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Abstract: This paper examines the integration of climate risks into structural credit risk models. We
focus on applications in housing finance and argue that mortgage defaults due to climate disasters
have different statistical features than default due to household-specific reasons. We propose two
models incorporating climate risk based on two separate default definitions. The first focuses on
default as a response to a decrease in home value, and the second defines default as a consequence
of missed mortgage payments. Using mortgage performance data during Hurricane Harvey, we
conduct an empirical study whose results suggest that climate events are potentially another source of
undiversifiable credit risk affecting homeowners’ ability to make contractual monthly payments. We
also show that incorporating this climate-specific default process may capture additional uncertainty
in default probability assessments.
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1. Introduction

With an increasing number of catastrophic events, climate change is becoming
impossible to ignore and impacts every economic dimension [1]. This work proposes
a systematic approach for incorporating climate risk into credit risk models, and tests
these models to conclude whether devastating climate events are a separate source of
undiversifiable risk (i.e., cannot be hedged against) using publicly available U.S.
conventional mortgage performance data.

Climate risk is defined as financial risk posed by impacts of climate change and how
we adapt to these impacts. The former is known as physical risk, referring to the direct
damage to infrastructure posed by climate events, and can be further broken down into
chronic and acute physical risk. Chronic physical risks are climate changes that occur
over a longer period of time, such as rising temperatures and sea levels. Acute physical
risk typically refers to sudden and unexpected natural disasters such as hurricanes and
wildfires. The latter is known as transition risk, typically referring to business-related
risks that follow societal and economic shifts toward a low-carbon and more climate-
friendly future, including policy and regulatory risks, technological risks, market risks,
reputational risks, and legal risks. Climate risk also affects a borrower’s repayment ability,
i.e., credit risk.

The U.S. housing market faces many of the same climate risks posed in other industries [2].
Physical risk is the most difficult to ignore, with visible effects on housing property along
coastlines, as well as from other extreme climate events such as wildfires. The housing
market is also unique in that overall risk is distributed and affects many investors. In the
U.S. housing market, about 70% of mortgages are “conventional”, i.e., meet underwriting
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standards such that they can be pooled and securitized into Mortgage-Backed Securities
(MBS). Therefore, mortgage default directly affects returns on MBS. Mortgage default risk
is shouldered by homeowners, lenders, servicers, and Government-Sponsored Enterprises
(GSEs), and can be mitigated through guarantee fees, loan loss reserves, and risk-based
pricing [2]. If a default occurs, GSEs are required to cover losses in securitized pools;
they will try to recover through collateral, but physical damage to the property and
neighborhood will limit such recoveries. This is especially true if many properties are
affected at once (as is usually the case with a natural disaster). Guarantee fees help
mitigate climate-related default risk; however, it is difficult to adjust these fees, as insurance
requirements quickly become outdated, with affected areas rapidly evolving [3]. Effective
loan loss reserves are dependent on successfully forecasting expected future losses due to
climate and agreeing on methodologies across regulators, accounting firms, and financial
institutions. Risk-based pricing approaches might be the most promising, but currently
these do not incorporate climate events. Credit risk models determine an individual
borrower’s likelihood of making mortgage payments and are used in underwriting
procedures. The characteristics used by lenders to evaluate credit risk aim to include
equity-related factors that predict the probability of a default, including variables such
as loan-to-value ratio, expected home value appreciation, the age of the loan, and the
interest rate [4]. Climate events are very difficult to accurately price into these models since
insurance companies rely on the calibration on historic climate events, along with scenario
projections.

Furthermore, natural disasters can affect both property values (housing price risk) and
mortgage payments made (climate credit risk). The latter has a much better documented
relationship with default, with income losses or inability to restore a home due to property
and infrastructure damage, or not having adequate insurance [5]; however, the former
cannot be ignored in the context of climate events. Therefore, the goal of this study is
to investigate climate impacts on credit risk defined in terms of property values (wealth)
and mortgage payments (cashflows), and how the default process changes across these
formulations.

Most work on integrating climate risk focuses on macroeconomic impacts, mainly
through scenario studies and simulations [2,6]. One particular challenge is estimating
damages and discerning between climate and non-climate events, as well as calibrating
the impact size without any historical data. Uncertainty tends to be highly fat-tailed for
aggregate welfare impacts of climate change [7]. Furthermore, the private sector has been
leading the initiative to incorporate climate risk into credit risk assessments to evaluate
individual borrowers and mitigate losses [8]. However, these approaches tend to be sector-
specific and proprietary, with no way to capture risk transfer strategies. As of now, financial
markets do not systematically and transparently incorporate climate credit risk [8].

Transition and physical risks both impact physical infrastructure, and the US Housing
Market is particularly vulnerable to the latter. Refs. [5,9] show that Hurricane Sandy and
Hurricane Harvey have been linked to increased borrower delinquency. Refs. [10,11] show
that borrowers might not have a full understanding of flood risk. Insurance programs tend
to be highly strained and natural disaster scores are sorely outdated, all suggesting that
government-supported disaster recovery is not sustainable into the future [2,12]. Practically,
default on a mortgage is defined as three missed monthly payments. However, the effect
of decreasing home values on the default rate has been studied as well. Ref. [13] finds
that negative home equity has a stronger relationship with default in households that
are more borrowing-constrained. Climate risk has a well-documented impact on home
values. Refs. [14,15] find that extreme climate events such as Hurricane Sandy lead to
persistent negative equity impacts on homes damaged by these events. Ref. [16] finds
that smaller climate events still depress home values, but these negative impacts do not
persist. There is a consensus that climate risk is not accurately priced into insurance
premiums. Furthermore, there has been previous work [17] showing that climate events
lead to a change in securitization dynamics in the housing market, where lenders are more
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likely to securitize mortgages in the aftermath of a natural disaster, thereby transferring
credit risk. Recently, [18,19] found that costs of climate change might be mis-priced in the
U.S. mortgage market and several publications investigated how climate risk is priced
into various U.S. equities—[20–23] all concluded that climate-related risk might not be
effectively priced into U.S. stocks.

In this work, we focus on climate events’ impacts on house prices and repayment
ability separately. To build our credit risk models, we look to a rich body of work on credit
risk modeling. Standard credit risk models typically fall under structural or reduced form
formulations [24]. For the purposes of this paper, structural models are preferable as they
capture economic mechanisms for default. Merton [25] assumed idiosyncratic jumps in
individual prices, and assumed that ‘jump risk’ was diversifiable via premiums. Others
have extended Merton’s work with different distributional assumptions [26–28]; however,
we find that Merton’s framework is sufficient given our data and can be used with any
sector, loan type, and climate risk definition.

In this work, we separate out the “loan” (cashflows) and the “valu” (housing value)
aspects, as climate events have a relationship with both in an undetermined way. Specifically,
we consider two simple continuous-time quantitative models that were first introduced
recently in [29]. The first model focuses on default as a response to a decrease in home
value, and is essentially the same as the standard Merton structural credit risk model [25];
we just add a second jump process to the dynamics followed by the home value with
the aim of capturing shocks due to climate disasters, and differentiate them from jumps
that are due to other causes. The second model aims at describing directly the random
evolution of the mortgage unpaid balance rather than the home value and defines default
as a consequence of three missed mortgage payments. The stochastic terms in this model
are also two jump processes, the role of the latter being to encapsulate the impact of climate
events. Following [30], we leverage the characteristic exponent to compute the probability
of default of our proposed model for home prices by calculating the first four moments,
whereas we directly compute these moments for cashflow models. Next, we link our
models to mortgage performance data during Hurricane Harvey and conduct an empirical
study and hypothesis testing to study their plausibility. The results show that incorporating
the climate-specific jump process may capture additional uncertainty in default probability
forecasts, and suggest that climate events are potentially another source of undiversifiable
credit risk affecting homeowners’ ability to make contractual monthly payments.

The rest of the article is organized as follows. Section 2 covers model formulations,
mortgage data and methodology. Section 2.1 is dedicated to credit risk models for housing
values, Section 2.2 to credit risk models for mortgage repayments, and Section 2.3 describes
the data and methodology of the empirical study. Then Section 3 presents the results.
Finally, Section 4 discusses the findings and limitations of the study and concludes.

2. Materials and Methods

In this section, we propose simple mathematical models, and describe the mortgage
data and the methodology of the empirical study. First of all, we present two groups of
mortgage default models based on different definitions of a default event, the former based
on home values in Section 2.1, and the latter based on cashflows in Section 2.2. Next,
Section 2.3 contains the description of the mortgage data and the methodology.

2.1. Climate Effect on Housing Wealth

We use the Merton jump diffusion model [25] to describe movements in house prices
in Section 2.1.1; the drift and diffusion components capture, respectively, the deterministic
trend of an asset’s price process and the noise around that trend, while the jump component
captures unexpected movements. In the case of mortgages, these jumps in home prices can
occur due to new constructions in the area, sudden changes in crime rate or tax rate, as well
as climate events. To separate out the latter, in Section 2.1.2, we extend the Merton Jump
Diffusion model to include an additional jump process. We use a separate jump process
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because natural disasters tend to be a sudden shock that affects many households at once,
a different dynamic to other more typical events affecting default, such as job loss. In the
following two sections, we describe the house price and default processes, and derive the
default probability as well as the first four standardized moments for these two model
specifications.

2.1.1. Jump Diffusion Model

We start with the credit risk model [31], which is used as a building block in many
structural credit risk models. Denoting by (Ω,F ,P) the probability space and by V(t), the
home value, at time t ∈ [0, T], where T > 0 is a given time horizon, we suppose that the
evolution of V is modeled as a Geometric Brownian Motion with constant coefficients, i.e.,

dV(t)
V(t)

= µdt + σdW(t), (1)

where W(t) is a Wiener process under P, the drift rate µ is constant, and the constant σ > 0
denotes the volatility coefficient.

The home value V(t) can be written in closed form as

ln V(t) = ln V(0) + (µ− 1
2

σ2)t + σW(t).

We assume that default occurs when the log-returns on housing value V(t) falls below
a predetermined threshold Θ, i.e., when there exists a time t ∈ [0, T], such that

D(t) = ln
V(t)
V(0)

= (µ− 1
2

σ2)t + σW(t) < Θ. (2)

Furthermore, the default process is normally distributed, i.e., D(t) ∼ N((µ− 1
2 σ2)t, σ2t).

The probability of default, which describes the likelihood that a borrower will fail to pay
back a debt at given time t, is written analytically as

P(D(t)) < Θ) = Φ(
Θ− (µ− 1

2 σ2)t
σ
√

t
), (3)

where Φ denotes the standard normal cumulative distribution function. Since the distribution
of the default process is normal, its skewness and excess kurtosis are both 0.

Next, we add a Compound Poisson process to the above model in order to capture
abrupt price changes, and encode them in the credit risk model as undiversifiable risk,
i.e., price changes due to climate events cannot be hedged against and must be covered
via insurance premiums. And so we extend the model to the jump-diffusion approach as
described in [25]:

dV(t)
V(t)

= (µ− λν)dt + σdW(t) + dY(t), (4)

where Y is a compound Poisson process, i.e.,

Y(t) =
N(t)

∑
i=1

Πi,

where N denotes the Poisson process with rate λ > 0, and Πi denotes the random size
of the Compound Poisson process’s ith jump. We also assume that the jump sizes (Πi)i
are independent and identically distributed with common mean ν = E[Πi], and that Πi is
independent of N(t), for every positive integer i, and every t ∈ (0, T].

We specify further the distribution of the jump sizes, by setting
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ln (Πi + 1) ∼ N(µΠ, σ2
Π).

Note that the parameters must satisfy the relation E(Πi) = ν = eµΠ+
σ2

Π
2 − 1.

In the above model, the compound Poisson process does not distinguish whether
jumps are due to non-climate or climate events. Writing the home log price as

ln V(t) = ln V(0) + (µ− λν− 1
2

σ2)t + σW(t) +
N(t)

∑
i=1

ln (Πi + 1),

we define the default process D(t) = ln V(t)
V(0) , and write it in closed form as

D(t) = (µ− λν− 1
2

σ2)t + σW(t) +
N(t)

∑
i=1

ln (Πi + 1). (5)

D(t) is non-normal due to the included jump process. Since ln (Πi + 1) ∼ N(µΠ, σΠ),
conditioning on N(t) = i jumps, it follows that

D(t)|N(t) = i ∼ N((µ− σ2

2
− λν)t + iµΠ, σ2t + iσ2

Π).

The probability of default in a jump diffusion process can be written as the following
converging series:

P(D(t) < Θ) = ∑∞
i=0

exp(−λt)(λt)i

i! ·Φ(
Θ−(µ− σ2

2 −λν)t−iµΠ√
σ2t+iσ2

Π
). (6)

The characteristic exponent of the process D(t) is given in [30].

ψ(ω) = iω(µ− σ2

2
− λν)− σ2ω2

2
+ λeiωµΠ−

σ2
Πω2

2 − 1.

It leads to the first four moments for the Merton Jump Diffusion Model for home
values

m1(t) = E(D(t)) = κ1, m2(t) = Var(D(t)) = κ2,

m3(t) = Skewness(D(t)) =
κ3

κ3/2
2

, m4(t) = Kurtosis(D(t)) =
κ4

κ2
2

,

where

κ1 = t(µ− σ2

2
− λν + λµΠ),

κ2 = t(σ2 + λ(σ2
Π + µ2

Π)),

κ3 = tλ(3µΠσ2
Π + µ3

Π),

κ4 = tλ(3σ4
Π + 6µ2

Πσ2
Π + µ4

Π).

In contrast to the first model, the distribution of the default process at time t is skewed
and exhibits excess kurtosis.

2.1.2. Climate Risk in Jump Diffusion Model

In an attempt to separate climate-related defaults from defaults that are due to other
causes, we incorporate a second compound Poisson process in the home value process.
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After a natural disaster, home prices might fall in a given community at the same time,
giving rise to a different jump process than the one already included. Integrating climate
disaster-related jumps into (5) leads to a third model for the home value V(t), at time t.

dV(t)
V(t)

= (µ− λν− αυ)dt + σdW(t) + dY(t) + dC(t), (7)

where µ, σ, λ, ν, Y, and W have been defined earlier, and C is the compound Poisson process

C(t) =
M(t)

∑
j=1

Γj,

where M denotes a Poisson process with rate α > 0 which is defined on the same probability
space as N relative to the same filtration and is independent of N, and Γj denotes the size
of the compound Poisson process’s jth jump.

Furthermore, we assume that the variables Γj are independent and identically distributed,
with common mean E[Γj] = υ, and that Γj is independent of N(t), M(t) and of Πi, for all
t ∈ (0, T] and all positive integers i, j. In the above model, C(t) is meant to capture
climate-related jumps in home value whereas Y(t) should capture non-climate-related
jumps. Furthermore, we also assume to simplify that Γj is log-normally distributed with
ln (Γj + 1) ∼ N(µΓ, σ2

Γ), and as for the other compound Poisson process, we have the
relation

υ = E(Γj) = eµΓ+
σ2

Γ
2 − 1.

The third model leads to the default process

D(t) = (µ− λν− αυ− 1
2

σ2)t + σW(t) +
N(t)

∑
i=1

ln (Πi + 1) +
M(t)

∑
j=1

ln (Γj + 1). (8)

Again, since ln (Πi + 1) ∼ N(µΠ, σΠ) and ln (Γj + 1) ∼ N(µΓ, σΓ), it follows that
D(t)|N(t) = i, M(t) = j ∼ N((µ − 1

2 σ2 − λν − αυ)t + iµΠ + jµΓ, σ2t + iσ2
Π + jσ2

Γ). The
probability of default is then given by

P(D(t) < Θ) =
∞

∑
i=0

∞

∑
j=0

(
exp(−λt)(λt)i

i!

)(
exp(−αt)(αt)j

j!

)
(9)

·Φ

Θ− (µ− σ2

2 − λν− αυ)t− iµΠ − jµΓ√
σ2t + iσ2

Π + jσ2
Γ

. (10)

The characteristic exponent of D(t) is (see [30])

ψ(ω) = iω(µ− λν− αυ− 1
2

σ2)− σ2ω2

2
+

(λ + α)(
λ

λ + α
eiµΠω− σ2

Πω2

2 +
α

λ + α
eiµΓω− σ2

Γω2

2 − 1).

The first four moments of the default process D(t) in the third model are given by

m1(t) = E(D(t)) = κ1, m2(t) = Var(D(t)) = κ2,

m3(t) = Skewness(D(t)) =
κ3

κ3/2
2

, m4(t) = Kurtosis(D(t)) =
κ4

κ2
2

,
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where

κ1 = t(µ− 1
2

σ2 − λν− αυ + λµΠ + αµΓ),

κ2 = t(σ2 + λ(µ2
Π + σ2

Π) + α(µ2
Γ + σ2

Γ)),

κ3 = t(λ(µ3
Π + 3µΠσ2

Π) + α(µ3
Γ + 3µΓσ2

Γ)),

κ4 = t(λ(µ4
Π + 6µ2

Πσ2
Π + 3σ4

Π) + α(µ4
Γ + 6µ2

Γσ2
Γ + 3σ4

Γ)).

2.2. Climate Risk Effect on Cashflows

While the previous section focuses on default with respect to a decrease in underlying
asset value, this section proposes a credit risk model based on repayments on a underlying
asset; this default definition is particularly important as it follows the definition used by
lenders to determine when to initiate the foreclosure process.

2.2.1. Secured Loan Model with Sudden and Unexpected Events

We consider a home mortgage with term T > 0 and we denote by Ld(t) the mortgage
outstanding balance at time t. As in [32], if we ignore the risk of default, we can define
Ld(t) in continuous time as

Ld(t) = L(0)
1− e−r(T−t)

1− e−rT , (11)

where L(0) is the amount owed at initiation, also known as the loan’s principal, and r is the
monthly interest rate obtained by dividing the annualized rate by 12. Denoting by p the
constant monthly payment amount, we have the relation

p =
rL(0)

(1− e−rT)
.

We begin by deriving the Ordinary Differential Equation for (11), yielding

dLd(t) = rLd(t)dt− rL(0)
1− e−rT dt.

In the above equation, the first term represents the continuously compounded interest,
whereas the second term captures the continuous flow of constant mortgage payments.
Furthermore, we incorporate here the risk of default by adding an arithmetic compound
Poisson process Q to the dynamics of the process Ld(t). Similar to the reasoning in the
house price model, default typically tends to be driven by household-level factors (e.g.,
job loss, unexpected medical expenses, etc.), whereas a natural disaster will affect many
households’ ability to pay all at once, leading to a jump process with differing dynamics.
We denote by (Ω,F ,P) the probability space and by L(t) the resulting outstanding debt
process at time t, which satisfies the dynamics

dL(t) = rL(t)dt− rL(0)
1− e−rT dt− λνdt + dQ(t), (12)

where Q is the compound Poisson process Q(t) = ∑
N(t)
i=1 Yi, N is a Poisson process with

rate λ, Yi is a random variable representing the size of the ith jump of Q(t), and ν is the
expected jump size, i.e., ν = E[Yi] ∈ R. We assume that the variables Yi are independent
and identically distributed, independent of N(t), for all integers i and time t ∈ (0, T] and
that the first four moments of Yi are finite. The added Compound Poisson term makes the
model in integral form similar to the aggregate loss model that is well-known in insurance
(see [33] pp. 334–335), and the following calculation will make this fact clearer.

Indeed, the discounted outstanding debt balance satisfies
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d(e−rtL(t)) = − rL(0)
1− e−rT e−rtdt− λνe−rtdt + e−rtdQ(t),

which can be rewritten in integral form as

e−rtL(t) = L(0)− rL(0)
1− e−rT

∫ t

0
e−rsds− λν

∫ t

0
e−rsds +

∫ t

0
e−rsdQ(s),

which finally yields

L(t) = ertL(0) +
L(0)(1− ert)

1− e−rT +
λν

r
(1− ert) + ert

N(t)

∑
i=1

e−rSi Yi

= L(0)
1− e−r(T−t)

1− e−rT +
λν

r
(1− ert) + ert

N(t)

∑
i=1

e−rSi Yi

= Ld(t) +
λν

r
(1− ert) + ert

N(t)

∑
i=1

e−rSi Yi, (13)

where Si represents the arrival time of the jump number i. From now on, we also assume
that Yi is independent of Si, for all positive integers i. Furthermore, we know that Si has a
gamma distribution with parameters i and λ, i.e., its density function is given by

fSi (t) = λe−λt (λt)i−1

(i− 1)!
.

We consider the default probability

P[L(t)− Ld(t) ≥ Θp],

where Θ > 0 is a given threshold and p is the monthly payment. In the data, Θ = 3—in
other words, a mortgage is considered in default once 3 monthly payments have been
missed.

And so given (13), we have derived the default process

D(t) =
1
p
(L(t)− Ld(t)) =

1
p
(

λν

r
(1− ert) + ert

N(t)

∑
i=1

e−rSi Yi). (14)

Using the total expectation rule, we can calculate the moments of D(t) (14) (see
detailed calculations in the Appendix A):

m1(t) = E(D(t)) = κ1, m2(t) = Var(D(t)) = κ2,

m3(t) = Skewness(D(t)) =
κ3

κ3/2
2

, m4(t) = Kurtosis(D(t)) =
κ4

κ2
2

,

where

κ1 = 0,

κ2 =
1
p2 (

λ

2r
E[Y2

i ](e
2rt − 1)),

κ3 =
1
p3 (E[Y

3
i ]

λ

3r
(e3rt − 1)),

κ4 =
1
p4 (

λ

4r
E[Y4

i ](e
4rt − 1)).
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2.2.2. Climate Risk in Secured Loan Model

We incorporate the climate risk by adding another arithmetic compound Poisson
process to the dynamics of the process Ld(t) described in (12). We denote the resulting
outstanding debt process at time t by L(t) and assume now that it satisfies the dynamics

dL(t) = rL(t)dt− rL(0)
1− e−rT dt− λνdt + dQ(t)− αυdt + dC(t), (15)

where Q(t) is as defined in (14), and C is the compound Poisson process defined as
C(t) = ∑

M(t)
j=1 Xi, where M is a Poisson process with rate α, which is defined on the same

probability space as N, relative to the same filtration and is independent of N, and Xj
is a random variable representing the size of the jth jump of C(t). We again suppose
that the variables Xj are independent and identically distributed with common mean
υ = E[Xj] ∈ R, and also independent of N(t), M(t), and Yi, for all integers i, j and time
t ∈ (0, T].

Similar to the above section, the closed form is given by

L(t) = Ld(t) +
λν + αυ

r
(1− ert) + ert(

N(t)

∑
i=1

e−rSi Yi +
M(t)

∑
j=1

e−rRj Xj), (16)

where Rj represents the arrival time of the jump number j of the compound Poisson process
C. We assume that the random variables Yi and Xj are independent of Rj, for all i, j ∈ N.
Then the default process is defined as

D(t) =
1
p
(

λν + αυ

r
(1− ert) + ert(

N(t)

∑
i=1

e−rSi Yi +
M(t)

∑
j=1

e−rRj Xj)), (17)

and subsequent moments are given below.
The first four moments of the default process D(t) are given by

m1(t) = E(D(t)) = κ1, m2(t) = Var(D(t)) = κ2,

m3(t) = Skewness(D(t)) =
κ3

κ3/2
2

, m4(t) = Kurtosis(D(t)) =
κ4

κ2
2

,

where

κ1 = 0

κ2 =
1
p2 (

λ

2r
E[Y2

i ](e
2rt − 1) +

α

2r
E[X2

j ](e
2rt − 1))

κ3 =
1
p3 (E[Y

3
i ]

λ

3r
(e3rt − 1) +E[X3

j ]
α

3r
(e3rt − 1))

κ4 =
1
p4 (

λ

4r
E[Y4

i ](e
4rt − 1) +

α

4r
E[X4

j ](e
4rt − 1)).

2.3. Data and Empirical Methodology of the Study
2.3.1. Description of the Data

We use publicly available Freddie Mac (FHLMC) mortgage origination and performance
data on single-family homes to evaluate the above formulations. Freddie Mac is one
of two GSEs that securitizes mortgages into guaranteed MBS, and provides loan-level
credit performance data on all mortgages they purchased or guaranteed from 1999 to 2021.
Their Standard Dataset includes single-family fixed-rate conventional mortgages, typically
meeting securitization criteria (see [34] for details on loan types and the role of GSEs in
the U.S. Housing Market). Using this dataset, we can observe loan-level origination data
and monthly performance data for mortgages that meet the GSEs’ securitization standards.
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Origination data refer to variables used to undersign a loan (e.g. a borrower’s credit score,
debt-to-income (DTI), and loan-to-value (LTV) measures), mortgage contract details (e.g.
time-to-maturity, interest rate, and loan amount), and property characteristics (e.g. home
value and geographic data). Monthly performance data capture information on a mortgage
at a given point in time; this typically entails data on the amount of payments made
(delinquency), modifications made to the loan, and snapshots of mortgage characteristics
such as unpaid balances, remaining time to maturity, and current property value.

We design our study around Hurricane Harvey, a Category 4 hurricane that struck
Texas and Louisiana in August 2017. Hundreds of thousands of homes were flooded
and approximately 70% of homeowners were uninsured [35], causing approximately USD
42.5 billion in property damage [36]. We consider the universe of loans originated in
Texas from 2000 to 2017 with associated performance data from January 2017 to December
2018 in Freddie Mac’s Single-Family Standard Dataset. We extract two samples from this
universe to evaluate our proposed models: the non-default sample aims to capture the
’ideal’ processes, i.e., outstanding loan balance and property home values as the bank
intended when extending the loan. The climate default sample includes households with
an observed disaster-related missed payment and who also defaulted within 6 months of
Harvey, since many homes that did not qualify for disaster delinquency might have still
defaulted due to the climate event. A household can apply for a delinquency due to disaster
if the borrower experiences a financial hardship impacting his or her ability to pay the
contractual monthly amount when (1) the property securing the mortgage loan experienced
an insured loss, (2) the property securing the mortgage loan is located in a FEMA-Declared
Disaster Area eligible for Individual Assistance, or (3) the borrower’s place of employment
is located in a FEMA-Declared Disaster Area eligible for Individual Assistance. Defaults
due to climate can also occur indirectly and are not captured by the explicit ’Disaster
Delinquency’ flag in the data; a household may never apply due to delinquency disaster
aid because their home was not damaged, but there might be significant damage to the
neighborhood infrastructure, commercial properties, etc., that also affects the borrower’s
ability and willingness to repay. Delays in insurance payouts and outdated flood zone
maps may also decrease eligibility for aid; only 10% of flooded structures in counties with
FEMA declarations in Texas during Hurricane Harvey had National Flood Insurance Policy
(NFIP) insurance [3]. Even those who had insurance during Harvey faced payout delays;
more than three months after Harvey hit, nearly half of Houston residents stated that they
still were experiencing financial or housing-related challenges, including loss of income or
ability to repair their home [37]. And so many households might have defaulted due to
climate-related reasons that were not marked as delinquent due to disaster. A total of 2000
households are randomly selected for the non-default and climate default definitions to
create sizeable and representative samples while avoiding computational constraints (see
Table 1 for sample details).

Table 1. Description of sample definitions.

Sample Name Description Number of Households Number of Records

Non-default sample
loans that have never missed a payment. Zero
Balance Code = 1 (Prepaid or Matured (Voluntary
Payoff)).

2000 47,296

Climate default sample
loans that have been in default due to a climate
(’Disaster Delinquency’ = 1 or default within 6
months of Hurricane Harvey)

2000 35,021

In order to validate that the second sample we constructed has different statistical
features than the loans that have defaulted and were not included in the second sample,
we show the default rate trends in Figure 1. We define the default rate as the number of
mortgages that missed more than three payments over all active loans. The left figure



FinTech 2023, 2 624

shows the default rate in our universe of considered loans from 2000 to 2018, comparable to
those reported in [38]. Note the increase from 2% to 3% in the default rate shortly following
Hurricane Harvey. The middle figure shows the sharp increase in share of households
reporting disaster-related delinquency in August 2017 that remained elevated through 2018.
The right-most figure aims to compare the default rate due to Hurricane Harvey (i.e., the
climate default sample) to non-Harvey-related default. This figure articulates visually that
the categorization of default due to non-climate- versus climate-related events is imperfect,
but still captures two different processes.
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Figure 1. From left to right: (1) monthly default rates in Texas for loans originated 2000–2017, with
monthly performance data 2017–2019, (2) comparison of monthly default rates for loans in climate
sample versus loans that have defaulted but are not in the climate default sample, and (3) share of
households reporting climate-related delinquency per month for the same loans as in (1).

2.3.2. Methodology

We use FHLMC data to evaluate whether or not the models above are specified
correctly given the observed data. For both house prices and cashflow models, we explicitly
connect the data to our proposed models, estimate parameters, compare specifications,
test for the presence of climate-specific effects, and finally compare probability of default
curves using the moments derived in the previous sections.

Turning first to the housing price models proposed in Section 2.1, recall that we have
defined the default process D(t) = ln V(t)

V(0) . To measure V(t), we use reported property
values in the data (refer to Table 2 for full details on how variables in the FHLMC data
are used in this analysis). Then, we observe log-returns of home values ln V(t)

V(0) across

households from January 2017 to December 2018 for each sample in Figure 2; ln V(t)
V(0) seems

to follow a bimodal distribution, with the group with decreasing home values much more
pronounced for the climate default sample. It is worth adding that these log-returns actually
pass the Shapiro–Wilk test for a normal distribution; however, as illustrated in Figure 3,
the distribution of the log returns at the single household level is heavy-tailed for most
households in each sample.

Next, for the purpose of testing whether there are climate-related jumps in the data,
we use the credit risk models introduced in Section 2.1, which are based on default being
defined as the log-returns on home value falling below a predetermined threshold. D(t)
with parameters θ = {µ, σ, {λ, µΠ, σΠ}, {α, µΓ, σΓ}} describes a household-specific default
process, so we propose the following approach. Suppose we have N households, and that
for each household n ∈ 1, ..., N, we have a separate default process Dn(t), we estimate
household-level parameters using Maximum Likelihood Estimation (MLE) and acquire
a vector of household-level estimates {θn} for each sample. In Section 3, we report and
compare the mean estimated coefficients and their associated 95% confidence intervals
across samples and model specifications. It is worth acknowledging that the likelihood
functions above are not well-behaved, a given when we are expecting discontinuous jumps.
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Furthermore, the sample sizes are very small at the household level, with some households
having less that 20 observations. Following the MLE estimation technique proposed in [39],
we define the following hypotheses to test:

Hhouse price
0 : Dn(t) = (µ− 1

2
σ2)t + σW(t)

Hhouse price
1 : Dn(t) = (µ− λν− 1

2
σ2)t + σW(t) +

N(t)

∑
i=1

ln (Πi + 1)

Hhouse price
2 : Dn(t) = (µ− λν− αυ− 1

2
σ2)t + σW(t) +

N(t)

∑
i=1

ln (Πi + 1) +
M(t)

∑
j=1

ln (Γj + 1)

Table 2. Variable field names and calculations. Note that D(t) is used to describe two different
default processes, depending on whether a cashflow or a house price model is being considered. The
variables.

Variable Notation Calculation in FHLMC Data

Monthly interest rate (percentage) r “Original Interest Rate”/12
Time to Maturity (months) T “Original Loan Term”
Time since origination (months) t “Loan Age”
Original Property Value (USD) V(0) ‘Original Property Value’
Actual Property Value (USD) V(t) ‘Current Actual UPB’ / ‘Estimated Loan-to-Value (ELTV)’
Original Loan Balance (USD) L(0) ‘Original UPB’
Actual outstanding loan balance (USD) L(t) ‘Current Actual UPB’
Expected outstanding loan balance (USD) Ld(t) Ld(t) = L(0) 1−e−r(T−t)

1−e−rT

Monthly payment (USD) p rL(0)
1−e−rT

Default at time t in house price model D(t) ln Vt
V0

Default at time t in cashflows model D(t) 1
p (L(t)− Ld(t))

Number of climate disaster-related jumps M(t) #{| L(t)−Ld(t)
p | ≥

1| delinquency during Harvey observed in data}
Number of non-climate disaster-related jumps N(t) #{| L(t)−Ld(t)

p | ≥ 1|M(t) = M(t− 1)}

Expected non-climate-related jump size (USD) Yi

p ∗ sign( L(t)−Ld(t)
p |N(t) > N(t− 1)), sign(x) =

−1, x < 0
0, x = 0
1, x > 0

Expected climate-related jump size (USD) Xj p ∗ sign( L(t)−Ld(t)
p |M(t) > M(t− 1))
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Figure 2. Distribution of log-returns across households for each sample 2017–2019 (with log-returns
averaged within each household over the time period the household is observed in the data).
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Figure 3. Distribution of log-returns for a sampled household for each sample 2017–2019.

Using (3), (6), and (10), we define corresponding (log-)likelihood functions used in the
optimization procedure, where K denotes the number of observations in a given household:

Log L0 = log
K

∏
k=1

Φ(
Dn(t)− (µ− 1

2 σ)t
σ
√

t
)

Log L1 = log
K

∏
k=1

∞

∑
i=1

e−λt(λt)i

i!
Φ(

Dn(t)− (µ− 1
2 σ− λν)t− iµΠ√

σ2t + iσ2
Π

)

Log L2 = log
K

∏
k=1

∞

∑
i=1

∞

∑
j=1

e−λt(λt)i

i!
e−αt(αt)j

j!
Φ(

Dn(t)− (µ− 1
2 σ− λν− αυ)t− iµΠ − jµΓ√
σ2t + iσ2

Π + jσ2
Γ

)

In practice,−2Log L is reported instead of Log L, and so a good fit results in a high Log
L and low −2Log L (with a perfect fit resulting in Log L = 1, −2Log L = 0). The continuous
time variable is approximated by discrete intervals of 1-month length. Note that we have
truncated the number of jumps in the above likelihood functions. We estimate the upper
bound on the number of jumps in the summation to be 3 for non-climate jumps and 1 for
climate jumps; we have run experiments for different values of the upper bound (up to 10),
with estimations stabilizing with the chosen values. Moreover, this choice is in agreement
with our intuition; indeed, homes are not valuated often, and climate jumps have been
historically rare (in this case we are considering one single climate event).

Next, we test for the best-fitting sample–model pair using the mean Log L returned
under each hypothesis and a Likelihood Ratio (LR) test to evaluates the goodness-of-fit.
With nested models, we use the simpler model as the null hypothesis and the model with
additional terms as the alternate hypothesis. If the ratio is sufficiently small, we reject
the simpler model. In this case, we compare Hhouse price

0 , Hhouse price
1 , and Hhouse price

2 for
each sample using the maximum likelihoods Log L0, Log L1, and Log L2. We conclude our
testing for climate jumps with comparing the default probability curves by computing the
first four moments as described in earlier sections.

Secondly, we turn to the cashflow models of Section 2.2. For the cashflows models, the
default process has been defined earlier as D(t) = 1

p (L(t)− Ld(t)). The outstanding loan
balance that is provided in the monthly data corresponds to the time-discretized variable
L(t) with time intervals of 1-month length. Furthermore, the correspondence between the
data and Ld(t) is shown in Table 2. Recall that M(t) signifies a Poisson process for climate
disaster-related jumps. To estimate M(t), we count the number of times a payment is not
equal to the scheduled payment amount, given a household reported delinquency due to a
natural disaster. We similarly define N(t), after excluding the jumps used to estimate M(t).
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Given that D(t) is a household-level process, we again consider the set of default
processes {Dn(t)|θn}, where parameters θn = {{ν, λ}, {υ, α}}. In accordance with (14)
and (17), we define our hypotheses for the debt process Dn(t) as

Hcashflow
0 : Dn(t) = 0

Hcashflow
1 : Dn(t) =

1
p
(

λν

r
(1− ert) + ert(

N(t)

∑
i=1

e−rSi Yi))

Hcashflow
2 : Dn(t) =

1
p
(

λν + αυ

r
(1− ert) + ert(

N(t)

∑
i=1

e−rSi Yi +
M(t)

∑
j=1

e−rRj Xj))

We assume that there is a maximum of one jump per reporting period (1 month).
On the one hand, a visual inspection of the histograms of the jump sizes X and Y

(which represent any deviation from the scheduled payments) across all the households and
for each sample (see Figure 4) suggests that these variables have a continuous distribution
with a wide range. Consequently, we postulate that X and Y can be considered normally
distributed and we validate this hypothesis using the Shapiro–Wilk test. On the other
hand, since we did not identify the distribution of D(t), it is natural to consider using the
Generalized Method of Moments (GMM), which makes no distributional assumptions and
is widely used for economics and finance applications (see [40] for details on GMM). In
the end, we chose to design a two-step procedure combining MLE and GMM. First, we
use MLE to estimate ν (and υ) by fitting a normal distribution to the jump sizes Y (and X),
and secondly, we apply a GMM procedure to estimate the remaining parameters λ (and
α). Specifically, the moment conditions m(θn) are functions of the parameters θn = {λ, α},
and GMM finds parameter estimates such that m(θ̂n) = 0. To test whether the model is
correctly specified, we can check whether the estimated parameters θ̂n get the moments
sufficiently close to zero, i.e., m(θ̂n) ≈ 0. For this purpose, we use the Sargan–Hansen
J-test, where the calculated J-statistic is used to test the hypotheses: h0 : m(θ̂n) = 0 and
ha : m(θ̂n) 6= 0, to determine goodness-of-fit of Hcashflow

1 and Hcashflow
2 with respect to

both samples. We also evaluate which of Hcashflow
1 and Hcashflow

2 is the best model for each
sample using the returned J-statistic of an LR test. Note that since H0 has no parameters
to estimate and we know that jumps exist in the data (see Table 3), we exclude it from
the model comparison. Finally, we compare moments across the three specifications; to
compare to Hcashflow

0 , we calculate D(t) directly from the data and use its sample moments.
All analysis was carried out using open-source software in Python and in R, with all code
available here: https://bitbucket.org/al6257/credit-risk-modeling/src/master/ (accessed
on 3 September 2023).
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Figure 4. Distribution of jump sizes X and Y across all households in each sample.

https://bitbucket.org/al6257/credit-risk-modeling/src/master/
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Table 3. Summary statistics of estimated variables from data for cashflow models. Statistics for
D(t), M(t), N(t) are taken across households in the last month in the sample (December 2018).
Statistics for expected jump sizes Y and X were taken across households one month after Harvey.

(Variable) Mean Stddev p25 p50 p75

Non-default sample

D(t) −0.254 2.41 −0.126 −0.0035 −0.000
N(t) 11.076 18.443 1.000 3.000 13.000
M(t) 0.00 0.00 0.00 0.00 0.00

Y −305.748 1695.460 −361.619 −178.072 171.080
X 0.00 0.00 0.00 0.00 0.00

Climate default sample

D(t) −0.714 22.270 −0.025 −0.001 1.000
N(t) 16.273 22.788 1.000 7.000 21.000
M(t) 0.300 0.772 0.00 0.00 0.00

Y −567.421 8450.797 −226.714 184.968 390.500
X 374.373 354.708 204.119 311.295 526.653

3. Results

First, we compare various mortgage and borrower characteristics across the non-
default sample and the climate default sample in Table 4. As expected, the non-default
sample has lower DTI and LTV and higher credit score at the average, compared to the
climate default sample, all indicators of good financial health. At the average, the non-
default sample also has the higher home values V(0) and lower payments p due to lower
monthly rates, again highlighting that borrowers in this sample skew towards higher-
income and are less liquidity-constrained. Note that the mortgage term T and LTV have
small standard deviations and similar values at both the 25th and 75th percentiles because
LTV has a strict cutoff when underwriting loans, and most mortgages in the data have
a 30-year term. Next, we apply the methodology described in Section 2.3 to conduct
hypothesis testing for climate jumps using models specified under Sections 2.1 and 2.2.

Table 4. Mortgage and borrower characteristics for each sample, calculated at the beginning of our
sample period (January 2017).

(Variable) Mean p25 p50 p75 stddev

Non-default sample

DTI 35 27 36 44 9.89
Credit Score 745 715 757 786 42.20

LTV 72 64 79 81 12.909
T 295 180 360 360 83.464
r 4.09 3.62 4.00 4.50 0.65

V(0) 228,137 155,751 225,263 327,142 81,949
p 997 658 929 1332 417

Climate default sample

DTI 38 33 40 45 7.988
Credit Score 702 671 706 748 43

LTV 80 73 80 95 13.104
T 320 360 360 360 72.197
r 4.6 4.0 4.5 5.0 0.79

V(0) 222,851 152,125 222,074 318,309 81,220
p 1052 694 983 1425 435
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3.1. Housing Wealth Models

We provide a summary of household-level MLE estimates for the housing wealth
models in Table 5, where we report the mean estimate across all households along with the
95% confidence interval around the sample mean. Confidence intervals are narrow at the
95th percentile across most parameters, suggesting that estimates do not vary greatly across
households. The optimizer returns different estimates for {λ, µΠ, σΠ} and {α, µΓ, σΓ} under
Hhouse price

2 , therefore detecting two independent compound Poisson processes within each

sample. The non-default sample has a smaller λ and smaller µπ under Hhouse price
1 than

the climate default sample (i.e., both fewer jumps and jumps of smaller magnitude in
home value). Also, under Hhouse price

2 , the climate default sample has a higher rate of both
climate- and non-climate-related jumps (λ, α) and larger jump magnitudes (µπ , µΓ) for
both Compound Poisson processes, compared to the non-default sample; in addition, the
magnitude of the climate-related jumps (µΓ) is higher than non-climate-related jumps (µπ)
for both samples. We also observe that Log-likelihood is highest for both samples under
Hhouse price

2 .

Table 5. MLE parameter estimates at the household level. Each estimate is reported as the 95%
confidence interval around the sample mean.

Dependent Variable:

Hhouse price
0 Hhouse price

1 Hhouse price
2

(Non-Default
Sample)

(Climate
Default Sample)

(Non-Default
Sample)

(Climate
Default Sample)

(Non-Default
Sample)

(Climate
Default Sample)

µ 0.088± 0.015 0.03± 0.012 0.535± 0.027 0.822± 0.026 2.873± 0.019 2.778± 0.015
σ 0.48± 0.022 0.56± 0.018 0.604± 0.022 0.613± 0.018 0.025± 0.005 0.076± 0.013
λ 0.02± 0.002 0.033± 0.003 0.012± 0.001 0.029± 0.003
µπ 0.307± 0.022 0.322± 0.019 0.037± 0.005 0.059± 0.006
σπ 0.177± 0.022 0.192± 0.019 0.028± 0.008 0.049± 0.01
α 0.012± 0.001 0.029± 0.003
µΓ 0.054± 0.009 0.068± 0.009
σΓ 0.023± 0.005 0.045± 0.007

−2 log L 29.594± 3.536 36.665± 2.859 3.526± 4.112 34.103± 3.01 2.522± 1.402 4.663± 1.229
N 1993 1738 1993 1738 1993 1738

Table 6 shows that Hhouse price
0 is the best fit for the non-default sample and Hhouse price

2
is the best fit for the climate default sample. This all points to the fact that there is a
separate compound Poisson process present in the data, particularly in the sample with
more pronounced climate-related defaults. Table 7 reports the estimated moments of the
default curve for each sample, using the mean parameter estimates returned in Table 5.
Next, Figure 5 offers a visualization of the distribution of log-returns given our estimated
moments. It was produced by using the implementation of the Gram–Charlier expansion
of the normal distribution, allowing for the first two moments to coincide with a normal
distribution but for higher moments to deviate. In practice, we simulated the log-returns
by drawing samples from a log-normal distribution and fitted the expanded pdf with
the given moments, allowing for a clean comparison of the curves. H0 seems to estimate
log-returns equally for both samples and captures no skewness or excess kurtosis in the
data. Hhouse price

1 has the highest kurtosis, thus capturing the most uncertainty for both

samples . Excess kurtosis decreases under Hhouse price
2 ; Hhouse price

2 might absorb some of
this uncertainty with the added jump process, accounting for these outliers in a higher
second moment. Both Hhouse price

1 and Hhouse price
2 are heavier-tailed than Hhouse price

0 .
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Figure 5. Probability curves as given by estimated moments in Table 7. The moments are fitted to
simulated random variables following the Gram–Charlier expansion of the normal distribution, in an
effort to compare moments and curve shape across samples and specifications.

Table 6. (Log-)likelihood ratio test statistics for model comparison, using the mean log-likelihood
ratios reported in Table 5.

Hhouse price
0 Hhouse price

1 Hhouse price
2

Non-default sample

Hhouse price
0

26.068 *** 27.072 ***

Hhouse price
1

1.004

Climate default sample

Hhouse price
0

2.561 32.001 ***

Hhouse price
1

29.439 ***

Note: *** p < 0.01.

Table 7. Comparison of household-level moments across samples and housing wealth models,
reported as the mean moment along with the 95% confidence interval. The mean moments m1, m2, m3

and m4 are calculated by taking the temporal average over the entire time frame of the study
and the average over all the households of the moments m1(t), m2(t), m3(t) and m4(t) derived in
Sections 2.1.1 and 2.1.2

Dependent Variable:

Hhouse price
0 Hhouse price

1 Hhouse price
2

(Non-Default
Sample)

(Climate Default
Sample)

(Non-Default
Sample)

(Climate Default
Sample)

(Non-Default
Sample)

(Climate Default
Sample)

m1 −1.904± 0 −1.904± 0 −0.023± 0.044 0.372± 0.036 2.831± 0.014 2.689± 0.021
m2 1.409± 0 1.409± 0 1.149± 0.061 0.973± 0.03 0.003± 0.001 0.161± 0.02
m3 0± 0 0± 0 0.266± 0.024 0.437± 0.039 0.066± 0.023 0.063± 0.02
m4 0± 0 0± 0 9.921± 0.888 15.073± 1.138 1.992± 0.293 1.446± 0.187

3.2. Cashflow Models

We begin by comparing debt levels and jump sizes across the two samples in Table 3. At
the average, households have prepaid zero to one monthly payment’s worth of outstanding
debt (D(t)) in both samples. As expected, we observe that D(t) is positive for the climate
default sample at higher percentiles, indicating the presence of missed payments. Both
samples have negative mean non-climate jumps Y, potentially due to prepayments. Even in
the climate default samples, households try to repay missed payments to catch up on their
loan. This is also reflected in the high number of non-climate-related jumps N(t) in both
samples. By contrast, the number of climate-related payment jumps M(t) is much lower
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(but higher for the climate default sample than the no-default sample), and the mean climate
jump size X is positive, clearly capturing missed payments rather than prepayments.

Table 8 shows a summary of household-level parameter estimates. Confidence
intervals are again narrow for most estimates. Comparing the mean parameter estimates, ν
is negative under Hcashflow

1 for the climate default sample, potentially capturing more of
the prepayment process than a missed payment process. By contrast, under Hcashflow

2 , it
looks like the optimizer estimates the prepayment process in the first jump process (i.e.,
negative ν) and a missed payment process in the climate-related jump process (i.e., positive
υ). The J-Statistic is very high across both samples under Hcashflow

1 . However, the statistic
drastically decreases under Hcashflow

2 for both samples. The statistic is smallest for the
climate default sample under Hcashflow

2 , suggesting that the model under Hcashflow
2 for the

climate default sample might be the best-specified model, and that there are two different
jump processes in the data.

Table 8. GMM parameter estimates at the household level. Each estimate is reported as the 95%
confidence interval around the mean. The estimates under H0 are calculated as confidence intervals
observed directly in the data.

Hcashflow
0 Hcashflow

1 Hcashflow
2

(Non-Default
Sample)

(Climate Default
Sample)

(Non-Default
Sample)

(Climate Default
Sample)

(Non-Default
Sample)

(Climate Default
Sample)

ν
−1013.855±

28.077 −817.155± 30.511 −252.614±
196.722

−825.915±
252.256 151.617± 40.201 −119.483± 62.178

λ 0.499± 0.002 0.652± 0.002 0.076± 0.008 0.076± 0.023 0.001± 0 0.061± 0.003
υ −0.002± 0.002 30.304± 0.002 0± 0 328.343± 0.003

α 0± 0 0.037± 0 0± 0 0.095± 0.005

−2 Log L (Y) 0± 0 58.529± 47.934 0.878± 0.423 23.106± 18.657
−2 Log L (X) 0± 0 55.379± 1.374

J-test 46, 235, 473, 254.568±
9, 571, 620, 633.317

12, 079, 781, 867.6±
2, 298, 005, 017.153 0.746± 0.05 0.709± 0.055

N 1993 1738 1993 1738 1993 1738

We use Table 9 to compare the models further. Looking at the likelihood ratios,
Hcashflow

2 is the preferable specification over Hcashflow
1 for both samples. Leveraging the

coefficients calibrated above, we can compare moments across samples and models as
shown in Table 10 and use sample moments to compare Hcashflow

0 , Hcashflow
1 , and Hcashflow

2 .
We observe that the second and fourth moments seem inflated under Hcashflow

1 ; because
of the large variability of jump sizes (as shown in Table 3), one single Compound Poisson
process might not be enough to capture all missed payments and prepayments. This is
further supported by the fact that both moments decrease under Hcashflow

2 , which could
indicate that an additional jump process better describes the payment activity in the data,
and therefore default. Note that we do not provide a visualization of the moments in
contrast to the moments of the house price models in Figure 5, as we did not identify the
distribution of D(t).

Table 9. Goodness-of-fit analysis across hypotheses for cashflow models.

Likelihood Ratio Test J-Statistic (Hcashflow
1 versus Hcashflow

2 )

Non-default sample 46,235,473,254 ***
Climate default
sample 12,079,781,867 ***

Note: *** p < 0.01.
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Table 10. Comparison of household-level moments across samples and cashflow models and reported
as the mean moment along with the 95% confidence interval. The mean moments m1, m2, m3 and m4

are calculated by taking the temporal average over the entire time frame of the study and the average
over all the households of the moments m1(t), m2(t), m3(t), m4(t) derived in Sections 2.2.1 and 2.2.2

Hcashflow
0 Hcashflow

1 Hcashflow
2

(Non-Default
Sample)

(Climate Default
Sample)

(Non-Default
Sample)

(Climate Default
Sample)

(Non-Default
Sample)

(Climate Default
Sample)

m1 −9.46± 0.156 −4.088± 0.126 0± 0 0± 0 0± 0 0± 0

m2 1671.687± 37.261 1141.584± 29.673 11, 517.493±
411.827 23.456± 0.858 7938.48± 186.212 446.186± 13.442

m3 −3.572± 0.049 −1.427± 0.057 −1832.738±
79.746 5569.317± 178.64 −5.253± 0.059 −0.025± 0.003

m4 20.807± 0.415 13.897± 0.264 10, 305, 711.142±
514, 394.214

91, 100, 924.95±
3, 610, 751.915 32.918± 0.671 0.874± 0.027

4. Discussion

We proposed two credit risk models incorporating unexpected climate events with
default definitions based, respectively, on home values and cashflows. Using mortgage
performance data during Hurricane Harvey, we have shown the real-world connection
between our proposed models and housing finance data, and were able to successfully
compare model specifications, as well as empirically validate our model formulations.

Specifically, we find that the jump diffusion credit risk model, which includes an
additional climate default-specific Compound Poisson process in the dynamics followed
by the home price, offers a better fit than the original model with a unique jump process.
This finding is especially important, as it implies that there is potentially a presence of
climate-specific credit risk that is only diversifiable via premiums.

We used MLE for the house-pricing models and a mixture of MLE and GMM for
our cashflow models to estimate needed parameters. While statistical discrimination
(such as linear regression) and classification methods (supervised learning) are a more
standard approach used by lending institutions to assess credit risk for an individual [41],
we wanted to use estimation techniques that had minimal assumptions and followed the
existing literature on estimating jump risks [39]. A pitfall in our approach is sample size: all
households individually have less than 100 observations, and MLE typically requires much
larger sample sizes for stable estimates. To address this shortcoming, we have run versions
of this analysis with both an increased sample of 5000 households and with diffusion
Brownian bridges in an effort to increase the number of observations per household for the
house price models without adding any artificial jump (results reported in Appendix B),
and our conclusions have remained unchanged. Another potential design limitation is
truncating at two Poisson processes; as the goal of this paper is to assess whether or not
there are a separate, climate-specific processes, two jumps were sufficient for testing model
fit without running the risk of over-fitting.

Even with these limitations, we see that the model specification with two jump processes
is the best fit, especially subsetting to data where we know defaults due to climate exist. This
model also does a better job in capturing uncertainty in the default process.

We faced similar challenges in evaluating the cashflow model, which also contains a
climate default-specific jump process in the dynamics of the unpaid principal balance. Besides
the small sample sizes at the household level, another limitation comes from the fact that
actual principal payments are not directly observed, and were inferred from the change
in unpaid principal balance, the monthly interest rate, maturity of the loan, and the initial
unpaid principal balance. Clearly, the presence of reporting errors in the data can affect the
accuracy of these calculations, which, in turn, can lead to noisy parameter estimates. However,
despite these challenges, the J-statistic is lowest under the model specification with two jump
processes for both samples, and at a level indicating that the model is not mis-specified,
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suggesting that an additional jump process leads to a better fit. Again, this alludes to the
presence of climate-specific credit risk that cannot be hedged against.

This conclusion does not contradict existing literature on integrating climate disasters
into financial risk models; [8] finds that integrating climate credit risks into existing
frameworks does require changes in lender behavior in terms of which assets to invest in,
and [20,23] also find equity risk premiums associated with severe storms and hurricanes,
respectively. Our research findings can potentially inform policy discussions. If climate-
specific credit risk is undiversifiable, it is better managed through insurance premiums,
loan loss reserves, and risk-based pricing. Keeping insurance requirements up-to-date
and maintaining adequate loss reserves are two possible policy interventions. Lenders
should work on including individual borrower’s climate-related default risk in credit risk
assessments, in addition to existing determinants of credit risk.

We developed and tested our models within the framework of the U.S. regulatory and
banking system; however, our approach is highly flexible and can potentially be applicable
to other geographies. This approach can also can be extended to evaluate additional
event studies around any type of climate risk, including both chronic physical risk and
transition risk, as both are regarded as shock events following a potentially different process,
compared to typical jump events affecting assets and loan repayments.

Finally, since defaults due to a natural disaster can happen across households in a short
period of time, aggregate estimates across all households should be evaluated in future
work and compared to understand market-level dynamics. For example, a single mortgage
default might not affect the return on an MBS, but defaults across an entire geographic
location around the same time might. Deriving aggregate estimates would allow for an
evaluation past single-instrument effects. Future work can also include more rigorous data
simulation techniques to generate realistic scenarios, especially if the financial instruments
in question do not have high-frequency observations.
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Appendix A

In this appendix, we compute explicitly the moments of L(t). We start with the fist
model that contains only one compound Poisson process. We use the following argument.
Conditionally on N(t) = n, the variables S1, S2, · · · , Sn are distributed as the ordered
values of n independent uniform random variables in (0, t) (see [33], pages 334–335). In
other words, S1, S2, · · · , Sn can be interpreted as a random permutation of the random
variables t1, t2, . . . , tn uniformly distributed over the interval (0, t), so that

N(t)

∑
i=1

e−rSn =
N(t)

∑
i=1

e−rtn .

https://bitbucket.org/al6257/credit-risk-modeling/src/master/samples/
https://bitbucket.org/al6257/credit-risk-modeling/src/master/samples/
https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset
https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset
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We can compute the expected outstanding debt by time t, E[L(t)] by using a total
expectation rule:

E[L(t)] = Ld(t) +
λν

r
(1− ert) + ert

∞

∑
k=0

E[L(t)|N(t) = k)]P[N(t) = k]

= Ld(t) +
λν

r
(1− ert) + ert

∞

∑
k=0

E[L(t)|N(t) = k)]exp(−λt)
(λt)k

k!

= Ld(t) +
λν

r
(1− ert) + ert

∞

∑
k=0

E[
N(t)

∑
i=1

e−rSi Yi|N(t) = k)]exp(−λt)
(λt)k

k!

= Ld(t) +
λν

r
(1− ert) + ert

∞

∑
k=0

E[
k

∑
i=1

e−rSi Yi]exp(−λt)
(λt)k

k!

= Ld(t) +
λν

r
(1− ert) + ert

∞

∑
k=0

k

∑
i=1

E[e−rSi Yi]exp(−λt)
(λt)k

k!

= Ld(t) +
λν

r
(1− ert) + ert

∞

∑
k=0

k

∑
i=1

E[e−rSi ]E[Yi]exp(−λt)
(λt)k

k!

= Ld(t) +
λν

r
(1− ert) + ert

∞

∑
k=0

k

∑
i=1

νE[e−rSi ]exp(−λt)
(λt)k

k!

= Ld(t) +
λν

r
(1− ert) + ertν

∞

∑
k=0

E[
k

∑
i=1

e−rSi ]exp(−λt)
(λt)k

k!

= Ld(t) +
λν

r
(1− ert) + ertν

∞

∑
k=0

E[Σk
i=1e−rti ]exp(−λt)

(λt)k

k!

= Ld(t) +
λν

r
(1− ert) + ertν

∞

∑
k=0

k

∑
i=1

E[e−rti ]exp(−λt)
(λt)k

k!
.

Since

E[e−rti ] =
∫ t

0

e−rx

t
dx =

1
rt
(1− e−rt),

we finally have

E[L(t)] = Ld(t) +
λν

r
(1− ert) + ertν

∞

∑
k=0

k · (1− e−rt)

rt
e−λt (λt)k

k!

= Ld(t) +
λν

r
(1− ert) + ertν

(1− e−rt)

rt

∞

∑
k=0

k · e−λt (λt)k

k!

= Ld(t) +
λν

r
(1− ert) + ertνλ

(1− e−rt)

r
= Ld(t).

Similarly, using the fact that

2
n

∑
i=1

i−1

∑
j=1

e−rSi e−rSj = 2
n

∑
i=1

i−1

∑
j=1

e−rti e−rtj ,

in distribution, we compute
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var[L(t)] = E[(L(t)− Ld(t))2]

= E[(λν

r
(1− ert) + ert

N(t)

∑
i=1

e−rSi Yi)
2]

=
∞

∑
n=0

E[(λν

r
(1− ert) + ert

N(t)

∑
i=1

e−rSi Yi)
2|N(t) = n)]

× exp(−λt)
(λt)n

n!

=
∞

∑
n=0

E[(λν

r
(1− ert))2 + 2(

λν

r
(1− ert))ert

n

∑
i=1

e−rSi Yi

+ e2rt(
n

∑
i=1

e−rSi Yi)
2]exp(−λt)

(λt)n

n!

= (
λν

r
(1− ert))2 + 2(

λν

r
(1− ert))ert

∞

∑
n=0

E[
n

∑
i=1

e−rSi Yi]exp(−λt)
(λt)n

n!

+ e2rt
∞

∑
n=0

E[(
n

∑
i=1

e−rSi Yi)
2]exp(−λt)

(λt)n

n!

= (
λν

r
(1− ert))2 − 2(

λν

r
(1− ert))2 + e2rt

∞

∑
n=0

E[(
n

∑
i=1

e−rSi Yi)
2]

× exp(−λt)
(λt)n

n!

= −(λν

r
(1− ert))2 + e2rt

∞

∑
n=0

E[
n

∑
i=1

(e−rSi Yi)
2

+ 2
n

∑
i=1

i−1

∑
j=1

e−rSi e−rSjYiYj]exp(−λt)
(λt)n

n!

= −(λν

r
(1− ert))2 + e2rt

∞

∑
n=0

E[Y2
i ]

n

∑
i=1

E[e−2rSi ]exp(−λt)
(λt)n

n!

+ 2e2rt
∞

∑
n=0

ν2
n

∑
i=1

i−1

∑
j=1

E[e−rSi e−rSj ]exp(−λt)
(λt)n

n!

= −(λν

r
(1− ert))2 + (

λν

r
(1− ert))2 +

λ

2r
E[Y2

i ](e
2rt − 1)

=
λ

2r
E[Y2

i ](e
2rt − 1).

Note that we skipped the arguments that had already been shown in the computation
of the expectation of L(t).

Finally, using the fact that, in distribution,

3
n

∑
i=1

i−1

∑
j=1

(e−2rSi e−rSj + e−rSi e−2rSj) = 3
n

∑
i=1

i−1

∑
j=1

(e−2rti e−rtj + e−rti e−2rtj),

and

n

∑
i=1

i−1

∑
j=1

j−1

∑
k=1

e−rSi e−rSj e−rSk =
n

∑
i=1

i−1

∑
j=1

j−1

∑
k=1

e−rti e−rtj e−rtk ,

we can compute the third moment, which turns out to be

E[(L(t)−E[L(t)])3] = E[Y3
i ]

λ

3r
(e3rt − 1).
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We show below the detailed calculations that use similar techniques as in the calculation
of the second moment:

E[(L(t)− Ld(t))3]

= E[(λν

r
(1− ert) + ert

N(t)

∑
i=1

e−rSi Yi)
3]

=
∞

∑
n=0
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(1− ert) + ert
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∑
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e−rSi Yi)
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e−rSi Yi)
3
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n

∑
i=1

e−rSi Yi) + 3(
λν

r
(1− ert))e2rt(

n

∑
i=1

e−rSi Yi)
2]

× exp(−λt)
(λt)n

n!

= (
λν

r
(1− ert))3 +

∞

∑
n=0

E[e3rt(
n

∑
i=1

e−rSi Yi)
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i ](e
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In order to compute the second term, we expand it
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where we used the identities

N

∑
l=1

l =
N(N + 1)

2
,

and
N

∑
l=1

l2 =
N(N + 1)(2N + 1)

6

to compute the double and triple sums.
Similar arguments and techniques yield the fourth centered moment

E[(L(t)−E[L(t)])4] =
λ

4r
E[Y4

i ](e
4rt − 1) +

3
4

λ2

r2 E[Y
2
i ]

2(e2rt − 1)2.

In the case of the second model, the arguments are very similar, except for one key
difference: We now have two sequences of arrival times in the cross terms relating the two
compound Poisson processes, one for the first Poisson process N and the other one for
the second Poisson process M. However, since the sum of the two Poisson processes is
a Poisson process, we can merge these two sequences into one single sequence of arrival
times for the sum N + M and compute the moments by using similar arguments as for the
first model, in particular, the fact that the sequence of arrival times of the sum of Poisson
processes can be viewed as the ordered values of independent uniform random variables.
Specifically, given the number of jumps of first type N(t) = n and second type M(t) = m,
we can use the fact that

n

∑
i=1

m

∑
j=1

e−rSi e−rRj =
1
2
(

n+m

∑
i=1

n+m

∑
j=1

e−rTi e−rTj −
n

∑
i=1

n

∑
j=1

e−rSi e−rSj −

m

∑
i=1

m

∑
j=1

e−rRi e−rRj),

where T1, T2, · · · , Tj · · · is the sequence of arrival times of N + M.

Appendix B

We use this appendix to formalize our approach to running the formulations with
diffusion bridges for estimating the house price models. To go from monthly to daily
observations, we simulate 30 observations each month for each household using a diffusion
bridge, with the idea that we can increase the number of observations per household, and
within one month the housing value should not change much. To construct the bridge, we
use starting value Vt at t and ending value Vt at t + 1, with the idea that we preserve the
jump at Vt+1 (i.e., if there was a jump in the original data at Vt+1, we want to ensure that the
algorithm still registers this jump given the increased number of observations immediately
before and after the jump). We encode drift as zero and sigma as c · sqrt(T), where c is a
small non-zero constant, and T in this case equals 1.

However, as shown in Figures A1 and A2, while the housing value trends are
preserved, the MLE algorithm can misinterpret the introduced noise as jumps. This
is reflected in the MLE results in Tables A1 and A2, with very high estimated values
for α and λ. Some findings remain consistent with the non-simulated sample. Under
Hhouse price

2 , the default sample experiences more frequent (larger α) and higher-magnitude
jumps (larger µΓ) than the non-default sample. We see an increase in excess kurtosis
under H2 for both samples. However, while Hhouse price

1 and Hhouse price
2 are preferred over

Hhouse price
0 , Hhouse price

1 is preferred over Hhouse price
2 for both samples. This might be due to

the increased noise and number of jumps; in Figures A1 and A2, it looks like a single jump
process. All in all, this approach led to more stable estimates; however, due to the increase
in jumps, the parameter estimates are less interpretable and the model fit deteriorated.



FinTech 2023, 2 638

Figure A1. Comparison of V(t) in original non-default sample to V(t) simulated with a diffusion
bridge.

Figure A2. Comparison of V(t) in original default sample to V(t) simulated with a diffusion bridge.

Table A1. MLE parameter estimates at the household level. Each estimate is reported as the 95%
confidence interval around the sample.

Dependent Variable:

H0 H1 H2
(Non-Default

Sample)
(Climate

Default Sample)
(Non-Default

Sample)
(Climate

Default Sample)
(Non-Default

Sample)

µ 1.929± 0.027 0.973± 0.027 1.114± 0.001 1.651± 0.41 1.056± 0.001 1.081± 0.013
σ 1.608± 0.019 1.183± 0.022 1± 0 0.996± 0.002 1± 0 0.997± 0.001
λ 387.699± 1.221 313.653± 2.804 102.745± 0.798 106.285± 0.825
µΠ 0.999± 0 1.067± 0.047 1.073± 0.028 1.033± 0.016
σπ 0.999± 0 0.984± 0.002 1.063± 0.027 1.034± 0.016
α 104.474± 0.829 108.538± 0.887
µΓ 1.121± 0.038 1.111± 0.038
σΓ 1.126± 0.043 1.084± 0.03

−2 log L 66, 757.675±
3373.015

87, 579.433±
4024.822 0± 0 175.551± 112.164 274.804± 162.262 147.452± 116.721

N 2000 2000 2000 2000 2000 2000
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Table A2. (Log-)likelihood ratio test statistics for model comparison.

Hhouse price
0 Hhouse price

1 Hhouse price
2

Non-default sample

Hhouse price
0

4,339,450 *** 4,339,450 ***

Hhouse price
1

0.000

Climate default sample

Hhouse price
0

4,399,457 *** 4,399,457 ***

Hhouse price
1

0.000
Note: *** p < 0.01.
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