
Citation: Byun, W.J.; Choi, B.; Kim, S.;

Jo, J. Practical Application of Deep

Reinforcement Learning to Optimal

Trade Execution. FinTech 2023, 2,

414–429. https://doi.org/10.3390/

fintech2030023

Academic Editor: David Roubaud

Received: 9 May 2023

Revised: 16 June 2023

Accepted: 21 June 2023

Published: 29 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Practical Application of Deep Reinforcement Learning to
Optimal Trade Execution
Woo Jae Byun *,† , Bumkyu Choi *,† , Seongmin Kim * and Joohyun Jo *

Qraft Technologies, Inc., 3040 Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu,
Seoul 07326, Republic of Korea
* Correspondence: woojae.byun@qraftec.com (W.J.B.); bumkyu.choi@qraftec.com (B.C.);

seongmin.kim@qraftec.com (S.K.); joohyun.jo@qraftec.com (J.J.)
† These authors contributed equally to this work. Author ordering is randomly determined.

Abstract: Although deep reinforcement learning (DRL) has recently emerged as a promising tech-
nique for optimal trade execution, two problems still remain unsolved: (1) the lack of a generalized
model for a large collection of stocks and execution time horizons; and (2) the inability to accurately
train algorithms due to the discrepancy between the simulation environment and real market. In this
article, we address the two issues by utilizing a widely used reinforcement learning (RL) algorithm
called proximal policy optimization (PPO) with a long short-term memory (LSTM) network and by
building our proprietary order execution simulation environment based on historical level 3 market
data of the Korea Stock Exchange (KRX). This paper, to the best of our knowledge, is the first to
achieve generalization across 50 stocks and across an execution time horizon ranging from 165 to
380 min along with dynamic target volume. The experimental results demonstrate that the pro-
posed algorithm outperforms the popular benchmark, the volume-weighted average price (VWAP),
highlighting the potential use of DRL for optimal trade execution in real-world financial markets.
Furthermore, our algorithm is the first commercialized DRL-based optimal trade execution algorithm
in the South Korea stock market.

Keywords: deep reinforcement learning; optimal trade execution; artificial intelligence; market
microstructure; financial application

1. Introduction

Electronic trading has gradually become the dominant form of trading in the modern
financial market, comprising the majority of the total trading volumes. As a subfield of
electronic trading, optimal trade execution has also become a crucial concept in financial
markets. In the problem of optimal trade execution, the goal is to buy (or sell) V shares
of a particular stock within a defined time period while minimizing the costs that are
associated with trading. When executing a large order, however, submitting one large
order would incur slippage because of its market impacts, which forces the large order to
be split up into several smaller orders. The smaller orders would then be submitted in the
hopes of being sequentially executed over time. Sequential decision making is a natural
fit for reinforcement learning (RL) as it is mainly modeled as a Markov decision process
(MDP) where the next state only depends on the current state and action taken. For this
reason, there have been several studies that apply RL in optimal trade execution problems.
Nevmyvaka et al. (2006) [1] took advantage of RL to decide the optimal price level to
reposition the remaining inventory based on real-time market conditions. Hendricks
and Wilcox (2014) [2] extended the standard model of Almgren and Chriss (2001) [3] by
incorporating market microstructure elements, demonstrating another way to leverage RL
in addressing the problem of optimal trade execution.

However, with the recent advances in neural networks and their ability to learn from
data, researchers have turned to more advanced approaches that use deep reinforcement
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learning (DRL) (Mnih et al. (2013) [4]) for problems that have a wide range of data inputs
and market signals.

Dabérius et al. (2019) [5] and Ye et al. (2020) [6]’s studies have led to the successful
integration of DRL for optimal trade execution, showing new potential routes for future
work. The effectiveness of both value-based and policy gradient DRL algorithms has been
demonstrated through the experiments conducted by Ning et al. (2021) [7] and Lin and
Beling (2020) [8].

Nevertheless, previous studies that have applied DRL to optimal trade execution have
not been successful in bridging the gap between their experimental results and practical
utility, making their findings less relevant to real market scenarios.

In order to be applied in the real market, it is imperative for the model to perform
well in diverse settings. These could include a wide coverage of different stocks, flexible
execution time horizon, and dynamic target volume. Through the use of a detailed setup
that integrates DRL algorithms and a vast amount of granular market data, we have
achieved effective advancements towards the practical usage of DRL-based optimal trade
execution algorithms in the real market.

Table 1 demonstrates how our study developed a generalized DRL model for optimal
trade execution that can be utilized in diverse settings by comparing the model with the
existing studies in the literature. We focused on the three features of stock group size,
execution time horizon, and dynamic target volume, and the specifications in Table 1
denote the coverage of a single trained model. It should be noted that the dynamic target
volume implies that there are no preset values for each scenario.

As shown in Table 1, all of the previous studies had either a fixed or short range in the
execution time horizon. Moreover, none of the previous studies employed the dynamic
target volume. However, fixed or short execution time horizons and preset target volumes
are impractical compared with actual execution specifications. This is because the execution
time horizon and target volume considerably vary depending on the client or asset manager.
Although Hendricks and Wilcox (2014) [2] had a stock group size of 166, their model only
works for execution time horizons between 20 and 60 min with two fixed target volumes of
10,000 and 1,000,000 shares. Moreover, our study’s execution time horizon of 165–380 min
is the longest in the literature, and our study is the first to employ the dynamic target
volume, which signifies the practicality of our model and its ability to be the first to achieve
generalization across all three of the features mentioned above.

Table 1. Existing studies of RL for optimal trade execution.

Author Stock Group Size Execution Time
Horizon

Dynamic Target
Volume

Nevmyvaka et al. [1] 3 2–8 min No
Hendricks and

Wilcox [2] 166 20–60 min No

Shen et al. [9] 1 10 min No
Ning et al. [7] 9 60 min No

Ye et al. [6] 3 2 min No
Lin and Beling [8] 14 1 min No

Li et al. [10] 8 240 min No
Our study 50 165–380 min Yes

Additionally, simulating real markets within minimal discrepancy poses a significant
challenge, as accurately capturing the market impact and incorporating feedback from
all other market participants are nearly impossible (Kyle and Obizhaeva (2018) [11]). Al-
though reasonable assumptions can be incorporated into the simulation logic as in Lin and
Beling (2020) [8], such assumptions are more likely to lead to a discrepancy between the
simulation environment and the real market. In this regard, we attempted to minimize such
assumptions by utilizing level 3 data, which is one of the most granular form of market
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data, and developed a simulation environment that is highly representative of the real
market, as shown in Section 3.2 and 3.3. Moreover, the availability of such data allows
for the development of a sophisticated Markov decision process (MDP) state and reward
designs that lead to the enhanced training of the DRL agent. The details of the state and
reward designs can be found in Section 2.3.

Our main contributions in using DRL for optimal trade execution are as follows:

1. We set up an order execution simulation environment using level 3 market data
to minimize the discrepancy between the environment and the real market during
training, which cannot be achieved when using less granular market data.

2. We successfully trained a generalized DRL agent that can, on average, outperform the
volume-weighted average price (VWAP) of the market for a stock group comprising
50 stocks over an execution time horizon ranging from 165 min to 380 min, which is
the longest in the literature; this is accomplished by using the dynamic target volume.

3. We formulated a problem setting within the DRL framework in which the agent can
choose to pass, submit a market/limit order, modify an outstanding limit order, and
choose the volume of the order if the chosen action type is an order.

4. We successfully commercialized our algorithm in the South Korea stock market.

Related Work

Researchers from financial domains have shown great interest in the optimal trade
execution problem, making it a prominent research topic in the field of algorithmic trading.
Bertsimas and Lo (1998) [12] are the pioneers of the problem, and their use of dynamic
programming to find an explicit closed-form solution for minimizing trade execution costs
was a remarkable achievement. Building onto the research, Almgren and Chriss (2001) [3]
introduced the influential Almgren–Chriss model, which concurrently took transaction
costs, complex price impact functions, and risk aversion parameters into account. While
closed-form solutions can be utilized for trading, they require strong assumptions to be
made about the price movements. Consequently, more straightforward strategies such
as the time-weighted average price (TWAP) and volume-weighted average price (VWAP)
strategies still remain as the default options. Nevertheless, due to their simplicity and
inability to adapt, those strategies also struggle to outperform their respective benchmarks
when applied in the real market. For this reason, given that reinforcement learning (RL)
algorithms can dynamically adapt to the observed market conditions while minimizing
transaction costs, RL poses itself as an effective approach for tackling the optimal trade
execution problem.

Nevmyvaka et al. (2006) [1] were the first to present the extensive empirical application
of RL in the optimal trade execution problem using large-scale data. The authors proposed
a model that outputs the relative price at which to reposition all of the remaining inventory.
It can be thought of as consecutively modifying any outstanding limit orders with the
goal of minimizing implementation shortfall (IS) within a short execution time frame. The
authors used historical data from the electronic communication network INET for three
stocks, which they split into training and test sets for the time ranges of 12 months and
6 months, respectively. Their execution time horizon ranged from 2 min to 8 min with 5000
fixed shares to execute.

Then, Hendricks and Wilcox (2014) [2] extended the standard model of Almgren
and Chriss (2001) [3] by utilizing elements from the market microstructure. Because the
Almgren–Chriss framework mainly focuses on the arrival price benchmark, they optimized
the number of market orders to submit to be based on the prevailing market conditions. The
authors used 12 months of data from the Thomson Reuters Tick History (TRTH) database,
which comprises 166 stocks that make up the South African local benchmark index (ALSI).
Their execution time horizon ranged from 20 min to 60 min with the target volume ranging
from 100,000 to 1,000,000 shares.

While the two previous studies successfully employed Q-learning (Watkins and Dayan
(1992) [13]), an RL algorithm, for the purposes of optimal trade execution, the complex
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dynamics of the financial market and high dimensionality still remain as challenges. With
the recent advancements in the field of RL, deep reinforcement learning (DRL) in particular
has also gained a lot of popularity in the field of optimal trade execution, wherein the
efficacy of neural networks is leveraged as function approximators. Both value-based and
policy gradient methods, which are standard approaches in RL, are utilized.

Ning et al. (2021) [7] and Li et al. (2022) [10] employed the extended version of the
deep Q-Network (DQN) (Mnih et al. (2015) [14]; in the work of Van Hasselt et al. (2016) [15])
that focused on optimal trade execution, by taking advantage of the ability of deep neural
networks to learn from a large amount of high-dimensional data, they were able to address
the challenges of high-dimensional data that are faced by Q-learning schemes. Li et al.
(2022) [10] proposed a hierarchical reinforcement learning architecture with the goal of
optimizing the VWAP strategy. Their model outputs the following binary action: limit
order or pass. The price of the limit order is the current best bid or best ask price in the limit
order book (LOB), with the order size being fixed. The authors acknowledge the innate
difficulty of correctly estimating the actual length of the queue using historical LOB data,
which can potentially lead to a bigger gap between the simulation environment and the
real market. To prevent the agent from being too optimistic about market liquidity, the
authors introduced an empirical constant, which they set as three in their experiments,
as the estimator of the actual queue length. They were also the first to employ a DRL-based
optimal trade execution algorithm over a time horizon as long as 240 min.

Karpe et al. (2020) [16] set up a LOB simulation environment within an agent-based
interactive discrete event simulation (ABIDES); they were also the first to present the
formulation in which the optimal execution (volume) and optimal placement (price) are
combined in the action space. By using the double deep Q-Learning algorithm, the authors
trained a DRL agent, and they demonstrated its convergence to the TWAP strategy in some
situations. They trained the model using 9 days of data from five stocks and conducted a
test over the following 9 days.

In the context of policy gradient RL methods, Ye et al. (2020) [6] used the deep
deterministic policy gradient (DDPG) (Lillicrap et al. (2015) [17]) algorithm, which has
achieved great success in problem settings with continuous action space. Lin and Beling
(2020) [8] utilized proximal policy optimization (PPO) (Schulman et al. (2017) [18]), which
is a popular policy gradient approach that has demonstrated significant advantages in
stability despite being flexible among reinforcement learning algorithms. The authors
employed the level 2 market data of 14 US equities. They also designed their own sparse
reward signal and demonstrated its advantage over the implementation shortfall (IS) and
shaped reward structures. Furthermore, the authors used long short-term memory (LSTM)
networks (Hochreiter and Schmidhuber (1997) [19]) with their PPO model to capture
temporal patterns within the sequential LOB data. Their model optimizes the numbers of
shares to trade based on the liquidity of the stock market with the aim of balancing the
liquidity risk and timing risk.

In this study, we experimented with both value-based and policy gradient-based
approaches, mainly focusing on PPO applications. We employed a deliberately designed
Markov decision process (MDP), which included a detailed reward structure and an
elaborate simulation environment that used level 3 market data. Our findings in both the
experimental settings and the real market demonstrate the effectiveness of our approach
in terms of generalizability and practicability, which illustrates significant advances from
existing works in this field.

2. DRL for Optimal Trade Execution
2.1. Optimal Trade Execution

The optimal trade execution problem seeks to minimize transaction costs while liq-
uidating a fixed volume of a security over a defined execution time horizon. The process
of trading is carried out by following a limit order book mechanism wherein traders have
the option of pre-determining the price and volume of shares that they desire to buy or
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sell. A limit order entails the specification of the volume and price, and it is executed
when a matching order is found on the opposite side. In contrast, a market order simply
requires the specification of the quantity to be traded, and the orders are matched with the
best available offers of the opposite side. The two most commonly used trade execution
strategies are the time-weighted average price (TWAP) and volume-weighted average price
(VWAP) strategies (Berkowitz et al. (1988) [20] and Kakade et al. (2004) [21]). The TWAP
strategy breaks a large order into sub-orders of equal size and executes each within equal
time intervals. On the other hand, the VWAP strategy estimates the average volume of
trades during different time intervals using historical data and then divides orders based on
these estimates. In this paper, we present a DRL-based optimal trade execution algorithm
with the goal of outperforming the VWAP of the market. It should be noted that the VWAP
of the market is simply a scalar price value that is representative of the average trading
price of the specified period.

2.2. Deep RL Algorithms

In this section, we provide a brief explanation of the two primary deep reinforcement
learning algorithms that were used in this study.

2.2.1. Deep Q-Network (DQN)

The deep Q-network (DQN) (Mnih et al. (2015) [14]) is a value-based reinforcement
learning algorithm that uses deep neural networks to estimate the action-value function
Q(s, a). DQN implements experience replay, which involves storing transitions (s, a, r, s′)
in a replay buffer and sampling a minibatch of transitions from the buffer for training. s
denotes the state of the agent, a denotes the action taken by the agent in s, r denotes the
reward received by taking a action in s state, and s′ denotes the next state of the agent after
taking a action. To mitigate the potential overestimation of the Q-values, which can lead to
the learning of suboptimal policies, a target network is used alongside the online network.
Wang et al. (2016) [22] proposed a dueling architecture that uses two streams of neural
networks to independently estimate the state value function and the advantage function
and then combines them to obtain the Q-value. This allows the agent to better estimate
the value of each action in each state and learn to differentiate between states that have
similar values but different optimal actions. In this study, we utilized the above-mentioned
variation of DQN for comparative purposes.

2.2.2. Proximal Policy Optimization (PPO)

Proximal policy optimization (PPO), introduced by Schulman et al. (2017) [18], is a
policy gradient reinforcement learning algorithm that aims to improve upon the traditional
policy gradient methods (Sutton and Barto (2018) [23]) by enforcing a constraint on the
policy update to prevent it from straying too far from the previous policy. This constraint
is implemented by using a clipping hyperparameter ε that limits the change from the old
policy to the new policy. PPO utilizes the actor–critic architecture, where the actor network
learns the policy and the critic network learns the value function. The value function
estimates the expected cumulative return starting from a particular state s and following
the current policy π(a|s) thereafter. PPO operates through an iterative process of collecting
trajectories by executing the current policy in the environment. The advantage of each
action is estimated by comparing the observed reward with the expected reward from the
value function, and it is then used to compute the policy gradient. Although numerous
approaches have been newly developed, PPO still remains as one of the most popular
algorithms due to its relative simplicity and stability. Furthermore, PPO can be utilized
for problems with discrete, continuous, or even hybrid action spaces. In this paper, we
propose two PPO-based models: one model with discrete action space for both action type
and action quantity, denoted as PPO-discrete; and another model with discrete action space
for action type and continuous action space for action quantity, denoted as PPO-hybrid.
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We mainly focus on PPO-based models as the central algorithms and demonstrate their
efficacy for the optimal trade execution problem.

2.3. Problem Formulation

We define the execution problem as a T-period problem over execution time horizon
H (min), where time interval ∆T is 30 s and H ranges from 165 min to 380 min. Moreover,
execution job denotes a parent order that specifies the side (ask/bid), stock, number of
shares (V), and execution time horizon (H). The goal of the agent is to sell (or buy) V shares
over H by taking an action in each period Tn where n = {1,. . . , H

∆T } such that the VWAP of
the agent is larger (smaller) than the that of the market. In our problem setting, we train
buy and sell agents separately. The bid side denotes buying, while the ask side denotes
selling; we utilize the terms bid side and ask side in the remaining sections of the paper.
The DRL agent is trained to achieve the above-mentioned goal by interacting with the
simulation environment, which is explained in detail in Section 3.2.

States

To successfully learn the underlying dynamics of market microstructure, consistently
feeding representative data to the agent is crucial. Thus, we divide the encoded state into
two sub-states, market state and agent state, which are explained in detail below. Moreover,
in order to incorporate the temporal signals of time series data, we divide the data into
pre-defined time intervals, which are then encoded to capture the characteristics of the
respective time interval.

Market State:

We denote the price of the ith price level in the ask (or bid) side of the limit order
book at time step t as askpt

i (bidpt
i ) and the total volume of that price level as askvt

i (bidvt
i ) at

time step t. We include the top five price levels on both sides to capture the most essential
information of the order book.

• Order Book

- Bid/ask spread: askpt
1 − bidpt

1;

- Mid-price: askpt
1+bidpt

1
2 ;

- Price level volume: [askvt
1, . . . , askvt

5, bidvt
1, . . . , bidvt

5];
- Ask volume: ∑5

i=1 askvt
i ;

- Bid volume: ∑5
i=1 bidvt

i ;
- Order imbalance: ∑5

i=1(bidvt
i − askvt

i).

We denote the volume of the kth execution transaction from any side between t− 1 and
t as execvk

t−1,t and the price of that as execpk
t−1,t if there were n > 0 execution transactions

between t− 1 and t. Among those n execution transactions, we also denote the total volume
of the execution transactions from the ask (or bid) side as execvask

t−1,t (execvbid
t−1,t).

It should be noted that ∑n−1
k=0 execvk

t−1,t = execvask
t−1,t + execvbid

t−1,t.

• Execution

- Total execution volume: ∑n−1
k=0 execvk

t−1,t;
- Signed execution volume: execvask

t−1,t − execvbid
t−1,t;

- First execution price: execp0
t−1,t;

- Highest execution price: max{execpk
t−1,t}

n−1
k=0 ;

- Lowest execution price: min{execpk
t−1,t}

n−1
k=0 ;

- Last execution price: execpn−1
t−1,t.

All price features are normalized using the trading day’s first execution price, while
all volume features are normalized using targetvol .
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Agent State:

We denote the total volume of all executed orders of the agent up until time step t as
exect

agent. Moreover, we denote the total volume of all pending orders of the agent at time
step t as pendingt

agent. The target volume of the job is denoted by targetvol . The start time
and end time of the job is denoted by tradestart and tradeend, respectively.

• Job

- Target ratio:
targetvol−exect

agent
avgvol

;

- Pending ratio:
pendingt

agent
targetvol

;

- Executed ratio:
exect

agent
targetvol

;

- Time ratio: t−tradestart
tradeend−tradestart

.

• Pending Orders

- Pending feature: A list of volumes of any pending orders at each of the top five
price levels of the order book. For pending orders that do not have a matching
price in the order book, we added the pending orders’ quantities at the last index
of the list to still represent all outstanding orders.

Actions

We focused on giving the agent the most freedom possible. The agent chooses both
the action type and action quantity. The action type is the type of action, while the action
quantity is the volume of the order to be submitted. By learning the underlying dynamics of
market microstructure, the agent can decide which action to take with how much quantity
or to even take no action at all.

• Action Type

The agent chooses one of the following action types:

- Market order: submit a market order;
- Limit order (1–5): submit a limit order with the price of the corresponding price level

of the opposing side;
- Correction order (1–5): modify the price of a pending order to the price of the cor-

responding price level of the opposing side. The goal is to modify a pending order
that has remained unexecuted for the longest period due to its unfavorable price.
Thus, a pending order with the price that is least likely to be executed and the oldest
submission time is selected for correction. The original price of the pending order is
excluded to ensure that the modified price is different from the original price;

- Pass: skip action at the current time step t.

• Action Quantity

The action quantity can either be discrete or continuous, as explained in Section 2.2.2.
In both cases, the agent decides the quantity of the order as shown below.

- Discrete

actionQ is a scalar integer value that the agent chooses from the set of numbers {1, 2, 3,
4, 5}. The final quantity decided is QAGENT = QTWAP · actionQ, where QTWAP is the order quantity of
the TWAP strategy.
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- Continuous

actionQ is a scalar float value that the agent chooses between 0 and 1. The final quantity
decided is QAGENT = clip(actionQ · targetvol , 1, targetvol − exect

agent − pendingt
agent). The clip-

ping is to ensure the minimum order quantity of one and to prevent buying/selling excess
amounts.

Rewards

The reward is the feedback from the environment, which agent uses to optimize
its actions. Thus, it is paramount to design a reward that induces the desired behavior
of the agent. As the volume-weighted average price (VWAP) is one of the most well-
known benchmarks used to gauge the efficacy of execution algorithms, the goal of our
algorithm is to outperform the VWAP benchmark. Consequently, we directly use the
VWAP in calculating rewards. Although VWAP price can only be computed at the end
of the execution time horizon in real time, it is known at the start of the trading horizon
in our simulation. Accordingly, we can give the agent a reward signal based on its order
placements compared with the market VWAP price of the trading horizon. At each time step
t, we take the following three aspects into consideration when calculating the reward signal:

1. New orders submitted by the agent between time steps t − 1 and t, denoted as
agentorder

t−1, t;
2. Orders corrected by the agent between time steps t− 1 and t, denoted as agentcorr

t−1, t;

3. Pending orders of the agent at time step t, denoted as agentpending
t .

We then divide the reward signal into three sub-rewards: order reward, correction
reward, and maintain reward, with each representing one of the aspects above, respectively.
We also denote all remaining market execution transactions from time step t to the end of
the trading horizon as marketexec

t, end.
The order reward is calculated by going through agentorder

t−1, t and checking if the price of
each order is an “executable” price. More specifically, a price is “executable” if it is included
in marketexec

t, end or if it is lower (higher) than the lowest (highest) price in marketexec
t, end if it is on

the ask (bid) side. Then, for all orders with an “executable” price, the price of the order is
compared with the market VWAP price of the trading horizon; it is given a positive reward
if the price is advantageous compared with the market VWAP, and it is given a negative
reward if otherwise. A price is advantageous compared with the market VWAP if it is
higher (lower) than the market VWAP when it is on the ask (bid) side. The magnitude of
the reward depends on how advantageous or disadvantageous the price is compared with
the market VWAP. Furthermore, for all orders with a “not executable” price, a negative
order reward is given.

The correction reward is calculated in two parts. In the first part, we search through
agentcorr

t−1, t and check if the price of each correction order is an “executable” price. For all
correction orders with an “executable” price, the price of each correction order is compared
with the market VWAP price of the trading horizon. The rewards are given in the same
manner as in the order reward portion. In the second part, we search through agentcorr

t−1, t
again and check if the original price of each correction order is an “executable” price. For all
correction orders with an “executable” original price, the original price of each correction
order is compared with the market VWAP in the opposite manner. For example, if the
original price of the correction order is advantageous compared with the market VWAP
price, then a negative reward is given. Then, the final correction reward is calculated by
adding the rewards in the first and second parts.

The maintain reward is calculated by searching through agentpending
t and checking if

the price of each pending order is an “executable” price. Then, for all pending orders with
an “executable” price that is also advantageous compared with the market VWAP price,
a positive maintain reward is given; a negative maintain reward is given otherwise.
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2.4. Model Architecture

In this study, we mainly utilize the PPO algorithm with a long short-term memory
(LSTM) (Hochreiter and Schmidhuber (1997) [19]) network as shown in Figure 1. The ar-
chitecture of the model is designed to incorporate the RL formulation setup described
in Section 2.3. The input features from the simulation environment are provided to the
encoders in which the features are encoded into market states and agent states. The market
states and agent states are then separately fed into their respective fully connected (FC)
layers. Subsequently, the outputs from the market states’ FC layers are concatenated and
fed into an LSTM layer along with the hidden state from the previous step. Similarly,
the outputs from the agent states’ FC layers are concatenated and fed into an additional FC
layer. Then, the two outputs are concatenated as the final output. The final output is used
as the input for both the actor and value networks. In the actor network, the final output is
fed into two separate FC layers. In the PPO-discrete model, both outputs are subsequently
fed into a softmax function, which is used to form a categorical distribution for both the
action type and action quantity. In the PPO-hybrid model, one output is similarly fed into a
softmax function for the action type, and the other output is directly used to form a normal
distribution for continuous action quantity. In the value network, the final output is also
fed into an FC layer, which outputs the value. The use of a multiprocessing technique
for the actors allows the training time to be reduced by executing processes in parallel.
Table A2 provides information on the hyperparmeters used for training the models.

Figure 1. The overall architecture of the PPO model for optimal trade execution.

3. Simulation
3.1. Dataset

We utilized non-aggregated level 3 market data, also known as market By order (MBO)
data, which is one of the most granular forms of market data (Pardo et al. (2022) [24]). As
they are an order-based data that contain information of individual queue position, they
allow for a more precise simulation compared with less granular market data. LOB data
consolidate all orders of the same price into a single price level, which does not allow for
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the precise tracking of the positions of synthetic orders in the queue along with other orders
in the same price level. The dataset (as the dataset is proprietary, we are unable to make it
publicly available) includes 50 stocks listed on Korea Stock Exchange (KRX) from 1 January
2018 to 1 January 2020.

3.2. Market Simulation

We built an order execution simulation environment utilizing historical level 3 data.
Using level 3 data, orders that have been canceled or modified between each time step
are known. It is also known exactly which orders have been executed between each time
step. These allow us to track individual orders in each price level as shown in Figure 2
which informs us about how many orders with a higher priority are present before the
synthetic orders of the agent. In the limit order book mechanism, the priority of orders are
determined based on price, followed by time submitted. Without such information, it is
necessary to make assumptions about the number of orders having a higher priority as in
Li et al. (2022) [10]. As the location of the agent’s synthetic order in the LOB is known, we
are able to simulate the market more accurately.

At each time step t, the agent can place a market order or limit order. If a market
order is placed, it is executed immediately with the best available orders in the opposing
book, successively consuming deeper into the opposing book for any remaining quantities.
If a limit order is placed, it is first added to the pending orders of the agent. Then, we
construct a heap for market execution transactions between time steps t− 1 and t and for
the pending orders of the agent, separately. Both heaps are sorted in a descending order
based on the priority of the orders. Subsequently, each pending order is compared with
market execution transactions for priority, and every pending order with a higher priority
than any of the market execution transactions is executed. It should be noted that when the
agent corrects a pending order in the simulation environment, the pending order is first
canceled . Then, a new order with the modified price is submitted.

Figure 2. Depth chart description of the level 3 market simulation. Utilizing the data in (Figure 3)
enables the tracking of individual orders.
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Figure 3. Sample date (28 May 2019) description of execution data (Left) and order book data (Right)
for the level 3 market simulation environment.

3.3. Validity of Simulation Environment

Even with the most granular market data, it is impossible to completely eliminate
market impact in the simulation environment, as accurately simulating the behaviors of all
market participants in response to the synthetic orders of the agent is infeasible. One of the
most accurate ways to evaluate the magnitude of the discrepancy between the simulation
environment and the real market is by executing the exact same jobs on the exact same day
in both settings separately. One caveat for this approach is that it can only be done ex post.
However, since our algorithm was successfully commercialized and used in the real market
during the time period of 1 July 2020–29 December 2021, it is possible to replay those jobs
in the simulation environment using historical data. Figure 4 demonstrates the strong
positive correlation between the performance of the agent for 4332 jobs in the real market
and simulation environments. Each data point represents the performance of the agent for
the same job on the same day in the real market and in the simulation environment. The
performance summary of real market executions can also be found in Table A3.

Figure 4. Real market vs. simulation environment.

4. Experimental Results
4.1. Training Set Up

The settings of the environment during training are crucial for the successful learning
of the agent. The carefully designed training settings are as follows:
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• Side: ask and bid;
• Date range: 1 January 2018–1 January 2020;
• Universe (the full list of stocks is shown in Table A1): Fifty high-trading volume stocks

listed on Korea Stock Exchange (KRX);
• Execution time horizon: 165 min–380 min;
• Target volume: 0.05–1% of daily trading volume.

In each episode, a random date is sampled from the date range, and a stock from
the universe is selected through weighted random sampling, wherein the weights are
determined by the trading volume of each stock for the day. Furthermore, a random execu-
tion time horizon and target volume are sampled from their respective ranges. With the
sampled execution time horizon, the trading start and trading end times between 9:00 AM
and 15:20 PM are also randomly determined. With these specifications, an execution job
is created for each episode. Then, the agent is trained until convergence with the goal
of beating market volume-weighted average price (VWAP) of the same execution time
horizon. At the end of the execution time horizon, any remaining shares are submitted as a
market order to fulfill the target volume.

4.2. Training Results

In this section, the plots of the training process are presented. In plots (a) and (c) ((b)
and (d)) of Figure 5, each data point of the y-axis corresponds to the average performance
(win rate) of 200 episodes against the market VWAP.

(a) (b)

(c) (d)

Figure 5. PPO training plots. (a) Ask side performance, (b) ask side win rate, (c) bid side performance,
(d) bid side win rate.

The average win rate represents the ratio of episodes in which the agent outperformed
the market VWAP. The x-axis represents the optimization steps during training. In every
plot, PPO-discrete is displayed in red, and PPO-hybrid is displayed in blue. As the training
progresses, the average performance converges above the basis point of 0 while the average



FinTech 2023, 2 426

win rate converges above 50% for both the ask and bid sides, with PPO-discrete converging
at a slightly higher point than PPO-hybrid in every case. Convergence of the models above
the basis point value of 0 and the 50% win rate is substantial as it demonstrates that the
models have, on average, learned to outperform the benchmark for 200 execution jobs
generated with a random stock sampled from a 50-stock universe, a random execution time
horizon between 165 and 380 minutes, and a random target volume.

4.3. Validation

The settings of the environment during validation is the same as that of the environ-
ment during training with one exception. The date range is set to 2 January 2020–31 June
2020 in order to evaluate the efficacy of the trained agent in the out-of-sample data. For
each trading day, 50 jobs are created for the agent to execute. Both PPO and DQN are
used and compared for the performance and stability. Furthermore, the TWAP strategy
with a fixed limit order price is also compared as the baseline strategy. The summarized
performance for each model can be found in Table 2. The total field represents the mean
performance of the model across all execution jobs. The ask and bid fields represent the
mean performance of the model across all ask side jobs and bid side jobs, respectively.
It should be noted that all performance values are measured against the market VWAP.
As shown in the table, PPO-discrete performed the best, although by a modest margin
compared with PPO-hybrid, which is in line with the training results. For both PPO models,
it is notable that only two models (ask and bid) were trained to outperform the market
VWAP for 12,300 execution jobs that were randomly generated across stocks, an execution
time horizon, and a target volume. They also achieved significantly higher performances
than the DQN model and baseline TWAP strategy.

Table 2. Validation performance comparison.

Algorithm Total (Basis Points) Ask (Basis Points) Bid (Basis Points)

PPO-Discrete 3.282 2.719 3.845
PPO-Hybrid 3.114 2.604 3.623

DQN −3.752 −4.351 −3.153
TWAP Strategy −10.420 −9.824 −11.015

Furthermore, Figures 6 and 7 represent the daily performance of the PPO-discrete
model during the validation period. It should be noted that each data point in the bar
graphs represents the mean performance of the day across 50 execution jobs. Moreover,
the line plots represent the cumulative performance of the model over the validation period.
As shown in the figures, for both the ask and bid sides, the final cumulative performance is
considerably higher than the basis point of 0. It should also be noted that the y-axis on the
left represents the scale of the bar graphs, and the y-axis on the right represents the scale of
the line plot.
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Figure 6. Daily average performance—Ask.

Figure 7. Daily average performance—Bid.

5. Conclusions

In this study, we addressed the two unresolved issues in applying deep reinforcement
learning (DRL) to the optimal trade execution problem. First, we trained a generalized
optimal trade execution algorithm by utilizing a widely used reinforcement learning (RL)
algorithm, proximal policy optimization (PPO), combined with a long short-term memory
(LSTM) network. Moreover, we set up a problem setting in which the DRL agent has the
freedom to choose from all possible actions. We presented training results that demonstrate
the successful training of the generalized agent, which could handle execution orders
for 50 stocks and flexible execution time horizons ranging from 165 min to 380 min with
dynamic target volumes. Additionally, the validation result for the 6-month period showed
that the trained agent outperformed the market volume-weighted average price (VWAP)
benchmark by 3.282 basis points on average for 12,300 execution jobs randomly generated
across stocks, an execution time horizon, and target volume. This result is substantial as it
demonstrates the efficacy of the generalized model presented in this study. The generalized
model is highly practical as it reduces the time spent on training and validation compared
with having a model for each stock. Furthermore, Table 1 signifies the practicality of our
model and demonstrates that our study is the first to achieve generalization across all three
features of stock group size, execution time horizon, and dynamic target volume.

Secondly, we attempted to minimize the discrepancy between the simulation environ-
ment and the real market. We built an order execution simulation environment utilizing
level 3 market data, which contains information of each order, thus innately allowing for
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a more precise simulation compared with less granular market data. By also comparing
the performances of the trained DRL agent in the simulation environment and in the real
market for the same execution jobs on the same day, we further established the validity
of the simulation environment. By minimizing this discrepancy, we were able to train the
DRL agent accurately, which is demonstrated by successful commercialization in the South
Korea stock market for approximately 18 months.

A natural way to extend the presented study would be to apply it to other stock
exchanges. However, it would require the same caliber of data. Furthermore, building a
simulation environment for each exchange can be demanding and time-consuming. Thus,
future work could also extend the study with offline reinforcement learning, where the
DRL agent could be trained using historical data without a simulation environment.
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Appendix A

Table A1. Stock universe.

Stock Issue Code

000060, 000100, 000270, 000660, 000720, 000810, 002790, 003670, 004020, 004990,
005380, 005490, 005830, 005930, 005940, 006400, 006800, 007070, 008560, 008770,
009150, 009830, 010130, 010140, 010620, 010950, 011070, 011170, 011780, 015760,
016360, 017670, 018260, 024110, 028050, 028260, 028670, 029780, 030200, 032640,
241560, 055550, 068270, 033780, 035250, 035420, 066570, 086790, 035720, 307950

Table A2. Hyperparameters for PPO-discrete and PPO-hybrid.

Hyperparameter PPO-Discrete PPO-Hybrid

Minibatch size 128 128
LSTM size 128 128

Network Dimensions 256 256
Learning rate 5× 10−4 3× 10−4

Gradient clip 1.0 1.0
Discount (γ) 0.993 0.993

GAE parameter (λ) 0.96 0.96
Clipping parameter (ε) 0.1 0.1

VF coeff. 1.0 1.0
Entropy coeff. 5× 10−4 5× 10−4
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Table A3. Real-market performance summary.

Year Count Avg. Performance
(Basis Points) Win Rate (%)

2020 503 11.035 54.32
2021 3829 1.966 51.25
All 4332 3.019 51.61
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