
Citation: Wakimoto, M.; Morisaki, S.

A Metric for Questions and

Discussions Identifying Concerns in

Software Reviews. Software 2022, 1,

364–380. https://doi.org/

10.3390/software1030016

Academic Editor: Eduardo

Figueiredo

Received: 8 July 2022

Accepted: 30 August 2022

Published: 5 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Metric for Questions and Discussions Identifying Concerns
in Software Reviews
Michiyo Wakimoto * and Shuji Morisaki

Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
* Correspondence: wakimoto.michiyo@g.mbox.nagoya-u.ac.jp

Abstract: Previous studies reported that reviewers ask questions and engage in discussions during
software reviews and that the concerns identified by the questions and discussions help detect defects.
Although such concerns about potential defects lead to finding defects, review metrics such as the
number of defects detected do not always reflect the questions and discussions because concerns
which are not applicable to the review material are excluded from the number of defects. This paper
proposes a metric, the number of questions and discussions, which identifies concerns in reviews.
First, we defined an effective question, which identifies concerns. Then, we defined detailed review
processes (identifying, sharing, and recording processes), which capture how concerns identified
by effective questions are shared and defects are documented. We conducted a case study with
25 projects in industry to investigate the impact of the number of effective questions, which identified
concerns on the number of detected defects in subsequent testing. The results of a multiple regression
analysis show that the number of effective questions predicts the number of defects in subsequent
testing at the significance level of 0.05.

Keywords: effective questions; concerns; software reviews; software metrics; software quality

1. Introduction

Software review is a static analysis technique aimed at the early detection of defects [1–4].
Software review is also one of the most effective evaluation techniques of quality assur-
ance [5–8]. Reviewers manually check materials (documents and source code) in a review
to ensure that no defects remain [9]. Specifically, reviewers point out potential defects,
and then the authors and reviewers verify that they are true defects, which require action,
including correction. Typically, defects overlooked in reviews are detected and corrected in
subsequent development activities, including testing.

Reviewers not only detect defects but also ensure that the review material is free
of concerns about potential defects by asking questions and engaging in discussions,
because the concerns may cause defects [10,11]. A study which analyzed utterances during
reviews [12] reported that 60–70% of the conversations consisted of “informing” and
“clarification”. Other studies [13,14] reported that reviewers spend 38% of the review time
verifying, justifying, or rejecting potential defects (concerns). A study on code review
effectiveness [15] reported that code review comments included questions, and these
questions helped reviewers detect defects. In the case where a concern identified by a
question is applicable to the review material during the subsequent discussion, the concern
and applicable locations are specified as a defect. On the other hand, in the case where
a concern is not applicable to the review material, it is discarded or recorded as a false-
positive defect. For example, in a code review, a concern may be identified by the question,
“Is it intentional that one of the parameters passed to the function is not used?”. Then,
the subsequent answers and discussions enable the reviewers and authors to find that the
source code statements using the parameter passed to the function are omitted. In this
case, the concern “the implementation using the parameter passed to the function may be

Software 2022, 1, 364–380. https://doi.org/10.3390/software1030016 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software1030016
https://doi.org/10.3390/software1030016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0000-0003-4873-9616
https://doi.org/10.3390/software1030016
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software1030016?type=check_update&version=1

Software 2022, 1 365

omitted” identified by the question and the discussion reveals a defect: “the implementation
using the parameter passed to the function is omitted”. On the other hand, if the parameter
passed to the function is designed for compatibility with older versions and is not used
intentionally, the concern is not applicable and will not identify a defect. Although this
kind of question and discussion may lead to defect detections, its effectiveness and the
detailed process have yet to be investigated.

Concerns identified by questions and discussions cannot be directly extracted from
defects in a defect list after reviews because the defects include defects directly detected
by reviewers and defects found by examining concerns. Furthermore, some concerns are
discarded or recorded as false-positive defects if they are not applicable to the review
materials. Although some studies have used objective indicators such as the number of
detected defects to assess whether reviews are performed properly [16–18], such metrics
only include the number of defects directly detected by reviewers and defects found by
concerns, which are applicable to the review material.

The number of questions identifying concerns can be an indicator for effective reviews.
Some studies have demonstrated that the number of questions identifying concerns is
an indicator of an effective review. One study evaluated the percentage of interrogative
sentences in each review comment as a metric for code review quality [19]. Another study
defined a new metric, Issue Density, to estimate the code review quality [15]. However,
neither study evaluated the relationship between the quality of review and the quality in
subsequent testing.

This paper proposes a metric, the number of effective questions which identify con-
cerns in reviews. First, we defined effective questions and the processes by which effective
questions are recognized and recorded as defects as well as the categories for true and false-
positive defects. Then, we surveyed previous studies according to the defined process and
defect categories to investigate whether defects are distinguished defects directly detected
from those found by concerns according to the defined processes and categories. Further-
more, we implemented a case study, which involved 25 projects in industry, to investigate
the effectiveness of effective questions in reviews. The metrics in the case study include
the number of effective questions that identified concerns, number of defects detected,
and number of defects detected in subsequent testing. We performed multiple regression
analysis for these metrics to evaluate the effectiveness of questions and discussions in
software reviews. The research questions are formulated as the following.

RQ: Does the number of effective questions in a review affect the quality of subsequent testing?
This paper is structured as follows. The software reviews are described in Section 2.

Section 3 defines the effective questions and discussions in software reviews and processes
for identifying, sharing, and recording in software reviews. Section 4 conducts a case study
to investigate the impact of the number of effective questions on the number of defects
detected in subsequent testing. Section 5 discusses the results, and Section 6 summarizes
this paper.

2. Software Reviews

Guided reviews are one approach to detecting defects in software reviews. Guided
reviews help reviewers comprehensively detect severe defects, including omissions or
ambiguities, by providing detailed instructions, procedures, and hints [20]. Many studies
have reported on the effectiveness of guided reviews [4,21–29]. Typical techniques of
guided reviews are checklist-based reading (CBR) [1], perspective-based reading (PBR) [25],
defect-based reading (DBR) [24], usage-based reading (UBR) [26], and traceability-based
reading [30]. CBR is a reading technique in which reviewers use a list of questions to help
them understand what defects to examine [27]. PBR [21,31,32] is a scenario-based reading
(SBR) [24] that defines the perspectives of the stakeholders and assigns the perspectives to
reviewers. DBR is an SBR that focuses on detecting specific types of defects [24,27]. UBR
prioritizes the use cases and detects the most critical defects in the target materials along
with the prioritized use cases [27,30]. While reviewers in these reading techniques ask

Software 2022, 1 366

effective questions and engage in the following discussions, no studies referred to effective
questions and discussions. Investigating the effective questions and discussions leads to
higher predictions of review quality.

3. Effective Questions in Reviews
3.1. Definition

We define effective questions to distinguish between questions that identify concerns
about potential defects from those that clarify and understand the review material, because
questions and subsequent discussions in reviews cover diverse topics such as exchanging
opinions on defects, evaluating the value, clarifying solutions, and rejecting hypothe-
ses [13,14]. Namely, a set of questions (U) consists of a set of effective questions (Diq) and a
set of non-effective questions (N). We assume that a defect can be specified with a concern
and its locations in the review material. The discussions following the effective questions
(Diq) verify the concern and determine the locations applicable to the concern. Thus, if a
concern identified by an effective question is judged to apply to the review material through
discussions, the locations of concern can be determined. On the other hand, if a concern is
not judged to apply to the review material through discussions, no location is determined.
Thus, the concern does not lead to specifying (finding) a defect. Namely, a set of effective
questions (Diq) consists of a set of effective questions identifying concerns with applicable
locations (Diql) and a set of effective questions identifying concerns without applicable
locations (Diqn). Figure 1 shows the flowchart for categorizing effective questions and de-
termining true or false-positive defects identified and specified by effective questions. The
first and second branches categorize effective questions. As indicated by the second branch
in Figure 1, if reviewers do not attempt to find the applicable locations for the concern
identified by the question, then it is considered to be a non-effective question. An example
of a non-effective question without a concern is “What time does this review meeting end?”.
An example of a non-effective question for the reviewer’s self-understanding is “Which
chapter defines the glossary?”.

Software 2022, 1, FOR PEER REVIEW 3

perspectives to reviewers. DBR is an SBR that focuses on detecting specific types of defects
[24,27]. UBR prioritizes the use cases and detects the most critical defects in the target
materials along with the prioritized use cases [27,30]. While reviewers in these reading
techniques ask effective questions and engage in the following discussions, no studies re-
ferred to effective questions and discussions. Investigating the effective questions and dis-
cussions leads to higher predictions of review quality.

3. Effective Questions in Reviews
3.1. Definition

We define effective questions to distinguish between questions that identify concerns
about potential defects from those that clarify and understand the review material, be-
cause questions and subsequent discussions in reviews cover diverse topics such as ex-
changing opinions on defects, evaluating the value, clarifying solutions, and rejecting hy-
potheses [13,14]. Namely, a set of questions (U) consists of a set of effective questions (Diq)
and a set of non-effective questions (N). We assume that a defect can be specified with a
concern and its locations in the review material. The discussions following the effective
questions (Diq) verify the concern and determine the locations applicable to the concern.
Thus, if a concern identified by an effective question is judged to apply to the review ma-
terial through discussions, the locations of concern can be determined. On the other hand,
if a concern is not judged to apply to the review material through discussions, no location
is determined. Thus, the concern does not lead to specifying (finding) a defect. Namely, a
set of effective questions (Diq) consists of a set of effective questions identifying concerns
with applicable locations (Diql) and a set of effective questions identifying concerns with-
out applicable locations (Diqn). Figure 1 shows the flowchart for categorizing effective
questions and determining true or false-positive defects identified and specified by effec-
tive questions. The first and second branches categorize effective questions. As indicated
by the second branch in Figure 1, if reviewers do not attempt to find the applicable loca-
tions for the concern identified by the question, then it is considered to be a non-effective
question. An example of a non-effective question without a concern is “What time does
this review meeting end?”. An example of a non-effective question for the reviewer’s self-
understanding is “Which chapter defines the glossary?”.

No

Yes

Does the question include concern?

Reviewer asks a question.

Start

No

Yes

Reviewer reports the concern and locations identified by the
effective question as the defect.

Reviewer discards the concern or reports the concern identified by
the effective question as the false-positive defect.

Can the locations of the concern be
determined?

End

Do the reviewers try to find
applicable locations to the concern

identified by the effective
question?

Yes

No

Figure 1. Flowchart to categorize effective questions and distinguish between true and false-positive
defects identified and specified by effective questions.

Software 2022, 1 367

Reviewers ask an effective question when they cannot specify locations for concerns
or when they are unable to expend effort to check and find locations of concerns. Figure 2
shows an example of an effective question. An example is the question (∈U), “Does the
interrupt program change the value of the global variable x? If yes, the assigned value and
reference value are not consistent”. This identifies a concern that the global variable x can be
overwritten by the interrupt program. If the interrupt program, which changes the global
variable x, can be executed during the assignment and reference, the concern applies to the
review material (source code A in Figure 2). The locations are where the interrupt program
changes the value of the global variable x or the omitted place (description), disabling the
interrupt. Then, the defect (∈Dst) “The value of the global variable x may not be consistent
because the interrupt program can change the value, and disabling the interrupt programs
is omitted”. is detected by the effective question, identifying the concern applicable to
locations (∈Diql). In the case where a concern identified by an effective question applies
to the review material, the defect is recorded as a true defect (∈Drt). If a concern does
not apply to the review material (source code B in Figure 2), the concern is discarded or
recorded as a false-positive defect (∈Drf) detected by the effective question identifying the
concern without applicable locations (∈Diqn), depending on the recording policy.

Software 2022, 1, FOR PEER REVIEW 4

Figure 1. Flowchart to categorize effective questions and distinguish between true and false-positive
defects identified and specified by effective questions.

Reviewers ask an effective question when they cannot specify locations for concerns
or when they are unable to expend effort to check and find locations of concerns. Figure 2
shows an example of an effective question. An example is the question (∈ U), “Does the
interrupt program change the value of the global variable x? If yes, the assigned value and
reference value are not consistent”. This identifies a concern that the global variable x can
be overwritten by the interrupt program. If the interrupt program, which changes the
global variable x, can be executed during the assignment and reference, the concern ap-
plies to the review material (source code A in Figure 2). The locations are where the inter-
rupt program changes the value of the global variable x or the omitted place (description),
disabling the interrupt. Then, the defect (∈ Dst) “The value of the global variable x may
not be consistent because the interrupt program can change the value, and disabling the
interrupt programs is omitted”. is detected by the effective question, identifying the con-
cern applicable to locations (∈ Diql). In the case where a concern identified by an effective
question applies to the review material, the defect is recorded as a true defect (∈ Drt). If a
concern does not apply to the review material (source code B in Figure 2), the concern is
discarded or recorded as a false-positive defect (∈ Drf) detected by the effective question
identifying the concern without applicable locations (∈ Diqn), depending on the recording
policy.

The number of effective questions identifying concerns can be an indicator for effec-
tive reviews. Furthermore, reviewers are expected to directly detect defects, and they then
have confidence to ask effective questions. The proportion of the number of effective ques-
tions to the number of directly detected defects should be measured because available
time and effort for the reviews are limited. If the proportion of the number of detected
defects to the number of effective questions is larger, time and effort for asking questions
are likely to be limited.

Reviewer

“Does the interrupt program
change the value of the global
variable x?”

“The value of the global variable x can be
overwritten by the interrupt program”.

Concern

Effective question

“The value of the global variable x may
not be consistent because the interrupt
program can change the value of the
global variable x, and disabling the
interrupt programs is omitted”.

Defect

“The value of the global variable x is
consistent because the interrupt program
does not change the value of the global
variable x”.

False-positive defect

Main program

int x, y, z;
int main(void){

x = func1();
y = func2();
x += (x + y) / 2;
func3(x, y);

}

Source code B

Interrupt program

void interrupt(){
z++;
if(z == 60){

z = 0;
}

}

Source code A

Interrupt program

void interrupt(){
x++;
if(x == 60){

x = 0;
}

}

Main program

int x, y, z;
int main(void){

x = func1();
y = func2();
x += (x + y) / 2;
func3(x, y);

}

Check

The interrupt program changes the value of the global variable x.

The interrupt program does not change the value of the global variable x.

Check

Report

Report or discard

Ask

Figure 2. An example of an effective question, which shows true or false-positive defects from an
effective question.

The number of effective questions identifying concerns can be an indicator for effective
reviews. Furthermore, reviewers are expected to directly detect defects, and they then have
confidence to ask effective questions. The proportion of the number of effective questions
to the number of directly detected defects should be measured because available time and
effort for the reviews are limited. If the proportion of the number of detected defects to the
number of effective questions is larger, time and effort for asking questions are likely to
be limited.

Software 2022, 1 368

3.2. Defect Category and Effective Questions in Review Process

Reviews can be categorized as synchronous, such as a face-to-face meeting, or asyn-
chronous, such as sending and receiving defect descriptions via a review support tool [33–35].
In synchronous reviews, reviewers share potential defects and ask effective questions in
a review meeting. In asynchronous reviews, reviewers share potential defects and ask
effective questions using review support tools. Although reviewers present potential de-
fects and ask effective questions in both synchronous and asynchronous reviews, their
processes differ.

In synchronous reviews, reviewers present potential defects and ask effective questions
during a review. According to Fagan, a review consists of overview, preparation, review,
rework, and follow-up processes [1]. In the review process, a reviewer presents potential
defects and asks effective questions. Then, the authors respond. If necessary, the potential
defects and concerns identified by the effective questions are further discussed [1,36].

In asynchronous reviews (non-meeting-based approaches [35]), a reviewer denotes
potential defects and effective questions, which are sent to the authors and other reviewers
via a review support tool. After the authors answer the effective questions, the authors
and reviewers discuss the concerns identified by the effective questions and answers using
the tool. In asynchronous patch reviews, a fix proposal (a code patch) may be sent with a
potential defect [37,38].

Both synchronous and asynchronous reviews include the following identifying, shar-
ing, and recording processes.

- Identifying

A reviewer checks the material and identifies potential defects. It is assumed that the
reviewer thinks that the potential defects are true defects, as the reviewer does not want to
share false-positive defects in reviews. If the reviewer has a concern, they prepare effective
questions, which will be asked in the sharing process. In asynchronous reviews, the
reviewer inputs the potential defects and effective questions into the review support tool.

- Sharing

Each potential defect identified by the reviewers is shared, and whether it is a true or
false-positive defect is evaluated. The authors and other reviewers answer the effective
questions and discuss the identified concerns to find applicable locations and ensure that
no defect remains. Each potential defect or concern identified by effective questions is
subsequently categorized as either a true defect or a false-positive defect.

- Recording

In synchronous reviews, the true defects judged in the sharing process are recorded.
In some reviews, defects judged to be false positives in the sharing process are recorded,
whereas in other reviews, they are discarded. In asynchronous reviews, potential defects
and effective questions are already recorded in the identification process. Hence, poten-
tial defects and effective questions are categorized into true or false-positive defects. In
addition, the defect descriptions may be updated, depending on the discussions in the
sharing process.

Figure 3 overviews the process to categorize potential defects and effective questions
in the sharing process and how true and false-positive defects are recorded in the recording
process. For synchronous reviews, reviewers identify potential defects (Did) and effective
questions (Diq) in the identification process. In the sharing process, the reviewers present
Did and ask Diq, and then the authors and the other reviewers examine defects (Did) and
concerns identified the by Diq. Finally, based on their discussion, the defects and concerns
are categorized into true defects (Dst) and false-positive defects (Dsf). In the sharing process,
new potential defects and effective questions may be found. In this case, they are added
to Did and Diq. In the recording process, each defect in Dst is recorded as true defects
(Drt). Depending on the recording policy, some defects in false-positive defects (Dsf) are

Software 2022, 1 369

recorded as false-positive defects (Drf). After the recording process, defects in true defects
(Drt) are corrected.

Software 2022, 1, FOR PEER REVIEW 6

concerns are categorized into true defects (Dst) and false-positive defects (Dsf). In the shar-
ing process, new potential defects and effective questions may be found. In this case, they
are added to Did and Diq. In the recording process, each defect in Dst is recorded as true
defects (Drt). Depending on the recording policy, some defects in false-positive defects
(Dsf) are recorded as false-positive defects (Drf). After the recording process, defects in true
defects (Drt) are corrected.

Figure 3. Defect categories in identifying, sharing, and recording process.

For asynchronous reviews, reviewers identify potential defects (Did) and effective
questions (Diq). Then, they input Did and Diq into a review support tool. In the sharing
process, the reviewers send Did and Diq to the authors and other reviewers. After the au-
thors and other reviewers understand Did and Diq, they answer the effective questions (Diq)
and discuss the concerns identified by Diq. In addition, they examine and judge whether
the potential defects (Did) are true defects.

Finally, the authors and the reviewers categorize Did and Diq into true defects (Dst)
and false-positive defects (Dsf) based on the discussions. Effective questions (Diq) are cate-
gorized into effective questions identifying concerns with applicable locations (Diql) and
effective questions identifying concerns without applicable locations (Diqn) depending on
whether the concerns are applicable or not. In the recording process, true defects (Dst) are
labeled or categorized as true defects (Drt). False-positive defects (Dsf) are labeled or cate-
gorized as false-positive defects Drf. Some of the defects in the false-positive defects (Dsf)
may be discarded in the recording process. After the recording process, true defects (Drt)
are corrected. In the case where a code patch is attached to the true defects (Drt), the
patches are merged. Figure 4 shows an example for the process and categories. In Figure
4, if the locations of concern are found through discussion, the author (reviewee) who
knows the design intention answers, “The implementation using the parameter passed to
the function is omitted”. On the other hand, if the locations of concern are not found
through discussion, the author (reviewee) answers, “The parameter is designed for com-
patibility with older versions and is not used in the function intentionally”.

Potential defects
Did

True defects
Dst

True defects
Drt

False-positive
defects Dsf

Effective
questions
Diq

Identifying Sharing Recording

False-positive
defects Drf

Figure 3. Defect categories in identifying, sharing, and recording process.

For asynchronous reviews, reviewers identify potential defects (Did) and effective
questions (Diq). Then, they input Did and Diq into a review support tool. In the sharing
process, the reviewers send Did and Diq to the authors and other reviewers. After the
authors and other reviewers understand Did and Diq, they answer the effective questions
(Diq) and discuss the concerns identified by Diq. In addition, they examine and judge
whether the potential defects (Did) are true defects.

Finally, the authors and the reviewers categorize Did and Diq into true defects (Dst)
and false-positive defects (Dsf) based on the discussions. Effective questions (Diq) are
categorized into effective questions identifying concerns with applicable locations (Diql)
and effective questions identifying concerns without applicable locations (Diqn) depending
on whether the concerns are applicable or not. In the recording process, true defects (Dst)
are labeled or categorized as true defects (Drt). False-positive defects (Dsf) are labeled or
categorized as false-positive defects Drf. Some of the defects in the false-positive defects
(Dsf) may be discarded in the recording process. After the recording process, true defects
(Drt) are corrected. In the case where a code patch is attached to the true defects (Drt), the
patches are merged. Figure 4 shows an example for the process and categories. In Figure 4,
if the locations of concern are found through discussion, the author (reviewee) who knows
the design intention answers, “The implementation using the parameter passed to the
function is omitted”. On the other hand, if the locations of concern are not found through
discussion, the author (reviewee) answers, “The parameter is designed for compatibility
with older versions and is not used in the function intentionally”.

Software 2022, 1 370Software 2022, 1, FOR PEER REVIEW 7

Figure 4. An example for the process and categories, which shows the categorization of effective
questions according to the flowchart in Figure 1 and the process in Figure 3.

3.3. Literature Review
We conducted a literature review to identify articles that describe concerns raised by

effective questions, subsequent discussions, and categorization of true and false-positive
defects according to the applicable concerns. Many studies categorized true defects [39–
41], but few studies categorized false-positive defects. Previous studies referring to re-
views in which false-positive defects were detected [9,36,39,42] did not refer to the cate-
gories or details of false-positive defects. Articles [9,43] excluded false-positive defects
prior to defect analysis. Moreover, one study described that analysis and retrospect of
reviews used information of true defects as inputs [22]. Only the article [44] referred to
the use of a question list. However, it did not describe the concerns identified by the ques-
tions.

We investigated which processes and categories defined in Subsections 3.1 and 3.2
are referred to when true defects and false-positive defects are judged and recorded. Table
1 shows the result. True defects and false-positive defects were judged and recorded in
different processes. Three articles [44–46] referred to defects in Did ∩ Dst. These articles
described that the participants of the reviews discussed whether the presented defects
were true defects or not, and they categorized defects as true defects. One article [47] re-
ferred to defects categorized as Did ∩ Dsf. It described that the participants in the reviews
discussed whether the presented defects were false-positive or not prior to deciding they
were false-positive defects. One article [48] referred to defects categorized as Did ∩ (Dst ∪
Dsf). The participants of the reviews discussed whether the presented defects were false-
positive defects or not, and they found both true and false-positive defects. One article
[45] referred to defects categorized as Dst and Dsf. Another article [44] referred to defects
categorized as Dst ∩ Drf. One article [39] referred to defects categorized as Drf.

Table 2 summarizes the result of the literature review. Table 2 shows the definitions
of false-positive defects, percentages of false-positive defects, and definitions of true de-
fects for each article. We searched the percentage of false-positive defects because the per-
centage of false-positive defects equals the maximum percentages of effective questions,
which did not apply to the review material when all of the effective questions were cate-
gorized into false-positive defects.

Reviewer

[Diq] “Is it intentional that one of the parameters passed to
the function is not used?”

Discussion with reviewers and the author (reviewee)

“The implementation using the parameter passed
to the function may be omitted”.

[Diql] “The implementation using the
parameter passed to the function is
omitted”.

Concern

[Dst] “One of the implementations using
the parameter passed to the function is
omitted”.

[Diqn] “The parameter is designed for
compatibility with older versions and
is not used in the function
intentionally.”

If locations, which apply to the concerns are found

If locations, which apply to the concerns are not found

[Drt] “One of the implementations
using the parameter passed to the
function is omitted”.

Recorded as false-positive [Drf] or
discarded

[Dsf] “One of the parameters passed to the
function is not used because the
parameter is intentionally designed for
compatibility with older versions”.

Identifying Sharing Recording

Figure 4. An example for the process and categories, which shows the categorization of effective
questions according to the flowchart in Figure 1 and the process in Figure 3.

3.3. Literature Review

We conducted a literature review to identify articles that describe concerns raised by
effective questions, subsequent discussions, and categorization of true and false-positive
defects according to the applicable concerns. Many studies categorized true defects [39–41],
but few studies categorized false-positive defects. Previous studies referring to reviews
in which false-positive defects were detected [9,36,39,42] did not refer to the categories
or details of false-positive defects. Articles [9,43] excluded false-positive defects prior to
defect analysis. Moreover, one study described that analysis and retrospect of reviews
used information of true defects as inputs [22]. Only the article [44] referred to the use of a
question list. However, it did not describe the concerns identified by the questions.

We investigated which processes and categories defined in Sections 3.1 and 3.2 are
referred to when true defects and false-positive defects are judged and recorded. Table 1
shows the result. True defects and false-positive defects were judged and recorded in
different processes. Three articles [44–46] referred to defects in Did ∩ Dst. These articles
described that the participants of the reviews discussed whether the presented defects were
true defects or not, and they categorized defects as true defects. One article [47] referred to
defects categorized as Did ∩ Dsf. It described that the participants in the reviews discussed
whether the presented defects were false-positive or not prior to deciding they were false-
positive defects. One article [48] referred to defects categorized as Did ∩ (Dst ∪ Dsf). The
participants of the reviews discussed whether the presented defects were false-positive
defects or not, and they found both true and false-positive defects. One article [45] referred
to defects categorized as Dst and Dsf. Another article [44] referred to defects categorized as
Dst ∩ Drf. One article [39] referred to defects categorized as Drf.

Software 2022, 1 371

Table 1. Defect processes in previous studies.

Categories Text Referring the Defect Categories in the Previous Studies

Did ∩ Dst

To support decision making, discussants can also vote by rating any potential defect as true defect [44].
Collated defects: the number of defects merged from individual findings to be discussed during the meeting.
True defects: the number of defects for which consensus was reached during the meeting in considering them
as true defects [45].
We used the information from the repair form and interviews with the author to classify each issue as a true
defect (if the author was required to make an execution affecting change to resolve it) [46].

Did ∩ Dsf False positives are items reported by subjects as defects, when in fact no defect exists [47].

Did ∩ (Dst ∪ Dsf)
In addition to the instructions from the preparation phase, the instructions in the meeting phase were:
use the individual inspection record and decide which are faults and which are false positives [48].

Dst
True defects: the number of defects for which consensus was reached during the meeting in considering them
as true defects [45].

Dsf
Removed false positives: the number of defects for which consensus was reached during the meeting in
considering them as not true defects, thus as false positives [45].

Dst ∩ Drf

In the Discrimination stage, discussion takes place asynchronously as in a discussion forum. When a
consensus has been reached, the moderator can mark potential defects as false positives, thus removing them
from the list that will go to the author for rework (potential defects marked as false positives appear
strikethrough in Figure 4) [44].

Drf

False positives were issues that were identified in the meeting but that were discovered not to be defects either
during the meeting or after. The decision whether a defect was a false positive was done by the code review
team [39].

Table 2 summarizes the result of the literature review. Table 2 shows the definitions of
false-positive defects, percentages of false-positive defects, and definitions of true defects
for each article. We searched the percentage of false-positive defects because the percentage
of false-positive defects equals the maximum percentages of effective questions, which did
not apply to the review material when all of the effective questions were categorized into
false-positive defects.

We investigated the definitions of false-positive defects to survey the categories for
false-positive defects. Table 2 shows the definitions of true and false-positive defects. No
article categorized false-positive defects into incorrectly detected defects and concerns that
are not applicable to the review material. Eighteen articles described the definitions of both
true and false-positive defects. No article described effective questions. One article [44]
presented the format of a question list in a software review, but it did not refer to concerns
identified by the questions in the question list.

Table 2 shows that not only the definitions of false positives but also those of true
defects were inconsistent among the articles. Table 2 also shows the percentages of false-
positive defects to the sum of true and false-positive defects. The percentages varied from
20% to 80%. More than half of the articles did not indicate the percentages or refer to the
false-positive defects. Ten articles referred to categorizing detected defects into true and
false-positive defects but did not report the percentages of the false-positive defects. Eight
articles reported the percentages of detected false-positive defects.

The results of the literature review showed that no article referred to questions and
concerns that were categorized into true or false-positive defects. Additionally, no literature
categorized true defects into defects directly detected and shared by a reviewer or those
found by concerns identified by effective questions and subsequent discussions. Therefore,
we investigated whether the number of questions identifying concerns leads to an indicator
for effective reviews and helps a project manager identify an insufficient review.

Software 2022, 1 372

Table 2. Definitions and percentages of false-positive defects.

Article Definitions of False-Positive Defects Percentages of
False-Positive Defects Definitions of True Defects

[9]

False positives (issues raised as defects that
are not actual defects)
False positives, the number of invalid defects
recorded by the group

22% Defects, the total number of distinct, valid
defects detected by a group

[36] False positives (issues raised as defects that
are not actual defects) 22% Actual defects

[39]

False positives were issues that were
identified in the meeting but that were
discovered not to be defects either during the
meeting or after

22%
If the code review team finds an issue and
agrees that it is a deviation from quality,
the issue is counted as a defect

[42] False positives (no real usability problems) 43.10% Real usability problem

[43] False positives (reported defects that were
not considered to be actual defects) - Actual defects

[44]
False positives (non-true defects)
False positives (defects erroneously reported
as such by inspectors)

46% True defects

[45]
For which consensus was reached during the
meeting in considering them as not true
defects, thus as false positives

-
True defects: the number of defects for
which consensus was reached during the
meeting in considering them as true defects

[46] False positive (any issue which required
no action) 20%

True defect (if the author was required to
make an execution affecting change to
resolve it), soft maintenance issue (any
other issue which the author fixed)

[47] False positives are items reported by subjects
as defects, when in fact no defect exists - Defects

[49] A false positive is a description which is not
a true defect, i.e., does not require rework -

A true defect is a description of a positively
identified defect which requires rework; it
causes the program to fail, and violates the
given specifications and design

[50]

False positives (erroneously
identified defects)
False positives are the non-true
defects—defects that require no repair

42.62% True defects

[51] It classifies too many consistent designs as
inconsistent (false positives) - True positive

[52] False positive (FA)—defects that do not exist
but were wrongly identified - True defects (TR)—defects that actually

exist and have been successfully detected

[53] False defect estimations, known as
false positive - The number of true defect estimations,

known as true positive

[54]
False positive rate: the percentage of issues
reported by an inspector that turn out not to
represent real quality problems in the artifact

80%
Defect detection rate: the percentage of
known defects in a given software artifact
that are found during the inspection

[55] False positives (not identified
from preparation) - True defects

Net defects

[56] A false positive—an obviously wrong
statement of the document. - True defect

[57]
False positive—items pointed by the subjects
that do not correspond to a defect of the RD
RD: the Requirements Document

- Defects—items that really are defects of the RD
RD: the Requirements Document

Software 2022, 1 373

4. Case Study
4.1. Goal

This evaluation investigated whether the number of effective questions in reviews
predicts software quality. Specifically, the metric defect detection rate in testing (Q) was
used as the quality of the software, where Q = [number of defects detected in testing]/[lines
of source code]. The evaluation examined whether the number of effective questions
predicted the defect detection rate in testing Q by performing multiple regression analysis
because multiple parameters may affect Q. The independent variables of the multiple
regression analysis include the number of effective questions in the reviews. This evaluation
assumes that effective reviews decrease the number of defects detected in testing because
effective design and code reviews reduce defects overlooked in the reviews. Consequently,
defects detected in subsequent testing are reduced.

4.2. Projects

The data for the evaluation were collected from a Japanese software development
Company S. The standard software development process in Company S is based on the
waterfall model and follows the process areas Organizational Process Definition (OPD) and
Integrated Project Management (IPM) defined in CMMI-DEV V.1.3. The standard process
also defines software measurements and metrics. In each software development project in
Company S, the standard development processes require that detected defects and review
logs including review comments in reviews should be recorded in a defect list and that the
detected defects in testing should be recorded, too.

The standard software development process of Company S requires that each project
performs design and source code reviews. The reviews are performed in a synchronous
(face-to-face meeting) or asynchronous (adding detected defects to defect lists on a defect
tracking server) manner. The standard process of Company S also requires that each
reviewer complete review training and have detailed knowledge on the product domain to
participate in a review.

The evaluation used metrics collected in 25 projects of Company S. First, we selected
33 completed projects between April 2010 and March 2016 in Company S. Second, for each
of the 33 projects, we checked that the metrics did not have missing values for review
metrics, review logs, and defect metrics in testing. Eight projects were excluded due to
the missing values. Finally, we measured the number of effective questions categorized
as false-positive defects from the review logs of the remaining 25 projects. The reviewers
of the case study categorized the effective questions into true defects or false-positive
defects. If the reviewers categorized the effective questions into true defects, they were
recorded as true defects in the defect list. A quality assurance team in company S verified
the categorizations.

The 25 projects were for the development of embedded systems software, including
safety-critical systems software, specifically, communication control systems software,
engine control systems software, and browsing systems software. The development types
were new development from scratch, enhancement of the same product, and reuse from
another product. The number of project members varied from 3 to 20. The number of years
of software development experience of the project members varied from 1 to 25 years. The
lines of source code varied from 3000 to 1,100,000 lines written in C, C++, or Java.

4.3. Metrics and Procedure

Table 3 shows the metrics, excluding the number of effective questions categorized as
false-positive defects, collected for project management defined by the standard develop-
ment process. The product size (SZ) was used to assess the project progress management
defined in the standard software development process. In Table 3, SZ is equal to the lines
of code developed in the project without reusing code. In the development of enhanced
or evolved development projects reusing an existing code base, SZ is equal to the sum
of the lines of newly developed code (nLOC), lines of changed code from the code base

Software 2022, 1 374

(cLOC), and lines of reused code (rLOC) with a coefficient. The standard development
process determines the coefficient according to the project attributes, such as the product
domain and development types, to assess effort consumption to the product size in the
project management. The number of effective questions categorized as false-positive de-
fects (NOQf), not the number of effective questions, was measured because the effective
questions categorized as true defects and rNOD would be double-counted. The metric of
NOQf was measured from the review logs. The standard development process defines that
review logs should include questions, which affect the quality of the product because some
of the products in Company S are embedded in safety-critical systems. Consequently, the
review logs could be used as a part of accountability for safety, if needed.

Table 3. Measured metrics for project management.

Name Description

Lines of code

New (nLOC) Lines of code newly developed, excluding headers
and comments

Changed (cLOC) Lines of code changed from the code base or reused source
code, excluding headers and comments

Reused (rLOC) Lines of code reused from the code base or another product,
excluding headers and comments

Product size (SZ)

Product size for assessing development effort consumption in
the project management defined by the standard development
process. SZ = nLOC + cLOC + rLOC × coefficient (where the
coefficient is determined by the project attributes)

Number of defects and
questions in reviewed

True defects (rNOD) Sum of the number of defects detected in software architecture
design, software detailed design, and code reviews

Effective questions categorized as
false-positive defects (NOQf)

Sum of the number of effective questions subsequently
categorized as false-positive defects detected in software
architecture design, software detailed design, and code reviews

Number of defects detected in the test (tNOD) Sum of numbers of defects detected in the unit test, software
integration test, and software qualification test

Table 4 shows the derived metrics from the metrics shown in Table 3 for this evaluation.
The dependent variable was Q, which measured the software quality in the standard
software development process, because it was an indicator of the software quality in
Company S. The independent variables included the proportion of rLOC to the total lines
of code (p1), and proportion of the number of true defects detected in reviews (rNOD)
to SZ (p2). These independent variables were used in the project management and were
defined in the standard software development process. The denominator of p1 was nLOC
+ cLOC + rLOC. The standard software development process included metric p1 because
it was an indicator to estimate the productivity and had a higher correlation with the
number of detected defects in the past developments. The standard software development
process included metric p2 because it was used as an evaluation criterion to measure the
effectiveness of reviews. The remaining independent variables, proportion of NOQf to SZ
(p3), and the proportion of NOQf to the sum of rNOD and NOQf (p4) were measured. If
NOQf was large (large p3), true defects were likely to be overlooked in the reviews because
the discussions and concerns may have missed the point. If the proportion of NOQf to the
sum of rNOD and NOQf was large (large p4), true defects were likely to be overlooked. The
review time to detect the true defects was insufficient when the value of p4 was large and
the review time was a constraint. For metric p3, we normalized NOQf by SZ because they
largely depended on SZ as well as the independent variable p2. For metric p4, as described
in Section 3, we normalized NOQf by the sum of rNOD and NOQf because rNOD may
affect NOQf in the reviews. Specifically, the sum of rNOD and NOQf was likely to be
limited due to available time and effort for the reviews.

Software 2022, 1 375

Table 4. Derived metrics for the analysis.

Name Description

Q Proportion of the number of defects detected in testing to the product size tNOD/SZ
p1 Proportion of the reused lines of code to the lines of code rLOC/(nLOC + cLOC + rLOC)
p2 Proportion of the number of true defects to the product size rNOD/SZ

p3
Proportion of the number of effective questions categorized as
false-positive defects to the product size NOQf/SZ

p4

Proportion of the number of effective questions categorized as
false-positive defects to the sum of the number of defects and effective
questions categorized as false-positive defects

NOQf/(rNOD + NOQf)

In the multiple regression analysis, we selected significant independent variables
using the stepwise method. The evaluation investigated whether metrics of NOQf (p3 and
p4) predicted the metric of the number of detected defects in testing (Q).

4.4. Results

Table 5 shows the distribution of the measured metrics. Table 6 shows the distribution
of the dependent and independent variables. Table 7 shows the results of the multiple
regression analysis. Metrics p1, p3, and p4 contained significant coefficients. The variance in-
flation factor (VIF) values indicated that there was no multicollinearity among the variables.
The adjusted R2 of the model was 0.45 (p = 0.0013).

Table 5. Distribution of the measured metrics.

SZ rNOD NOQf tNOD

max 110,5000 1871 384 711
min 1330 32 0 3

median 144,390 589 99 171

Table 6. Distribution of the independent and dependent variables.

Q p1 p2 p3 p4

max 6.50 0.97 46.29 7.90 0.29
min 0.54 0.00 0.55 0.00 0.00

median 2.61 0.75 12.03 1.42 0.17

Table 7. Results of the multiple regression analysis.

Estimate (b) Std. Error t Value Pr (>|t|) VIF

p1 2.53 0.88 2.89 0.01 1.07
p3 0.42 0.15 2.91 0.01 1.38
p4 −9.68 3.69 −2.63 0.02 1.46

From the coefficients in Table 7, the model is expressed as

Q = 1.71 + 2.53p1 + 0.42p3 − 9.68p4

The metrics of NOQf (p3 and p4) affected Q. The proportion of NOQf to SZ (p3)
increased Q. The proportion of NOQf to the sum of rNOD and NOQf (p4) decreased Q.
Specifically, the metric p3 (ranging from 0.00 to 7.90) increased Q (ranging from 0.54 to 6.50).
The coefficient of p3 was 0.42 (p = 0.01). The metric p4 (ranging from 0.00 to 0.29) decreased
Q. The coefficient of p4 was −9.68 (p = 0.02).

Software 2022, 1 376

5. Discussion
5.1. RQ: Does the Number of Effective Questions in a Review Affect the Quality of
Subsequent Testing?

The results of the case study indicated that the answer to RQ is yes. In the case study,
p3 (the proportion of NOQf to SZ) positively affected Q (tNOD to SZ). We did not assume
that p4 (the proportion of NOQf to the sum of rNOD and NOQf) negatively affected Q
(the proportion of the number of defects detected in subsequent testing (tNOD) to SZ).
Hence, we investigated the review details. We found that the review materials contained
a small number of defects. Almost all defects were detected in the reviews. The number
of defects detected in subsequent testing was small. Furthermore, the reviewers took a
shorter time to detect almost all the defects, indicating that reviewers had enough time
to ask additional effective questions to ensure that they did not overlook the remaining
defects. In the discussion with the reviewers, they indicated that the potential true defects
were shared before they asked effective questions and discussed them in higher quality
projects. This suggests that sharing potential true defects has a higher priority than asking
the effective questions and subsequent discussions due to the limited time for reviews.
Facilitating effective questions and discussions after sharing potential true defects directly
detected by reviewers may improve the review effectiveness. Furthermore, the results may
imply that effective questions and discussions trigger the Phantom Inspector effect [58].

The case study suggests that NOQf and rNOD can be used as a metric to measure
the effectiveness (quality) of reviews because metrics p3 and p4 affected Q. The metric
can help a project manager (review leader) identify an insufficient review. This has two
benefits. First, it reveals that the project manager should plan additional reviews with
expert reviewers. Second, it highlights the need for more resources for subsequent testing.

5.2. Implications for Practitioners

The number of effective questions categorized as false-positive defects can be used
as a metric to measure the software quality required by process models. The reviewers
commented that the proposed metric can meet the requirements in process areas QPM.SP.1.4
in the CMMI and MAN.6.BP4 in the Automotive SPICE. The proposed method has a high
usability from two perspectives. First, it can be used in various types of reviews, including
code reviews with support tools. Second, it can objectively determine whether a question
is effective, and the number of effective questions categorized as false-positive defects can
be measured easily. Moreover, the proposed method is efficient even for cost-sensitive
software development because categorizing effective questions and measuring the number
of them can be performed in a short time.

In an iterative development process including agile development [59,60], the proposed
method can predict the product quality in each iteration. Although design reviews might
not be implicitly performed in some iterative development processes, the essence of the
proposed method can be applied for architectural and implementation discussions or
comments in code reviews.

5.3. Threats to Validity

In the case study, the criterion for distinguishing effective questions from other ques-
tions may be biased. However, the reviewers in the case study selected effective questions
based on whether or not the question identified a concern. Furthermore, after the reviewers
selected the effective questions, an assessor in the quality assurance department verified
that each effective question identified a concern.

In the case study, the variance of difficulties for projects may affect Q. However, the
standard development process should mitigate such variance. For projects with technical
challenges such as deploying novel technologies, prior development and verification were
conducted. For projects whose members did not have sufficient domain knowledge on
the product, additional developers and reviewers with sufficient domain knowledge were
invited to the reviews.

Software 2022, 1 377

Identifying effective questions is potentially difficult. However, in this case study, the
reviewers asked questions and categorized effective questions. Furthermore, identifying
effective questions has previously been reported. One study [15] showed that some of the
review comments could be categorized as questions, and about half of the approximately
470 questions helped reviewers detect defects.

6. Conclusions

This paper proposed a review metric measuring the number of effective questions,
which identifies concerns about potential defects. Effective questions and subsequent
discussions lead to defect detections if concerns identified by the effective questions and
discussions are applicable to review materials, whereas concerns that are not applicable
are discarded or recorded as false-positive defects. We performed a literature review to
investigate whether previous studies referred to such effective questions and concerns. The
results of the literature review showed that no article referred to questions and concerns that
were categorized into true or false-positive defects. Additionally, no literature categorized
true defects into defects directly detected and shared by a reviewer or those found by
concerns identified by effective questions and subsequent discussions.

We conducted a case study to investigate the effectiveness of the metric. The case
study measured the number of questions, which ensures that the authors and reviewers
do not overlook defects in terms of the concerns identified by the questions. The case
study evaluated the impact of the number of effective questions on the number of defects
in subsequent testing by multiple regression analysis. The independent variables were
the proportion of reused lines of code, proportion of true defects detected in reviews to
the product size, proportion of effective questions categorized as false-positive defects
in reviews to the product size, and proportion of effective questions categorized as false-
positive defects to the sum of true defects and effective questions categorized as false-
positive defects. The dependent variable was the proportion of the defects detected in
testing to the product size. The evaluation used metrics collected in 25 projects in a
company. As the proportion of the number of effective questions categorized as false-
positive defects to the sum of the number of true defects and effective questions categorized
as false-positive defects (ranging from 0.00 to 0.29) increased, the proportion of the number
of defects detected in testing to the product size decreased (ranging from 0.54 to 6.50)
(b = −9.68, p = 0.02). Additionally, as the proportion of the number of effective questions
categorized as false-positive defects to the product size (ranging from 0.00 to 7.90) slightly
increased, the proportion of the number of defects detected in testing to the product size
increased (b = 0.42, p = 0.01).

Future works include (semi-)automatic categorization. Sentiment analysis is widely
used in natural language processing research [61,62]. Recent studies have shown that senti-
ment analysis can categorize review comments from certain perspectives. For example, the
sentiment of a comment (i.e., whether or not a comment is formulated in a positive or nega-
tive tone) may relate to comment usefulness [10], a model algorithm founded to identify
review comments expressing negative sentiments [63], and the emotionality of the comment
reflecting conventional metrics such as typing duration and typing speed [64]. Applying
these studies to review comments may categorize effective questions that identify concerns.

Author Contributions: Conceptualization, M.W. and S.M.; Data curation, M.W.; Case study analysis,
M.W.; Methodology, M.W. and S.M.; Supervision, S.M.; Visualization, M.W.; Writing—original draft,
M.W.; Writing—review & editing, M.W. and S.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Software 2022, 1 378

References
1. Fagan, M.E. Design and code inspections to reduce errors in program development. IBM Syst. J. 1976, 15, 182–211. [CrossRef]
2. IEEE Std 1028-2008; IEEE Standard for Software Reviews and Audits. Institute of Electrical and Electronics Engineers: Piscataway,

NJ, USA, 2008; pp. 1–53. [CrossRef]
3. Boehm, B.; Basili, V.R. Top 10 list [software development]. IEEE Comput. 2001, 34, 135–137. [CrossRef]
4. De Souza, B.P.; Motta, R.C.; Costa, D.D.O.; Travassos, G.H. An IoT-based scenario description inspection technique. In Proceedings

of the XVIII Brazilian Symposium on Software Quality, Fortaleza, Brazil, 28 October–1 November 2019; pp. 20–29.
5. Tian, J. Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement; John Wiley & Sons: Hoboken, NJ,

USA, 2005.
6. Parnas, D.L.; Lawford, M. The role of inspection in software quality assurance. IEEE Trans. Softw. Eng. 2003, 29, 674–676.

[CrossRef]
7. Olalekan, A.S.; Osofisan, A. Empirical study of factors affecting the effectiveness of software inspection: A preliminary report.

Eur. J. Sci. Res. 2008, 19, 614–627.
8. Suma, V.; Nair, T.R.G. Four-step approach model of inspection (FAMI) for effective defect management in software development.

InterJRI Sci. Technol. 2012, 3, 29–41. [CrossRef]
9. Porter, A.A.; Johnson, P.M. Assessing software review meetings: Results of a comparative analysis of two experimental studies.

IEEE Trans. Softw. Eng. 1997, 23, 129–145. [CrossRef]
10. Bosu, A.; Greiler, M.; Bird, C. Characteristics of useful code reviews: An empirical study at Microsoft. In Proceedings of the

IEEE/ACM 12th Working Conference on Mining Software Repositories, Florence, Italy, 16–17 May 2015; pp. 146–156.
11. Ebert, F.; Castor, F.; Novielli, N.; Serebrenik, A. Communicative intention in code review questions. In Proceedings of the IEEE

International Conference on Software Maintenance and Evolution (ICSME), Madrid, Spain, 23–29 September 2018; pp. 519–523.
12. Huet, G.; Culley, S.J.; McMahon, C.A.; Fortin, C. Making sense of engineering design review activities. Artif. Intell. Eng. Des. Anal.

Manuf. 2007, 21, 243–266. [CrossRef]
13. Robillard, P.N.; d’Astous, P.; Détienne, F.; Visser, W. An empirical method based on protocol analysis to analyze technical review

meetings. In Proceedings of the Conference of the Centre for Advanced Studies on Collaborative Research, Toronto, ON, Canada,
30 November–3 December 1998; pp. 1–12.

14. d’Astous, P.; Detienne, F.; Visser, W.; Robillard, P. On the use of functional and interactional approaches for the analysis of
technical review meetings. In Proceedings of the 12th Annual Workshop of the Psychology of Programming Interest Group,
Cosenza, Italy, 10–13 April 2000; pp. 155–170.

15. Hasan, M.; Iqbal, A.; Islam, M.R.U.; Rahman, A.J.M.I.; Bosu, A. Using a balanced scorecard to identify opportunities to improve
code review effectiveness: An industrial experience report. Empir. Softw. Eng. 2021, 26, 129–163. [CrossRef]

16. Runeson, P.; Wohlin, C. An experimental evaluation of an experience-based capture-recapture method in software code inspections.
Empir. Softw. Eng. 1998, 3, 381–406. [CrossRef]

17. Briand, L.C.; El Emam, K.; Frelmut, B.; Laitenberger, O. Quantitative evaluation of capture-recapture models to control software
inspections. In Proceedings of the Eighth International Symposium on Software Reliability Engineering, Albuquerque, NM, USA,
2–5 November 1997; pp. 234–244.

18. Taba, N.H.; Ow, S.H. A web-based model for inspection inconsistencies resolution: A new approach with two case studies. Malays.
J. Comput. Sci. 2019, 32, 1–17. [CrossRef]

19. Rahman, M.M.; Roy, C.K.; Kula, R.G. Predicting usefulness of code review comments using textual features and developer
experience. In Proceedings of the IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), Buenos
Aires, Argentina, 20–21 May 2017; pp. 215–226.

20. Wakimoto, M.; Morisaki, S. Goal-oriented software design reviews. IEEE Access 2022, 10, 32584–32594. [CrossRef]
21. Basili, V.R.; Green, S.; Laitenberger, O.; Lanubile, F.; Shull, F.; Sørumgård, S.; Zelkowitz, M.V. The empirical investigation of

perspective-based reading. Empir. Softw. Eng. 1996, 1, 133–164. [CrossRef]
22. Ciolkowski, M.; Laitenberger, O.; Biffl, S. Software reviews, the state of the practice. IEEE Softw. 2003, 20, 46–51. [CrossRef]
23. Porter, A.; Votta, L. Comparing detection methods for software requirements inspections: A replication using professional

subjects. Empir. Softw. Eng. 1998, 3, 355–379. [CrossRef]
24. Porter, A.A.; Votta, L.G.; Basili, V.R. Comparing detection methods for software requirements inspections: A replicated experiment.

IEEE Trans. Softw. Eng. 1995, 21, 563–575. [CrossRef]
25. Shull, F.; Rus, I.; Basili, V. How perspective-based reading can improve requirements inspections. IEEE Comput. 2000, 33, 73–79.

[CrossRef]
26. Thelin, T.; Runeson, P.; Regnell, B. Usage-based reading—An experiment to guide reviewers with use cases. Inf. Softw. Technol.

2001, 43, 925–938. [CrossRef]
27. Thelin, T.; Runeson, P.; Wohlin, C. An experimental comparison of usage-based and checklist-based reading. IEEE Trans. Softw.

Eng. 2003, 29, 687–704. [CrossRef]
28. Ebad, S.A. Inspection reading techniques applied to software artifacts—A systematic review. Comput. Syst. Sci. Eng. 2017, 32,

213–226.
29. De Souza, B.P.; Motta, R.C.; Travassos, G.H. The first version of SCENARIotCHECK. In Proceedings of the XXXIII Brazilian

Symposium on Software Engineering, Salvador, Brazil, 23–27 September 2019.

http://doi.org/10.1147/sj.153.0182
http://doi.org/10.1109/IEEESTD.2008.4601584
http://doi.org/10.1109/2.962984
http://doi.org/10.1109/TSE.2003.1223642
http://doi.org/10.48550/arXiv.1209.6466
http://doi.org/10.1109/32.585501
http://doi.org/10.1017/S0890060407000261
http://doi.org/10.1007/s10664-021-10038-w
http://doi.org/10.1023/A:1009728205264
http://doi.org/10.22452/mjcs.vol32no1.1
http://doi.org/10.1109/ACCESS.2022.3161545
http://doi.org/10.1007/BF00368702
http://doi.org/10.1109/MS.2003.1241366
http://doi.org/10.1023/A:1009776104355
http://doi.org/10.1109/32.391380
http://doi.org/10.1109/2.869376
http://doi.org/10.1016/S0950-5849(01)00201-4
http://doi.org/10.1109/TSE.2003.1223644

Software 2022, 1 379

30. Travassos, G.; Shull, F.; Fredericks, M.; Basili, V.R. Detecting defects in object-oriented designs: Using reading techniques to
increase software quality. ACM SIGPLAN Not. 1999, 34, 47–56. [CrossRef]

31. Laitenberger, O. Cost-effective detection of software defects through perspective-based Inspections. Empir. Softw. Eng. 2001,
6, 81–84. [CrossRef]

32. Shull, F. Developing Techniques for Using Software Documents: A Series of Empirical Studies. Ph.D. Thesis, University of
Maryland, College Park, MD, USA, 1998.

33. Votta, L.G. Does every inspection need a meeting? ACM SIGSOFT Softw. Eng. Notes 1993, 18, 107–114. [CrossRef]
34. Murphy, P.; Miller, J. A process for asynchronous software inspection. In Proceedings of the Eighth IEEE International Workshop

on Software Technology and Engineering Practice incorporating Computer Aided Software Engineering, London, UK, 14–18 July
1997; pp. 96–104.

35. Laitenberger, O.; DeBaud, J.-M. An encompassing life cycle centric survey of software inspection. J. Syst. Softw. 2000, 50, 5–31.
[CrossRef]

36. Johnson, P.M.; Tjahjono, D. Does every inspection really need a meeting? Empir. Softw. Eng. 1998, 3, 9–35. [CrossRef]
37. Yu, Y.; Wang, H.; Yin, G.; Wang, T. Reviewer recommendation for pull-requests in GitHub: What can we learn from code review

and bug assignment? Inf. Softw. Technol. 2016, 74, 204–218. [CrossRef]
38. Thongtanunam, P.; Hassan, A.E. Review dynamics and their impact on software quality. IEEE Trans. Softw. Eng. 2020, 2698–2712.

[CrossRef]
39. Mantyla, M.V.; Lassenius, C. What types of defects are really discovered in code reviews? IEEE Trans. Softw. Eng. 2009, 35,

430–448. [CrossRef]
40. Chillarege, R.; Bhandari, I.S.; Chaar, J.K.; Halliday, M.J.; Moebus, D.S.; Ray, B.K.; Wong, M.-Y. Orthogonal defect classification-a

concept for in-process measurements. IEEE Trans. Softw. Eng. 1992, 18, 943–956. [CrossRef]
41. IBM. Orthogonal Defect Classification v 5.2 for Software Design and Code; IBM: Armonk, NY, USA, 2013.
42. Fernandez, A.; Abrahao, S.; Insfran, E. Empirical validation of a usability inspection method for model-driven Web development.

J. Syst. Softw. 2013, 86, 161–186. [CrossRef]
43. Regnell, B.; Runeson, P.; Thelin, T. Are the perspectives really different?—Further experimentation on scenario-based reading of

requirements. Empir. Softw. Eng. 2000, 5, 331–356. [CrossRef]
44. Lanubile, F.; Mallardo, T. An empirical study of Web-based inspection meetings. In Proceedings of the International Symposium

on Empirical Software Engineering, Rome, Italy, 30 September–1 October 2003; pp. 244–251.
45. Calefato, F.; Lanubile, F.; Mallardo, T. A controlled experiment on the effects of synchronicity in remote inspection meetings. In

Proceedings of the First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007), Madrid,
Spain, 20–21 September 2007; pp. 473–475.

46. Porter, A.; Siy, H.; Mockus, A.; Votta, L. Understanding the sources of variation in software inspections. ACM Trans. Softw. Eng.
Methodol. 1998, 7, 41–79. [CrossRef]

47. Macdonald, F.; Miller, J. A comparison of tool-based and paper-based software inspection. Empir. Softw. Eng. 1998, 3, 233–253.
[CrossRef]

48. Thelin, T.; Runeson, P.; Wohlin, C.; Olsson, T.; Andersson, C. Evaluation of usage-based reading—Conclusions after three
experiments. Empir. Softw. Eng. 2004, 9, 77–110. [CrossRef]

49. Land, L.P.W.; Tan, B.; Bin, L. Investigating training effects on software reviews: A controlled experiment. In Proceedings of the
International Symposium on Empirical Software Engineering, Noosa Heads, Australia, 17–18 November 2005; pp. 356–366.

50. Sabaliauskaite, G.; Kusumoto, S.; Inoue, K. Assessing defect detection performance of interacting teams in object-oriented design
inspection. Inf. Softw. Technol. 2004, 46, 875–886. [CrossRef]

51. Briand, L.; Falessi, D.; Nejati, S.; Sabetzadeh, M.; Yue, T. Traceability and SysML design slices to support safety inspections. ACM
Trans. Softw. Eng. Methodol. 2014, 23, 9. [CrossRef]

52. Wong, Y.; Wilson, D. An empirical investigation of the important relationship between software review meetings process and
outcomes. In Proceedings of the IASTED International Conference on Software Engineering, Innsbruck, Austria, 17–19 February
2004; pp. 422–427.

53. Soltanifar, B.; Erdem, A.; Bener, A. Predicting defectiveness of software patches. In Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, Ciudad Real, Spain, 8–9 September 2016;
pp. 1–10.

54. Carver, J.; Shull, F.; Basili, V. Can observational techniques help novices overcome the software inspection learning curve? An
empirical investigation. Empir. Softw. Eng. 2006, 11, 523–539. [CrossRef]

55. Land, L.P.W. Software group reviews and the impact of procedural roles on defect detection performance. Empir. Softw. Eng. 2002,
7, 77–79. [CrossRef]

56. Sandahl, K.; Blomkvist, O.; Karlsson, J.; Krysander, C.; Lindvall, M.; Ohlsson, N. An extended replication of an experiment for
assessing methods for software requirements inspections. Empir. Softw. Eng. 1998, 3, 327–354. [CrossRef]

57. Albayrak, Ö.; Carver, J.C. Investigation of individual factors impacting the effectiveness of requirements inspections: A replicated
experiment. Empir. Softw. Eng. 2014, 19, 241–266. [CrossRef]

58. Fagan, M.E. Advances in software inspections. IEEE Trans. Softw. Eng. 1986, 744–751. [CrossRef]
59. Highsmith, J.; Cockburn, A. Agile software development: The business of innovation. Computer 2001, 34, 120–127. [CrossRef]

http://doi.org/10.1145/320385.320389
http://doi.org/10.1023/A:1009805707387
http://doi.org/10.1145/167049.167070
http://doi.org/10.1016/S0164-1212(99)00073-4
http://doi.org/10.1023/A:1009787822215
http://doi.org/10.1016/j.infsof.2016.01.004
http://doi.org/10.1109/TSE.2020.2964660
http://doi.org/10.1109/TSE.2008.71
http://doi.org/10.1109/32.177364
http://doi.org/10.1016/j.jss.2012.07.043
http://doi.org/10.1023/A:1009848320066
http://doi.org/10.1145/268411.268421
http://doi.org/10.1023/A:1009747104814
http://doi.org/10.1023/B:EMSE.0000013515.86806.d4
http://doi.org/10.1016/j.infsof.2004.03.004
http://doi.org/10.1145/2559978
http://doi.org/10.1007/s10664-006-9021-5
http://doi.org/10.1023/A:1014875111008
http://doi.org/10.1023/A:1009724120285
http://doi.org/10.1007/s10664-012-9221-0
http://doi.org/10.1109/TSE.1986.6312976
http://doi.org/10.1109/2.947100

Software 2022, 1 380

60. Abrahamsson, P.; Warsta, J.; Siponen, M.T.; Ronkainen, J. New directions on agile methods: A comparative analysis. In
Proceedings of the 25th International Conference on Software Engineering, Portland, OR, USA, 3–10 May 2003.

61. Agarwal, A.; Xie, B.; Vovsha, I.; Rambow, O.; Passonneau, R.J. Sentiment analysis of Twitter data. In Proceedings of the Workshop
on Language in Social Media (LSM 2011), Portland, OR, USA, 23 June 2011; pp. 30–38.

62. Feldman, R. Techniques and applications for sentiment analysis. Commun. ACM 2013, 56, 82–89. [CrossRef]
63. Ahmed, T.; Bosu, A.; Iqbal, A.; Rahimi, S. SentiCR: A customized sentiment analysis tool for code review interactions. In

Proceedings of the ASE 2017 32nd IEEE/ACM International Conference on Automated Software Engineering, Urbana, IL, USA,
30 October–3 November 2017; pp. 106–111.

64. Vrzakova, H.; Begel, A.; Mehtätalo, L.; Bednarik, R. Affect recognition in code review: An in-situ biometric study of reviewer’s
affect. J. Syst. Softw. 2020, 159, 110434. [CrossRef]

http://doi.org/10.1145/2436256.2436274
http://doi.org/10.1016/j.jss.2019.110434

	Introduction
	Software Reviews
	Effective Questions in Reviews
	Definition
	Defect Category and Effective Questions in Review Process
	Literature Review

	Case Study
	Goal
	Projects
	Metrics and Procedure
	Results

	Discussion
	RQ: Does the Number of Effective Questions in a Review Affect the Quality of Subsequent Testing?
	Implications for Practitioners
	Threats to Validity

	Conclusions
	References

