: Important Terms and Definitions.

Term/Acronym Definition

Asset
An object in the system that holds value to the stakeholders, whether it is
tangible (e.g., cash, hardware, people) or intangible (e.g., information or
reputation) [3,28].

CRAMM
CRAMM stands for Central Computing and Telecommunications Agency
(UK) Risk Analysis and Management Method. A method used to calculate
the measure of risk for each threat to an asset and vulnerability [3,29].

DREAD
An algorithm used to compute a risk value, as an average of five
categories [3]:DREAD = (Damage + Reproducibility + Exploitability +
Affected Users + Discoverability)/5.

Risk

A future condition or circumstance that exists outside the control of the
project team that will have an adverse impact on the project if it occurs.
While an issue is a current problem that must be dealt with, a risk is a
potential future problem that has not yet occurred [30].

Security Bugs
A vulnerability in the software that might lead to security attacks
(e.g., Denial of service attacks, remote code execution,
unauthorized access).

Threat

A hypothetical event that has the potential to cause some performing
damage to an organization’s business and other processes. Threats mostly
do not cause any damage unless they are being actualized and exploited by
malicious actors.

UML Modeling

The Unified Modeling Language is an industry-standard graphical
language for specifying, visualizing, constructing, and documenting the
artifacts of software systems (e.g., Use case diagram, class diagram,
sequence diagram, misuse cases diagram, threat/attack trees) [24,29].

Vulnerability

A weakness in the system that an attack exploits. Vulnerabilities enable
attackers to actualize and exploit a threat. In other words, a feature or
property of a system that helps an attack to succeed. The more vulnerable a
system is, the higher is the expected success rate of attempted attacks and
the more choices an attacker has. Examples of software vulnerabilities
include but are not limited to poor programming practices (e.g.,
unsanitized user input, failure to check array bounds), poor authentication
and authorization process, uncontrolled network access, human and
environmental factors [23].

STRIDE

An acronym for Spoofing identity, Tampering with data, Repudiation,
Information disclosure, Denial of service, and Elevation of privilege.
STRIDE is a popular approach used for threat modeling and
classification [21,31].

3.5. Research Methodology

The rest of this paper (mainly Sections 4 and 5) provide the results of a comprehensive
literature survey that we performed. This sub-section provides an overview of the research
methodology used including paper selection The main goal of our survey was to identify,
summarize, and classify the security requirement prioritization techniques proposed in the
literature. The research methodology is described as follow:

Software 2022, 1 458

• Search Query: We used the search query “security requirements prioritization” for our
search process.

• Research Databases Searched: We ran our search query on ACM Digital Library, IEEEx-
plore Digital Library, and Google Scholar databases.

• Inclusion-Exclusion Criteria: We only selected those papers that focused on proposing
and empirically evaluating a security requirements prioritization technique. We
excluded papers where the main language was not English. We also excluded papers
where full text not was not available.

4. Security Requirements Prioritization Techniques: Developing a
Classification Framework

Security requirements engineering, elicitation, and prioritization is a multidimensional
and complex task. Achieving it efficiently while maintaining a balance between constraints,
represents a challenge for software engineers. Leaders and keen researchers in the discipline
of software engineering have recognized this difficulty. To alleviate this challenge, many
techniques were synthesized to guide the process of security requirements engineering
(SRE) and prioritization. The focus of this section is to introduce some of these techniques
and assess their validity and capability as presented and evaluated in literature.

In this work we have identified seven (7) techniques in published literature where
a prioritization technique for security requirements was described, implemented, and
evaluated on a real-world software example. Table 4 provides a summary and examination
of these techniques. Please note that in Section 4.1 through Section 4.7 we provide a more
detailed insight into each of these techniques. Additionally, based on our observations we
provide a classification scheme (illustrated in Figure 2) to help the readers better understand
each technique and where it is more suitable and applicable based on the software system
size and nature. Each security requirements (SR) prioritization technique was classified
under one of the following software project scales:

• Small Scale: projects that have no, or few identified risks, are closed in less than a
year, have a low relative budget, easy to carry out and complete (e.g., proven, and
reliable technology, existing site, off the shelf software).

• Medium Scale: projects with some identified risks, take at least a year to close, have a
considerable work effort and budget, have identified changes and difficulties (e.g., In-
volves newer technologies, integrated to other operations in the organization).

• Large-to-Mega-Scale: projects that have multiple identified risks and challenges,
take at least two-years to meet the definition of carried out, have relatively high
budget, require expertise and training to carry out (First of kind technology, different
organizational approach or new direction, change in vision or industry).

Table 4. Summary of Security Requirements Prioritization Techniques.

Technique Prioritization Deterministic Factors Key Advantages Key Limitations

Technique 1:
Park et al. [20] Treat Modeling
and Valuation Graph

• The value of assets, threats, and
countermeasures.

• The impact: the level of harm an
attack inflicts on an asset. In
terms of that impact’s, damage,
recoverability, and likelihood.

• TCO (total cost of ownership)
for each countermeasure.

• TI, total impact of all threats a
countermeasure mitigates

• The gain: TCO − TI
• SR priority = Gain + asset value
• Asset value, and the

countermeasures TCO are used
to determine the order for SR of
the same priority.

• Accounts for business users’
feedback on defining assets.

• Accounts for developing,
training, and maintaining
countermeasure cost (TCO).

• Provides clear guidelines to
establish a reasonable
prioritization technique.
While leaving room for
flexibility.

• Suggests a solution for SR
with similar priorities.

• Provides graphical
representation

• Does not provide a
definitive clarification of
vulnerabilities and does not
account for their valuation.

• Does not define the business
goal a SR is trying to
achieve.

• Was evaluated on a small
example. The graph might
be hard to track for large
project representation.

Software 2022, 1 459

Table 4. Cont.

Technique Prioritization Deterministic Factors Key Advantages Key Limitations

Technique 2:
Gulati et al. [3] Framework

• Risk value for threats,
vulnerabilities, and assets

• Risk estimate = using CRAMM
based on threats, vulnerabilities,
and assets values.

• SR priority = sum of all
prioritized threats based on their
risk estimate.

• Defines systems
vulnerabilities

• Accounts for variabilities
valuation.

• Characterizes threats
according to STRIDE, which
helps non-technical better
stakeholders relate these
threats to their needs.

• Tight dependency on
external methods (CRAMM,
DREAD, STRIDE) which
could compromise this
approach’s ability to be
generic and easily
adaptable.

• Multi-layer of factors
mapping could make this
approach hard to follow and
understand.

• Some ambiguities in
derivation and valuation of
vulnerabilities, impact of
assets, and threat
prioritization.

• Does not suggest a solution
for SRs that have the same
priority.

• Does not account for SR
implementation cost.

• Does not define the business
goal a SR is trying to
achieve.

Technique 3:
Yoo et al. [19] Enhanced
Misuse-Case

• Risk of Misuse-case (harmful
actions) based on CVSS method.

• Total risk of a misuse-case: the
risk of a use case multiplied by
the number of use-case
(functional assets) it harms.

• SR priority = sum of the total
risks for each misuse-case this
SR mitigates.

• The number of misuse-cases a
SR mitigates determines the
order of similar priority SR.

• Incorporates why an
attacker wants to harm a
system by defining goals,
giving more realistic
meanings to security threats.

• Extends on a popular
system modeling method
(the use-case UML diagram),
which makes it simpler to
adopt.

• Directly correlates the SR to
functional requirements.

• Fairly easy calculation
process.

• Offers a solution for SR with
similar priority.

• Provides graphical
representation

• Does not define and value,
assets, vulnerabilities, SR
implementation cost

• Does not define the business
goal a SR is trying to
achieve.

• Was evaluated on a
small-scale example.

• Tightly coupled to the
use-case diagram and
functional requirements;
functional requirements are
always changing thus any
change or adding of
functional requirements
requires the whole method
to be reconstructed and the
risk to be reevaluated. Will
perform poorly in agile
environments.

Technique 4:
Sharma and Ajit Framework
[7]

• Assets, vulnerabilities, and SR
implementation cost.

• The cost of the damage a
vulnerability inflicts on the
system’s assets.

• The priority of each
vulnerability in terms of the
difference between the total
possible damage cost to each
asset and the implementation
cost to remove errors which
cause a vulnerability occurrence.

• SR Priority = sum of the priority
values of each vulnerability
mitigated by this SR.

• Addresses the issue of
identifying information
related directly to the
organization and the
environment the system will
operate within.

• Accounts for
implementation cost.

• Could be used as a
standalone prioritization
scheme for SR that are
already identified and
established.

• Could be used as a generic
guideline.

• There is not a clear
distinction between
vulnerabilities and threat,
the two concepts seem to be
addressed as one in this
approach.

• Variabilities are expressed as
threats not as the underlying
weaknesses in the system.

• Was evaluated on a
small-scale example.

Software 2022, 1 460

Table 4. Cont.

Technique Prioritization Deterministic Factors Key Advantages Key Limitations

Technique 5:
SQUARE Process [11]

• Artifacts, business goals, risk
assessment of impact and
likelihood of threats affecting
organization’s risk tolerance.

• Accounts for business goals
• Provides a generic guideline

and process to follow.
• Provides a checklist for

software engineers to ensure
incorporating important
aspects.

• The success of this method
relies on the skills and
expertise of the team using
it.

• The process is fixed where
each step is required for the
next one. Might be hard to
follow for agile fast based
environments.

• The evaluation was
established on fielded
systems. The performance
of this process engineering a
project in its infancy is still
vague and undetermined.

Technique 6:
AHP [32]

• Pairwise relative value of the SR
• Pairwise Relative cost for

implementing each requirement
• Cost to value mapping = SR

priority

• Accounts for the security
requirement relative value
in comparison to other SR.

• Accounts for
implementation cost.

• Includes visual
representation.

• Can be easily used as a
stand-alone prioritization
technique after establishing
the SRs.

• Useful for determining the
priority of security
requirements that have the
same value.

• Low flexibility: changing
one SR requires the
revaluation and calculation
of all security pairs.

• Might be strenuous for
large-scale projects to
compare and calculate all
pairs of requirements.

• Missing many
considerations in
prioritizing SR; the
underlying mitigated
threats, vulnerabilities, and
business goals.

• Not many examples and
case studies are available in
literature where AHP was
used to specifically
prioritize security
requirements.

Technique 7:
Carvalho et al. [13] Risk
assessment, the AHP method
and Generic scenarios
approach

• Severity of threats.
• Severity of security issues in

terms of regulations and
standards.

• AHP result for SR with same
value.

• SR priority = threat severity +
security issue severity.

• Accounts for the security
requirements importance
regarding the standards and
regulation it addresses.

• Provides a solution for SR
with similar priority values.

• Can be appended as a
standalone technique for
prioritizing established SR.

• Incorporating the bug-bar
for severity calculations and
the AHP method adds
robustness to the
prioritization result.

• Does not account for
implementation cost,
business goals, and
stakeholders needs.

• Inherits some difficulties
and rigidness from
calculating the risk values
based on the bug-bar and
the AHP pairwise method.

4.1. Prioritization Technique 1: Threat Modeling and Valuation Graph

Proposed by Park et al. [20] this approach facilitates the threat modeling model to
create a process that allows for the prioritization of security requirements via the valuation
of assets, threats, and countermeasures. Modeled in a tree-like structured graph referred to
as a “valuation graph”.

Software 2022, 1 461

Software 2022, 1, FOR PEER REVIEW 10

constraints, represents a challenge for software engineers. Leaders and keen researchers
in the discipline of software engineering have recognized this difficulty. To alleviate this
challenge, many techniques were synthesized to guide the process of security require-
ments engineering (SRE) and prioritization. The focus of this section is to introduce some
of these techniques and assess their validity and capability as presented and evaluated in
literature.

In this work we have identified seven (7) techniques in published literature where a
prioritization technique for security requirements was described, implemented, and eval-
uated on a real-world software example. Table 4 provides a summary and examination of
these techniques. Please note that in Sections 4.1 through 4.7 we provide a more detailed
insight into each of these techniques. Additionally, based on our observations we provide
a classification scheme (illustrated in Figure 2) to help the readers better understand each
technique and where it is more suitable and applicable based on the software system size
and nature. Each security requirements (SR) prioritization technique was classified under
one of the following software project scales:
• Small Scale: projects that have no, or few identified risks, are closed in less than a

year, have a low relative budget, easy to carry out and complete (e.g., proven, and
reliable technology, existing site, off the shelf software).

• Medium Scale: projects with some identified risks, take at least a year to close, have
a considerable work effort and budget, have identified changes and difficulties (e.g.,
Involves newer technologies, integrated to other operations in the organization).

• Large-to-Mega-Scale: projects that have multiple identified risks and challenges,
take at least two-years to meet the definition of carried out, have relatively high
budget, require expertise and training to carry out (First of kind technology, different
organizational approach or new direction, change in vision or industry).

Figure 2. Security Requirements Prioritization Techniques: A Classification Framework with Re-
spect to Project Size.
Figure 2. Security Requirements Prioritization Techniques: A Classification Framework with Respect
to Project Size.

The valuation graph requires a total of eight steps: six steps that must proceed the
prioritization scheme in order to achieve the prioritization, which is manifested in seventh
and eighth steps. These steps are as follows:

1. Identify assets: in this step, a list of all critical assets of the system is created. In this
approach the authors stress the importance of deriving this list not only depending
on management decisions but must also account for business users’ needs.

2. Draw and value assets: once the list of assets requiring protection is recognized,
the initial part of the valuation graph can be created. A tree where the system is
the parent node, and the assets are the children. Additionally, this step includes
an essential output that must be generated to perform the prioritization step more
adequately. Which is the value of each asset. The authors suggest using any valuation
method then expressing this value as a number between 1 (low importance) and 5
(high importance).

3. Identify threats per asset: in this step, the most important task is to adopt the mindset
of an attacker, identify possible points of attack, and analyze the vulnerabilities of
exposed assets. The authors suggest using approaches such as vulnerabilities lists or
STRIDE to derive these threats.

4. Draw threats and calculate their impacts: once threats have been identified, they
are drawn in the valuation graph using one node per threat and joining them to the
assets via edges. As for calculating the impact, it is expressed as the level of harm
that an attack can cause to an asset when the threat is exploited (Impact = (Damage +
Recoverability + Likelihood)/3).

5. Identify countermeasures: once the possible threats have been recognized, it is neces-
sary to identify countermeasures. In this step the authors suggest approaches such as
misuse cases and attack trees to diagram and analyze the relation between threats,
vulnerabilities, and countermeasures.

Software 2022, 1 462

6. Draw and value countermeasures: once the countermeasures are identified, they are
drawn in the valuation graph via new nodes between assets and threats, joining the
assets that are protected and the threats that are mitigated. When a threat is related to
various countermeasures, it is necessary to clarify whether one of the countermeasures
is enough to mitigate the threat, or whether all or parts of the countermeasures are
necessary to mitigate the threat. Additionally, each countermeasure value is calculated
to determine their cost. The authors highlight that when this value is measured, it is
not enough to calculate the development cost of the countermeasure. However, it is
also necessary to calculate the user training cost and maintenance cost. This implies a
calculation of the total cost of ownership (TCO). Finally, once each countermeasure’s
TCO is calculated, this value is transformed into a number between one and five,
where five represents the highest cost of ownership. After this transformation, the
values are entered into the valuation graph.

7. Calculate priority of countermeasures: security requirements become the counter-
measures that were synthesized in previous steps. In addition, using the output of
the six previous steps the security requirements (SR) can be prioritized as follows:

(i) Calculate the total impact (TI) of threats that a countermeasure mitigates. TI
is the summation of the impacts of each threat related to the countermeasure.
If a threat is related to more than one countermeasure, its impact is divided
by the number of edges if the relation is an AND; the impact is summed if the
relation is an OR.

(ii) Calculate the gain (G) of each countermeasure by subtracting the countermea-
sure TCO from its TI.

(iii) Calculate the priority (P) of the countermeasure by summing the (G) of the
countermeasure and the value of assets that the countermeasure protects.

8. Sort countermeasures: Once the priorities of each countermeasure have been calcu-
lated, they are sorted according to priority. If two or more countermeasures have the
same priority, the asset value, and the countermeasures TCO are used to determine
the order.

As for evaluation, the authors [20] applied the proposed approach steps to an example
of an e-commerce web application that controls the bill-payment data of customers and
the catalog of products sold on this site. For this example, three business logic were used
as the assets. Six threats to these assets were synthesized. Five countermeasures were
identified as the elicited security requirements (SR) and then prioritized according to steps
seven and eight of the proposed approach. Examining the steps required to accomplish
this prioritization scheme. It is clear that the authors have set clear guidelines for software
engineers to follow. Many considerations regarding best practices and important aspects
of security requirements were brought to light. For example, assigning a value to the
assets to derive more meaning for the SR, calculating the cost for implementing the SR,
while also accounting for training cost and maintenance cost, deriving the impact as a
result of damage, recovery, and likelihood instead of just the damage, and using AND/OR
relationships to clarify whether one of the SR is enough to mitigate the threat, or whether
all or parts of the SR are necessary. However, as of all techniques it is hard to cater for all
aspects of security. With that, the most obvious limitation of this approach is the absence of
a definitive expression of vulnerabilities and their valuation. This is critical for deciding
which variabilities are causing the most harm to a system. Which could affect the value
of the importance of a countermeasure, and the underlying protection mechanism. For
example, knowing how many threats are imposed due to a said vulnerability in a system.
Could affect the priority of the security requirements that address the threats imposed by
this particular vulnerability. Additionally, the approach was evaluated on a small-scale
example, making it hard to assess its performance for real world applications. Where
expectedly, the graph will be complex to plot and derive meaningful observations from it.

Software 2022, 1 463

4.2. Prioritization Technique 2: Threat Analysis and Risk Measurement

Gulati et al. [3] presented a technique for prioritizing security requirements (SR) based
on the threat analysis risk measurement technique. The authors suggest eight steps to
adequately achieve this prioritization technique.

1. Assemble threats: using common criteria-based approach list all the possible threats
to develop a storage of deposits of all these threats.

2. Characterize all the known threats using STRIDE: to classify the schemes for charac-
terizing the discovered or known threats according to the kinds of exploitation that
are used.

3. Rate the assembled threats using DREAD methodology: this algorithm is used to
compute the risk value of a threat, as an average of five categories (DREAD = (Damage
+ Reproducibility + Exploitability + Affected User + Discoverability)/5).

4. Assigning the values to vulnerabilities: the authors suggest the CRAMM method to
accomplish this step. The CRAMM calculates the measure of risk for each threat to an
asset and vulnerability.

5. Define and value assets: define the project’s specific assets. Then assign a value to
each by weighing the impact of it when a threat will occur.

6. Calculate risk level: risk is defined as the probability that a threat agent will exploit
system vulnerability and thereby create an effect detrimental to the system.

7. Risk = Value based on Measure of Threat, Vulnerability and Asset.
8. Find the security requirement to lessen the threats: define security requirements as

the countermeasures that lessens a threat’s risk.
9. Backtrack the security requirements prioritizations: backtrack all the gathered val-

ues of different threats which are discovered earlier and assign them a final value
which will prioritize all the security requirements.

To evaluate this proposed framework the authors [3] conducted a case study on an
example of an air reservation system. Seven threats were assembled. Five assets were
identified for this example. The example does not illustrate what vulnerabilities were
defined and the authors only state that the values for the vulnerabilities were defined
by the CRAMM. This approach introduces important measures to be accounted for and
incorporates various methods. Which could be beneficial for software engineers who are
familiar with and using them in their SRE process. In such a case, it could be simpler to
extend such a process to offer prioritization by appending this approach. On the other hand,
this tight dependency on these methods (CRAMM, DREAD, STRIDE) compromise this
approach’s ability to be a generic and smoothly adaptable approach that can be tweaked
for an existing process. Additionally, this multi-layer of mapping made the approach hard
to follow and understand. Finally, many concepts were introduced with ambiguity and
without specific guidelines on how to establish their values. For example, vulnerability
is defined as the weakness in the system that makes an attack more likely to succeed.
However, the authors did not give any guideline on how to express these vulnerabilities
before assigning a value to them. In addition, no example of a possible system vulnerability
was given in the case study. Another example is, when describing, and demonstrating
step five “define the project’s specific assets. Then assign a value to each by weighing the
impact of it when a threat will occur”, it is not clear how to define and weigh this impact.

4.3. Prioritization Technique 3: Enhanced Misuse-Case

The enhanced misuse-case suggested by Yoo et al. [19] extends upon the well-established
use-case diagram. Which is perhaps what is most appealing about this approach. The use-
case diagram is a popular UML model widely used among software engineers. In a survey
asking 374 software professionals regarding security requirements engineering common
practices conducted by Elahi et al. the majority of respondents (73%) expressed that they use
standard or tailored modeling notations in RE practices. Where, 57% use some UML models
to express the requirements, and 68% use non-UML models. In essence the use-case model

Software 2022, 1 464

illustrates the actions and behaviors a system must allow authorized users to perform.
However, and by definition, it is only concerned with the functional requirements of a
system, making it non-usable for eliciting and analyzing security requirements. Software
engineers recognized this limitation and extended the use-case model to describe the
actions a system must not allow using what is known as the “misuse-case” model [19].

Yoo et al. discuss the misuse-case model as a solution for eliciting security require-
ments and describe the traditional approach to be limited for deriving security requirements
that are meaningful to stakeholders. The authors conducted an enhanced misuse-case
model to address some of the traditional approach’s limitations and extended it to cater for
a prioritization criterion and the issue of risk management.

The authors addressed the following limitations in the traditional misuse-case method
are: (a) Does not provide meaningful security requirements (SR) in terms of the attacker
goal, (b) Does not account for that misuse severity and impact and does not showcase
any information in regard to that on the diagram, (c) Does not cater for a prioritization
technique for the elicited SR.

The proposed solution suggests the following steps to address these limitations:

1. Derive the misuse case as a result of a mis-actor goal. The misuse-case is then linked
to each use-case (functional requirement) it targets with a “Threatens” relationship.

2. Calculate the risks for each misuse case using The Common Vulnerability Scoring
System (CVSS). The weight of that risk for each misuse-case is then adjusted according
to the number of use-case it threatens.

3. Synthesize a SR for each misuse-case and link to it with a “mitigates” relationship.
4. Link each SR to each use-case it’s protecting with an “includes” relationship.
5. Showcase the calculated risks and mitigations numeric values on the diagram for

stakeholders to observe.
6. Prioritize each SR based on the number of misuse-cases it addresses and the amount

of risk it mitigates in accordance with that calculated risk for each misuse-case.

The authors [19] advocate that with this approach a misuse-case is easier to derive
and has more meaning to stakeholders. Since in this approach, one needs to think about
what mis-actors want to abuse and gain, accordingly the misuse-case will be a question
of how the mis-actors will achieve these goals. Additionally, calculating the risk of each
misuse-case in terms of its severity and the effect it inflicts on a said system functional
requirement, integrates more value to that misuse-case in the context of the environment
and emphasizes it to stakeholders. Finally, as for the prioritization technique the same
concepts apply. Each SR will be prioritized based on its ability to lessen the risk of each
threat as well as the number of threats it is addressing.

As for evaluation, Yoo et al. [19] applied the steps they proposed to elicit and prioritize
security requirements (SR) for a simple example of an e-commerce web application system.
The example contained five use-case (functional requirements). The end result yielded a
total of three SR that were prioritized and showcased on a diagram. With that example, it is
unclear how this proposed system will scale for large-scale real-world applications where
many and changing functional requirements exist. Specially for agile environments and
businesses that adopt the agile methodology where functional requirements are changing
even more frequently. Additionally, many considerations regarding SR are not accounted
for nor addressed. Calculating the priority on severity and probability alone eliminates
other aspects that matter for software engineers and stakeholders. For example, cost and
time to implement overall outcome value and cost reduction mapping, its importance to
stakeholders, and will it constrain and hinder the availability and performance of said
functional requirements, if yes to what extent.

4.4. Prioritization Technique 4: Hybrid Security Requirement Prioritization Framework

Sharma and Ajit [7] recognized security requirements prioritization as an integral pro-
cess that must be included in the process of security requirements engineering (SRE). The
authors explain that, despite that, many approaches have been introduced for SRE. These

Software 2022, 1 465

techniques have got certain pitfalls imbibed in them such as inefficient and inappropriate
requirement gathering prioritization and hike in the specified project budget that leads to
degradation in the software quality and security. To address this lacking, the authors pro-
posed a novel framework for security requirement prioritization. The proposed framework
is described by the author as a “Hybrid Security Requirement Prioritization framework”.
The aim of this solution is to develop a well-defined process for SR prioritization that im-
proves the security in software applications of the business environment by gathering the
properly processed requirements, identifying the vulnerabilities and their corresponding
threats. Which in turn, reduced the estimated budget of the software application along
with the security implication.

The proposed approach promotes that security requirements should be in sync with
functional requirements and hence are required to be captured along with. Security require-
ments should be accurate, adequate, absolute, and non- conflicting with other requirements.
Once they have been explicitly specified, they can then be implemented and maintained.
Furthermore, the authors [7] state that SR should be associated with assets that must be
protected and managed.

The proposed framework incorporates the following steps as part of the security
requirements (SR) prioritization process:

1. Use the workshop-based approach to gather information regarding the environment
or the organization the system will be operating on; (a) Important assets and their
relative values. (b) Perceived threats to the assets. (c) Security requirements. (d) Orga-
nizational vulnerabilities.

2. Establish the relationship between vulnerability and error; gather and list all the
vulnerabilities a system might have and the respective error that might cause a system
to have these vulnerabilities.

3. Identify the relationship between vulnerability and Security Requirement. This is so
that after establishing a ranking scheme for these vulnerabilities, they can be removed
from the SR accordingly.

4. Define the relationship between assets and vulnerability. In terms of (a) The impact of
the vulnerability over the assets. (b) The potential damage cost to each asset caused
by vulnerability occurrence. (c) Define the implementation cost.

5. Calculate the total damage cost inflected on assets by a vulnerability occurrence.
6. Prioritize the vulnerabilities based on the difference between the total possible dam-

age cost to each asset and the implementation cost to remove errors which cause a
vulnerability occurrence.

7. Prioritize each security requirement based on the sum of the priority values of all
vulnerabilities, corresponding to that security requirement.

The proposed framework was implemented on a case-study of an online banking
system simple example. For the system six assets were identified, four vulnerabilities and
five security requirements (SR). According to the priority calculation for each vulnerability
and the number of vulnerabilities each SR addresses, these SR were prioritized. Basically,
this approach derives the SR’s priority by first prioritizing all vulnerabilities addressed by
this SR. Second, the sum of the priority value for all of these vulnerabilities will be used to
prioritize the SR. Although, the proof of concept was applied on a small example, making
it hard to assess its validity for practical applications. The approach incorporates solid
concepts to prioritize SR. Starting the process with a solid understanding and investigating
the organization and the environment the system will operate within. Insurance a more
comprehensive coverage of what a SR should account for. This could also reduce unneces-
sary efforts to address irrelevant SR to the operational environment and the organization’s
needs. Another beneficial aspect with this process is defining the vulnerabilities of the
system and establishing a relationship between these vulnerabilities and the SR. Which
could be very useful for designing the appropriate mechanisms to address such variabilities.
Finally, this approach accounts for important values specially for business analysts, such as
the cost of the overall damage to the organization’s assets, the damage to specific assets,

Software 2022, 1 466

and the implementation cost of the SR. However, and what is worth mentioning here is the
proposed approach focuses on deriving the prioritization process for SR that are already
defined and listed. The elicitation of the SR itself was not well addressed or showcased by
the authors of this framework. Another consideration while examining the given case study.
There was not a clear distinction between vulnerabilities and threats, the two concepts seem
to be addressed as one in this approach. In addition, the given examples of variabilities
seem to be addressing threats not the underlying weaknesses in the system.

4.5. Prioritization Technique 5: SQUARE Process

The SQUARE (Secure Quality Requirements Engineering) process seems to be highly
regarded among researchers. Many praised this method to cover most of the important
tasks for eliciting security requirements (SR) [2,6,21,28]. For example, Salini et al. [6] in their
work of surveying SRE techniques, advocated that SQUARE and Security Requirements
Engineering Process methods cover most of the important activities of SRE. In addition,
developers can adopt these SRE methods and easily identify the security requirements for
software systems. In a systematic review to identify and compare SRE methods. Anwar Mo-
hammad et al. [2] recognized SQUARE to be one of the most popular amongst researchers.

SQUARE is a model developed at Carnegie Mellon by Nancy Mead as part of a
research project with Donald Firesmith, and Carol Woody of the Software Engineering
Institute. The focus of this methodology seeks to build security concepts into the early
stages of the development lifecycle [11].

SQUARE method advocates nine steps to be used alongside existing lifecycle models
to ensure adequate support for SRE:

1. Agree on definitions.
2. Identify security goals
3. Develop supporting artifacts
4. Perform risk assessment.
5. Select elicitation techniques.
6. Elicit security requirements.
7. Categorize requirements.
8. Prioritize requirements.
9. Inspect requirements.

The square method addresses the prioritization of security requirements (step-eight)
in terms of many aspects provided by previous steps. These aspects are considered inputs
to this step. The SQUARE framework is similar to a waterfall approach where each step is
essential input to determine the shape of the next step’s outcome. Basically, however, the
factors that must be established in order to determine the priority of a said system SR, are
the list of artifacts that needs protecting, categorized to meet the organization’s established
business goals. In addition, the risk assessment of how the combination of impact and
likelihood of various threats affect the organization’s risk tolerance with regard to each
categorized requirement.

To evaluate this framework the initial SQUARE model was tested by graduate stu-
dents at Carnegie Mellon University in 2004 in two consecutive case studies. Carnegie
Mellon students, under the mentorship of Nancy Mead, partnered with an IT firm, Acme
Corporation, to apply the model to one of the firm’s fielded systems [11]. As a result of
these studies the initial SQUARE model was refined to what is described as in this section.
What is worth mentioning here is that the concept of SQUARE is to provide a guideline of
what must be present and accounted for. While allowing to add activities to the framework
as per the project needs and the stakeholders’ considerations. Some limitations in regard
to this methodology might stem from its similarity to the waterfall approach, and thus by
default inheriting its rigid nature. Tondel et al. [21] Criticized this method in terms of its
ambiguity. That stating what Square includes and does not include is not straightforward,
because developers can choose several techniques for the different steps. Thus, it relies
heavily on expert knowledge and the requirements team ability to facilitate the process.

Software 2022, 1 467

Another observation regarding this approach was made by Mellado et al. [29] that the
square method lacks the compliance with any Information Security Management System
standard, such as ISO/IEC 17799 or ISO/IEC 27001, as well as the steps of SQUARE do not
deal with the security requirements reuse.

4.6. Prioritization Technique 6: Analytic Hierarchy Process (AHP)

Analytic Hierarchy Process (AHP) was developed by Prof. Thomas L. Saaty and
applied to software engineering by Joachim Karlsson and Kevin Ryan in 1997 [32]. AHP
is widely known in software prioritization as a structured technique for organizing and
analyzing requirements to be prioritized. Prioritization decisions are made based on
mathematics and psychology. AHP is helpful for decision making in situations where
multiple objectives are present. This method compares all pairs of requirements in order to
calculate a relative value for each security requirement.

Karlsson et al. [32] describe the AHP to consist of five steps as follows:

1. Review candidate requirements carefully to test for completeness and to ensure that
they are stated in an unambiguous way.

2. Apply AHP’s pairwise comparison method to assess the relative value of the candi-
date requirements.

3. Estimate the relative cost of implementing each candidate requirement.
4. Calculate each candidate requirement’s relative value and implementation cost, then

plot these on a cost–value diagram.
5. Map, analyze, and discuss the candidate requirements. Based on discussion, prioritize

the requirements, and decide which will be implemented.

Although, AHP was originally synthesized for prioritizing said system requirements
without specifically addressing the security requirements. It is widely considered by
researchers to be applicable and useful for prioritizing SR [13,18]. The biggest argument
against AHP in terms of SR is that it does not provide any input on how to elicit and
manufacture SR. On the other hand, it provides a solid prioritization technique once the SR
are established. In addition, could be particularly useful as an add-on step to any other SRE
process that does not address prioritization. For example, Sadiq et al. [33] demonstrated
how AHP can be applied to prioritize SR, using a detailed example scenario. The authors
also add that by using AHP, requirements engineers can confirm the consistency of the
result and avoid subjective judgment errors and increase the likelihood that the results are
reliable. Carvalho et al.’s Approach (discussed in next section) to identify and prioritize
SR shows how AHP can be incorporated in the prioritization process to derive better
results [13]. In terms of limitations that exist within the process itself, Herrmann et al. [34]
observe about AHP that it does not scale well because the number of comparisons grows
exponentially with the number of requirements. The authors add and further explain
that requirements can be estimated in cardinal values (absolute values) or ordinal values
(relative values/ratio scale). AHP belongs to the latter. When risks and priorities are
quantified on a cardinal scale an existing list of prioritized requirements is more easily
scalable and extensible than when ordinal values are used. New requirements can easily
be inserted in the list, without the need to compare each one to the whole list of the other
requirements [28].

4.7. Risk Assessment, the AHP Method and Generic Scenarios Approach

The work presented by Carvalho et al. [13] is mainly concerned with security issues
and incidents associated with smart toys that use sensors and cloud-based services to
collect data. Next, it is used to personalize the user’s experience, or to perform operations
such as navigation, for example. To adequately address the issues the authors proposed
an approach where they used the Microsoft SDL method to identify a comprehensive list
of security issues based on specific regulations, threats based on surface attack analysis,
and security requirements that address security issues and threats. Finally, the authors

Software 2022, 1 468

presented a method to prioritize security requirements based on risk assessment, AHP, and
generic scenarios.

The proposed approach to prioritize security requirements after they are identified
and elicited, is as follows:

1. Identify the severity of all threats addressed by the security requirements using the
security bug bar. The security bug bar is an objective bug classification system where
the severity of a threat is expressed as Low, Moderate, Important or Critical.

2. Define the severity of all security issues addressed by the security requirements.
The authors identified security issues as the standards and regulations that must be
addressed in the context of a system.

3. Calculate the risk of each security requirement based on the severity of the threats
and security issues addressed by it. Use this value to prioritize the SR.

4. Find the best implementation order for security requirements with the same risk
using AHP.

5. Synthesize the prioritized list of security requirements.
6. Check consistency of the prioritized list of security requirements.

The above-mentioned prioritization scheme was conducted as part of eliciting and
synthesizing SR for smart toys. To further evaluate its performance, the authors compared
the outcome of this method to that of NAT (The Numerical Assignment Technique (NAT).
NAT is a straightforward way to prioritize requirements based on the customer’s point of
view) [13]. As a conclusion of this comparison, the authors reflect that using the bug bar
and AHP technique adds advantage and robustness. In general, this proposed approach
is flexible enough to be appended to other systems. However, this approach might not
scale well in accordance with cost and time. Reconstructing this method each time a
security issue or threat severity changes, requires recalculating the risk, and the AHP value.
Additionally, other considerations regarding SR were not addressed using this approach
(such as the cost to implement and the business goals).

5. Discussion

This survey was initiated with three main goals:

• Goal 1: The first goal was to understand the stance and coverage of current literature
on the concept of the Security Requirements Engineering (SRE) and elicitation process.

• Goal 2: The second goal was to identify techniques that address the process of security
requirements (SR) prioritization.

• Goal 3: The third goal was to identify a comparison scheme to better understand
the capability of each prioritization technique, and which technique would be more
suitable to implement for specific software projects.

Goal 1 observations: We provided the literature survey on SRE in Section 3.2. It is
notable that much research has been carried out on the topic of SRE. Many researchers
advocate the importance of adopting the discipline of SRE as part of the early stages of the
software development lifecycle (SDLC). They emphasize that in today’s world, software
engineers cannot afford to consider security as an afterthought. Despite this focused effort,
SRE is still exhibiting symptoms of a novice concept. There are various reasons for this
including: (a) The literature does not seem to agree on a unified definition of what a security
requirement is. (b) There is not a clear standard of what the process of eliciting SR must
include, (c) There is not a unified acceptance of how to measure the correctness of a SR
once established, (d) many proposed techniques suggested to address SRE do not consider
a prioritization scheme.

Goal 2 observations: We provided a brief review of literature on security requirements
prioritization in Section 3.3. The literature provides many techniques and frameworks to
guide the process of adequately eliciting security requirements. Additionally, many survey
efforts were conducted to summarize, list, and compare these techniques. Researchers
recognized and emphasized the importance of prioritizing SR, to help software engineers

Software 2022, 1 469

address and derive educated decisions in the matter of risk-analysis and trade-of-analysis
of competing objectives. However, many of the proposed techniques for SRE do not
address prioritizing security requirements. We also noticed that there does not exist a
comprehensive survey that summarizes and discusses approaches that cater for prioritizing
security requirements.

With that motivation, the third part of this work aimed to cover this gap and summa-
rize some of these SR prioritization techniques (please see Table 4). Our survey resulted in
identification and summarizing of seven techniques and frameworks that are described in
current literature to guide software engineers when they are trying to prioritize security requirements.

Key observations regarding security requirements prioritization techniques: The lit-
erature recognized the gap in addressing prioritization as an integral step during the
security requirements engineering activity. This is evident by the different approaches and
proposed frameworks summarized in this paper. What is interesting in regard to these
techniques is the different factors and considerations each of them requires as essential to
the process. For example, the enhanced misuse-case approach expresses security require-
ments (SR) as the countermeasures that lessens the misuse risk. This approach prioritizes
each SR according to how many of the system’s functional requirements it is protecting and
how much risk is it reducing. While, Carvalho et al. [13] prioritized each SR based on its
risk value that is calculated in terms of the severity of the threats and security issues (the
standards and regulations that must be addressed in the context of a system) addressed
by this SR. The common denominator in all these techniques is that one must account for
risk impact when prioritizing security requirements. The issue becomes how to express
this impact and on what terms. Hansch et al. [26] describe a model-based impact analysis
method as a proven one to understand the security needs of complex IT systems. Using
such an analysis, requirements for protective measures can be derived and prioritized.

Another observation is that many of these listed techniques require a set of essential
steps that must proceed the SR prioritization scheme to establish adequate results. These
preceding steps force software engineers to address and think about many important
aspects of security requirements, such as the vulnerabilities, threats, cost, business goals,
regulations and standards, relative value, risk impact and its probability, etc. Hence
providing a more comprehensive overall SRE elicitation process and affirms the validity
of these security requirements. This confirms an assumption previously made by this
paper, regarding how the absence of a prioritization step could jeopardize the value of the
elicitation process. In addition, deriving the elicitation process with prioritization in mind
allows for many considerations to be sufficiently addressed, to establish more relevant and
tangible security requirements.

Goal 3 observations: It is notable from the analysis carried out in our survey that
each of the discussed SR prioritization techniques differ in terms of complexity, required
level of experience, flexibility and resilience to requirements change, and the aspects of
software security it reflects (e.g., organization’s goals, assets, cost, vulnerabilities, opera-
tional environment). This variation presents somewhat of a challenge when deriving a
classification schema. However, to best incorporate each variation factor, we established
the classification based on the software project size and nature, where a project can either
be a small-scale, medium-scale, or large-to-mega-scale project. With this project catego-
rization we can establish the characteristics of each category based on, budget, time, and
effort valuation, number of identified risks and their severity level, complexity in terms of
change degree and frequency, and the maturity level of the organization. With that, each
SR prioritization technique can be adequately classified under each category, such that the
selected prioritization technique incorporates and accounts for the said project’s needs,
size, and nature.

Application of Identified Prioritization Techniques on Modern Technologies: In addi-
tion to the above-mentioned discussion, we also wanted to understand the application of
security prioritization techniques on modern technologies such as IoT, blockchain etc. One
such technology is the use of Digital Twins for securing cyber-physical systems as described

Software 2022, 1 470

by Suhail et al. [35]. Digital Twins are virtual replicas of cyber-physical systems, which
can be monitored to understand/predicting the behavior of the actual system without
performing any analysis/inspection on the actual system. We propose that while devel-
oping Digital Twins, security prioritization techniques such as misuse case [19] to ensure
Digital Twins consider all possible attack vectors. Another application that we envision is
in the area of blockchain. Application of blockchain-based technology and relevant security
considerations have been proposed and described by authors in areas such healthcare [36]
and manufacturing industry [37]. Specifically, Pal [37] propose in their paper that when
integrating IoT and blockchain has many data privacy challenges. Many such data privacy
challenges can be revealed by techniques such as SQUARE [11].

6. Conclusions

This paper presented a literature survey approach to assess the current state-of-the-art
on the concept of security requirements engineering and prioritization process.

The major contributions of this study include:

• A major goal of this study was to identify, gather, and present the available security
requirements prioritization techniques in a single resource, so that future researchers
can find most of the valuable information in a single place. To that end, this work
identified, summarized, and compared seven (7) techniques depicted in literature.
These techniques can help guide software engineers in better eliciting and prioritizing
security requirements.

• Another major contribution of this work is that we classified the 7 security require-
ments techniques based on the size of the software development project (please see
Figure 2 in Section 4). Based on our classification scheme shown in Figure 2, software
development teams and software project managers can select the security requirement
prioritization technique/framework that is most suitable for their project.

• Another major contribution of this work is to provide a comparative analysis of
existing security requirements techniques so that industry software developers can
choose the technique that is suitable for their specific project. Table 4 provides this
comparative analysis. To our knowledge, such a comparative analysis of security
requirements techniques has not been performed so far in the literature.

As a follow up to this survey, we are currently working on performing a case study on
real world software requirements artifacts (i.e., software requirements specifications or SRS
documents). Our plan is to compare the coverage and ease-of-implementation of each of
the seven security requirements prioritization techniques on a real SRS document.

Another future work is to extend our literature survey to understand what kind of
security requirements prioritization have been incorporated into some prominent and well-
known requirements engineering methodologies. The examples of such methodologies
include the STORE methodology proposed by Ansari et al. [38] and TOPSIS methodol-
ogy [39]. Specifically, in the STORE [39] methodology, prioritization is carried out at
multiple levels (stakeholder, risk, etc.) to ensure that a more sound and complete security
requirements specification document is created.

Since security of cyber-physical systems as well as IoT devices has gained tremendous
attention recently, in our future work, we want to analyze the kind of security requirements
prioritization techniques that are relevant to risk assessment of cyber-physical systems
and IoT systems. We intend to include work by Northern et al. [40] and Suhail et al. [35]
in a future study on cyber-physical system security. Additionally, security requirements
prioritization technique such as misuse cases and SQUARE can be incorporated in some
known IoT security approaches such as the approach proposed by Andreas et al. [41] which
focuses on secure healthcare data exchange.

Another future work is to interview software development teams from organization
spanning two countries (USA and India). In our interview, we will collect and analyze
data about the security requirements elicitation and prioritization techniques used in

Software 2022, 1 471

real world software development projects and also train software developers on existing
prioritization techniques.

Author Contributions: Conceptualization, S.K.; Supervision, V.A.; Writing—original draft, S.K.;
Writing—review & editing, V.A. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mead, N.R.; Viswanathan, V.; Padmanabhan, D. Incorporating Security Requirements Engineering into the Dynamic Systems

Development Method. In Proceedings of the International Computer Software and Applications Conference, Turku, Finland,
28 July–1 August 2008. [CrossRef]

2. Anwar Mohammad, M.N.; Nazir, M.; Mustafa, K. A Systematic Review and Analytical Evaluation of Security Requirements
Engineering Approaches. Arab. J. Sci. Eng. 2019, 44, 8963–8987. [CrossRef]

3. Gulati, A. Proposing Security Requirement Prioritization Framework. Int. J. Comput. Sci. Eng. Appl. 2012, 2, 27–37. [CrossRef]
4. Kobilica, A.; Ayub, M.; Hassine, J. Automated Identification of Security Requirements. In Proceedings of the Evaluation and

Assessment in Software Engineering; Association for Computing Machinery: New York, NY, USA, 2020; pp. 475–480. [CrossRef]
5. Kumar, R.; Goyal, R. On Cloud Security Requirements, Threats, Vulnerabilities and Countermeasures: A Survey. Comput. Sci. Rev.

2019, 33, 1–48. [CrossRef]
6. Salini, P.; Kanmani, S. Survey and Analysis on Security Requirements Engineering. Comput. Electr. Eng. 2012, 38, 1785–1797.

[CrossRef]
7. Sharma, S.; Singh Malik, A. A Novel Framework for Security Requirement Prioritization. Int. J. Comput. Appl. 2012, 38, 9–14.

[CrossRef]
8. Villamizar, H.; Kalinowski, M.; Viana, M.; Fernández, D.M. A Systematic Mapping Study on Security in Agile Requirements

Engineering. In Proceedings of the 44th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2018,
Prague, Czech Republic, 29–31 August 2018. [CrossRef]

9. Firesmith, D.G. Engineering Security Requirements. J. Object Technol. 2003, 2, 53–68. [CrossRef]
10. Laborde, R.; Bulusu, S.T.; Wazan, A.S.; Barrère, F.; Benzekri, A. Logic-Based Methodology to Help Security Architects in Eliciting

High-Level Network Security Requirements. In Proceedings of the ACM Symposium on Applied Computing, Limassol, Cyprus,
8–12 April 2019. [CrossRef]

11. Mead, N.R.; Stehney, T. Security Quality Requirements Engineering (SQUARE) Methodology. ACM SIGSOFT Softw. Eng. Notes
2005, 30, 1–7. [CrossRef]

12. Mellado, D.; Blanco, C.; Sánchez, L.E.; Fernández-Medina, E. A Systematic Review of Security Requirements Engineering. Comput.
Stand. Interfaces 2010, 32, 153–165. [CrossRef]

13. de Carvalho, L.G.; Fantinato, M.; Eler, M.M. Security Requirements Identification and Prioritization for Smart Toys. Electron.
Commer. Res. Appl. 2020, 41, 100972. [CrossRef]

14. Fletcher, K.K.; Liu, X. Security Requirements Analysis, Specification, Prioritization and Policy Development in Cyber-Physical
Systems. In Proceedings of the 2011 5th International Conference on Secure Software Integration and Reliability Improvement—
Companion, SSIRI-C 2011, Jeju Island, Korea, 27–29 June 2011. [CrossRef]

15. Hadar, E.; Kravchenko, D.; Basovskiy, A. Cyber Digital Twin Simulator for Automatic Gathering and Prioritization of Security
Controls’ Requirements. In Proceedings of the IEEE International Conference on Requirements Engineering, Zurich, Switzerland,
31 August–4 September 2020. [CrossRef]

16. Hadar, E.; Hassanzadeh, A. Big Data Analytics on Cyber Attack Graphs for Prioritizing Agile Security Requirements. In
Proceedings of the IEEE International Conference on Requirements Engineering, Jeju Island, Korea, 23–27 September 2019.
[CrossRef]

17. Mougouei, D. PAPS: A Scalable Framework for Prioritization and Partial Selection of Security Requirements. arXiv 2017,
arXiv:1706.00166. [CrossRef]

18. Win, T.Z.; Mohamed, R.; Sallim, J. Requirement Prioritization Based on Non-Functional Requirement Classification Using
Hierarchy AHP. IOP Conf. Series: Mater. Sci. Eng. 2020, 769, 012060. [CrossRef]

19. Yoo, S.G.; Vaca, H.P.; Kim, J. Enhanced Misuse Cases for Prioritization of Security Requirements. In Proceedings of the 9th
International Conference on Information Management and Engineering, Barcelona, Spain, 9–11 October 2017. [CrossRef]

http://doi.org/10.1109/COMPSAC.2008.85
http://doi.org/10.1007/s13369-019-04067-3
http://doi.org/10.5121/ijcsea.2012.2303
http://doi.org/10.1145/3383219.3383288
http://doi.org/10.1016/j.cosrev.2019.05.002
http://doi.org/10.1016/j.compeleceng.2012.08.008
http://doi.org/10.5120/4626-6868
http://doi.org/10.1109/SEAA.2018.00080
http://doi.org/10.5381/jot.2003.2.1.c6
http://doi.org/10.1145/3297280.3297437
http://doi.org/10.1145/1082983.1083214
http://doi.org/10.1016/j.csi.2010.01.006
http://doi.org/10.1016/j.elerap.2020.100972
http://doi.org/10.1109/SSIRI-C.2011.25
http://doi.org/10.1109/RE48521.2020.00035
http://doi.org/10.1109/RE.2019.00042
http://doi.org/10.48550/arXiv.1706.00166
http://doi.org/10.1088/1757-899X/769/1/012060
http://doi.org/10.1145/3149572.3149580

Software 2022, 1 472

20. Park, K.Y.; Yoo, S.G.; Kim, J. Security Requirements Prioritization Based on Threat Modeling and Valuation Graph. Commun.
Comput. Inf. Sci. 2011, 142–152. [CrossRef]

21. Tondel, I.A.; Jaatun, M.G.; Meland, P.H. Security Requirements for the Rest of Us: A Survey. IEEE Softw. 2008, 25, 20–27.
[CrossRef]

22. Haley, C.B.; Moffett, J.D.; Laney, R.; Nuseibeh, B. A Framework for Security Requirements Engineering. In Proceedings of the
International Conference on Software Engineering, Shanghai, China, 20–28 May 2006. [CrossRef]

23. Turpe, S. The Trouble with Security Requirements. In Proceedings of the 2017 IEEE 25th International Requirements Engineering
Conference, RE 2017, Lisbon, Portugal, 4–8 September 2017. [CrossRef]

24. Boehm, B. A View of 20th and 21st Century Software Engineering. In Proceedings of the 28th international conference on Software
engineering, Shanghai, China, 20–28 May 2006.

25. Nuseibeh, B.; Easterbrook, S. Requirements Engineering: A Roadmap. In The Future of Software Engineering; Springer Science &
Business Media: New York, NY, USA, 2000; pp. 35–46.

26. Hansch, G.; Schneider, P.; Brost, G.S. Deriving Impact-Driven Security Requirements and Monitoring Measures for Industrial IoT.
In Proceedings of the CPSS 2019 5th ACM Cyber-Physical System Security Workshop, co-located with AsiaCCS 2019, Auckland,
New Zealand, 8 July 2019. [CrossRef]

27. Rubin, A.D.; Geer, D.E. A Survey of Web Security. Computer 1998, 31, 34–41. [CrossRef]
28. Hayat, B.; Shakoor, R.; Mubarak, S.; Basharat, K. A Goal Based Framework by Adopting SQUARE Process for Privacy and

Security Requirement Engineering. Int. J. Comput. Appl. 2017, 169, 31–34. [CrossRef]
29. Mellado, D.; Fernández-Medina, E.; Piattini, M. A Common Criteria Based Security Requirements Engineering Process for the

Development of Secure Information Systems. Comput. Stand. Interfaces 2007, 29, 244–253. [CrossRef]
30. Dey, P.K.; Kinch, J. Risk Management in Information Technology Projects. Int. J. Risk Assess. Manag. 2008, 9, 311–329. [CrossRef]
31. Sion, L.; Van Landuyt, D.; Yskout, K.; Joosen, W. SPARTA: Security & Privacy Architecture Through Risk-Driven Threat

Assessment. In Proceedings of the IEEE International Conference on Software Architecture Companion, Seattle, WA, USA, 30
April–4 May 2018; pp. 89–92.

32. Karlsson, J.; Ryan, K. A Cost-Value Approach for Prioritizing Requirements. IEEE Softw. 1997, 14, 67–74. [CrossRef]
33. Sadiq, M.; Ahmed, J.; Asim, M.; Qureshi, A.; Suman, R. More on Elicitation of Software Requirements and Prioritization Using

AHP. In Proceedings of the DSDE 2010—International Conference on Data Storage and Data Engineering, Bangalore, India,
9–10 February 2010. [CrossRef]

34. Herrmann, A.; Paech, B. Practical Challenges of Requirements Prioritization Based on Risk Estimation. Empir. Softw. Eng. 2009,
14, 644–684. [CrossRef]

35. Suhail, S.; Malik, S.; Jurdak, R.; Hussain, R.; Matulevičius, R.; Svetinovic, D. Towards situational aware cyber-physical systems: A
security-enhancing use case of blockchain-based digital twins. Comp. Ind. 2022, 141, 103699. [CrossRef]

36. Xi, P.; Zhang, X.; Wang, L.; Liu, W.; Peng, S. A Review of Blockchain-Based Secure Sharing of Healthcare Data. App. Sci. 2022,
12, 7912. [CrossRef]

37. Pal, K. Privacy, Security and Policies: A Review of Problems and Solutions with Blockchain-Based Internet of Things Applications
in Manufacturing Industry. Proc. Comp. Sci. 2021, 191, 176–183. [CrossRef]

38. Ansari, M.T.J.; Pandey, D.; Alenezi, M. STORE: Security threat oriented requirements engineering methodology. J. King Saud Univ.
-Comput. Inf. Sci. 2022, 34, 191–203. [CrossRef]

39. Ansari, M.T.J.; Al-Zahrani, F.A.; Pandey, D.; Agrawal, A. A fuzzy TOPSIS based analysis toward selection of effective security
requirements engineering approach for trustworthy healthcare software development. BMC Med. Inf. and Dec. Mak. 2020, 20,
1–13. [CrossRef]

40. Northern, B.; Burks, T.; Hatcher, M.; Rogers, M.; Ulybyshev, D. VERCASM-CPS: Vulnerability Analysis and Cyber Risk Assessment
for Cyber-Physical Systems. Information 2021, 12, 408. [CrossRef]

41. Andreas, A.; Mavromoustakis, C.X.; Mastorakis, G.; Do, D.-T.; Batalla, J.M.; Pallis, E.; Markakis, E.K. Towards an optimized
security approach to IoT devices with confidential healthcare data exchange. Multimed. Tools Appl. 2021, 80, 31435–31449.
[CrossRef]

http://doi.org/10.1007/978-3-642-24106-2_19
http://doi.org/10.1109/MS.2008.19
http://doi.org/10.1145/1137627.1137634
http://doi.org/10.1109/RE.2017.13
http://doi.org/10.1145/3327961.3329528
http://doi.org/10.1109/2.708448
http://doi.org/10.5120/ijca2017914873
http://doi.org/10.1016/j.csi.2006.04.002
http://doi.org/10.1504/IJRAM.2008.019747
http://doi.org/10.1109/52.605933
http://doi.org/10.1109/DSDE.2010.23
http://doi.org/10.1007/s10664-009-9105-0
http://doi.org/10.1016/j.compind.2022.103699
http://doi.org/10.3390/app12157912
http://doi.org/10.1016/j.procs.2021.07.022
http://doi.org/10.1016/j.jksuci.2018.12.005
http://doi.org/10.1186/s12911-020-01209-8
http://doi.org/10.3390/info12100408
http://doi.org/10.1007/s11042-021-10827-x

	Introduction
	Related Work
	Definitions and Background
	Requirements Engineering in Software Development
	Security Requirements Engineering
	Security Requirements Prioritization
	Terms and Definitions
	Research Methodology

	Security Requirements Prioritization Techniques: Developing a Classification Framework
	Prioritization Technique 1: Threat Modeling and Valuation Graph
	Prioritization Technique 2: Threat Analysis and Risk Measurement
	Prioritization Technique 3: Enhanced Misuse-Case
	Prioritization Technique 4: Hybrid Security Requirement Prioritization Framework
	Prioritization Technique 5: SQUARE Process
	Prioritization Technique 6: Analytic Hierarchy Process (AHP)
	Risk Assessment, the AHP Method and Generic Scenarios Approach

	Discussion
	Conclusions
	References

