Modelling the Impact of the COVID-19 Pandemic on Some Nigerian Sectorial Stocks: Evidence from GARCH Models with Structural Breaks
Abstract
:1. Introduction
- i.
- Contribution to the literature of GARCH models with an exogenous variable (in this case, COVID-19).
- ii.
- In-depth study of each sector stock market of Nigeria’s financial market to see how each fared during the COVID-19 pandemic.
2. Methodology
2.1. Variants of GARCH Models
2.1.1. The Standard GARCH(p,q) Model
2.1.2. The Asymmetric Power ARCH
2.1.3. GJR-GARCH(p,q) Model
2.1.4. Integrated GARCH(1,1) Model
2.1.5. Threshold GARCH(p,q) Model
2.1.6. Nonlinear GARCH(p,q) Model
2.1.7. EGARCH Model
2.1.8. Absolute Value GARCH Model
2.1.9. Nonlinear Asymmetric GARCH Model
- (i)
- The persistence index of an NAGARCH(1,1) can be seen as and not simply as is common with other GARCH models; and
- (ii)
- The NAGARCH(1,1) model is stationary if .
2.2. Persistence and Half-Life Volatility
- (i)
- When , the GARCH model is stationary and has a positive conditional variance.
- (ii)
- When , the model is strictly stationary. In addition, the GARCH model has an exponential decay model which makes the half-life value become infinity.
2.3. Distributions of GARCH Models
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Novel Coronavirus (2019-nCoV) Situation Report-7; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Feyisa, H.L.; Tefera, F.T. The Validity of Autoregressive Integrated Moving Average Approach to Forecast the Spread of COVID-19 Pandemic in Africa. Discret. Dyn. Nat. Soc. 2022, 2022, 2211512. [Google Scholar] [CrossRef]
- Adenomon, M.O.; Maijamaa, B.; John, D.O. The Effects of COVID-19 outbreak on the Nigerian Stock Exchange performance: Evidence from GARCH Models. J. Stat. Model. Anal. 2022, 4, 25–38. [Google Scholar] [CrossRef]
- Effiong, A.I.; Ime, R.N.; Akpan, E.J.; Mfreke, U.J.; Edidiong, I.F.; Abere, O.J.; Abraham, U.P.; Essien, M.O.; Ukpong, E.S. Assessment of Nigerian Television Authority (NTA) Ongoing Programme Awareness Campaigns on Corona Virus in Nigeria. Electron. Res. J. Soc. Sci. Hum. 2020, 2, 130–141. [Google Scholar]
- Akhtaruzzaman; Benkraiem, R.; Boubaker, S.; Zopounidis, C. Akhtaruzzaman; Benkraiem, R.; Boubaker, S.; Zopounidis, C. COVID-19 crisis and risk spillovers to developing economies: Evidence from Africa. J. Int. Dev. 2022, 34, 898–918. [Google Scholar] [CrossRef] [PubMed]
- IMF. World Economic Outlook Update. October 2020. The International Monetary Fund. 2020. Available online: http://www.elibrary.imf.org/OCT20WEO (accessed on 12 November 2022).
- The, U.N. World Economic Situations and Prospects. 2021. Available online: https://www.un.org/development/desa/dpad/publication/world-economic-situation-and-prospects-2021/ (accessed on 12 November 2022).
- Adenike, T.E. The Impact of COVID-19 on the Nigeria Financial Market Performance. J. Sus. Dev. Afr. 2022, 24, 111–122. [Google Scholar]
- Ozili, P.; COVID-19 Pandemic and Economic Crisis. The Nigerian Experience and Structural Causes. 2020. Available online: https://ssrn.com/abstract=3571085 (accessed on 12 November 2022).
- Ozili, P.; Arun, T. Spillover of COVID 19, impact on the global Economy. SSRN 2020. [Google Scholar] [CrossRef][Green Version]
- Akanni, L.O.; Gabriel, S.C. The Implication of COVID-19 on the Nigerian Economy. 2020. Available online: http://cseaafrica.org/the-implication-of-covid19-on-th-nigerian-economy/ (accessed on 8 April 2020).
- Albulesu, C.T. Coronavirus and Financial Volatility: 40 Days of Fasting and Fear. 2020. Available online: https://doi.org/10.2139/ssrn.3550630 (accessed on 12 November 2022).
- Sansa, N.A. The Impact of the COVID-19 on Financial Markets: Evidence from China and USA. Electron. Res. J. Soc. Sci. Humanit. 2020, 2, 29–39. [Google Scholar]
- Kapula, N.; Kodongo, O. Financial Markets Responses to COVID-19: A Comparative Analysis. Heliyon 2022, 8, e10469. [Google Scholar] [CrossRef]
- Haroon, O.; Rizvi, S.A.R. COVID-19: Media Coverage and Financial Markets Behaviour-A Sec-torial Inquiry. J. Behav. Exp. Financ. 2020, 27, 100343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Hu, M.; Ji, Q. Financial markets under the global pandemic of COVID-19. Financ. Res. Lett. 2020, 36, 101528. [Google Scholar] [CrossRef]
- Albulescu, C.T. COVID-19 and the United States financial markets’ volatility. Financ. Res. Lett. 2021, 38, 101699. [Google Scholar] [CrossRef] [PubMed]
- Bora, D.; Basistha, D. The outbreak of COVID-19 pandemic and its impact on stock market volatility: Evidence from a worst-affected economy. J. Public Aff. 2021, 21, e2623. [Google Scholar] [CrossRef] [PubMed]
- Jelilov, G.; Iorember, P.T.; Usman, O.; Yua, P.M. Testing the nexus between stock market returns and inflation in Nigeria: Does the effect of COVID -19 pandemic matter? J. Public Aff. 2020, 20, e2289. [Google Scholar] [CrossRef]
- Ashraf, B.N. Economic Impact of Government interventions during the COVID-19 Pandemic: International Evidence from Financial Markets. J. Behav. Exp. Financ. 2020, 27, 100371. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Han, L. The Impact of COVID-19 Pandemic on Transmission of Monetary Policy on Financial Markets. Int. Rev. Financ. Anal. 2021, 74, 101705. [Google Scholar] [CrossRef] [PubMed]
- Ayodele, T.; Akinyede, O.; Ojedele, M.; Afolabi, T. COVID-19 Pandemic and the Nigerian Financial Markets. J. Mgt Info. Decis. Sci. 2021, 24, 1–10. [Google Scholar]
- Emenogu, N.G.; Adenomon, M.O.; Nweze, N.O. On the volatility of daily stock returns of Total Nigeria Plc: Evidence from GARCH models, value-at-risk and backtesting. Financ. Innov. 2020, 6, 1–25. [Google Scholar] [CrossRef]
- Jiang, W. Using the GARCH Model to Analyse and Predict the Different Stock Markets. Master’s Thesis, Uppsala University Sweden, Uppsala, Sweden, 2012. [Google Scholar]
- Rossi, E. Lecture Notes on GARCH Models; University of Pavia: Pavia, Italy, 2004. [Google Scholar]
- Tsay, R.S. Analysis of Financial Time Series, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kuhe, D.A. Modeling Volatility Persistence and Asymmetry with Exogenous Breaks in the Nigerian Stock Returns. CBN J. Appl. Stat. 2018, 9, 167–196. [Google Scholar]
- Ahmed, R.R.; Vveinhardt, J.; Streimikiene, D.; Channar, Z.A. Mean reversion in international markets: Evidence from G.A.R.C.H. and half-life volatility models. Econ. Res.-Ekon. Istraživanja 2018, 31, 1198–1217. [Google Scholar] [CrossRef]
- Ali, G. EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH, IGARCH, and APARCH Models for Pathogens at Marine Recreational Sites. J. Stat. Econom. Methods 2013, 2, 57–73. [Google Scholar]
- Hsieh, K.C.; Ritchken, P. An Empirical Comparison of Garch Option Pricing Models. Rev. Deriv. Tives Res. 2005, 8, 129–150. [Google Scholar] [CrossRef][Green Version]
- Kononovicius, A.; Ruseckas, J. Nonlinear Garch Model and 1/F Noise. arXiv 2015, arXiv:1412.6244v2[q-fin.ST]. [Google Scholar]
- Lanne, M.; Saikkonen, P. Nonlinear Garch Models for Highly Persistent Volatility. Econom. J. 2005, 8, 251–276. [Google Scholar] [CrossRef]
- Malecka, M. GARCH Class Models Performance in Context of High Market Volatility. ACTA Univ. Lodz. Folia Oeconmica 2014, 3, 253–266. [Google Scholar]
- Nelson, D. Conditional heteroskedasticity in asset pricing: A new approach. Econometrica 1991, 59, 347–370. [Google Scholar] [CrossRef]
- Enocksson, D.; Skoog, J. Evaluating VaR (Value-at-Risk): With the ARCH/GARCH class models. LAP LAMBERT Academic Publishing: London, UK, 2012. [Google Scholar]
- Dhamija, A.; Bhalla, V.K. Financial time series forecasting: Comparison of neural networks and ARCH models. Int. Res. J. Financ. Manag. 2010, 49, 159–172. [Google Scholar]
- Grek, A. Forecasting Accuracy for ARCH Models and GARCH(1,1) Family which Model does Best Capture the Volatility of the Swedish Stock Market? Statistics Advance Level Theses 15hp. Örebro University: Örebro, Switzerland, 2014. [Google Scholar]
- Christoffersen, P.; Jacobs, K.; Ornthanalai, C.; Wang, Y. Option valuation with long- run and short-run volatility components. J. Financ. Econ. 2008, 90, 272–297. [Google Scholar] [CrossRef][Green Version]
- Enders, W. Applied Econometric Time Series; John Wiley: New York, NY, USA, 2004. [Google Scholar]
- Engle, R.F.; Lilien, D.M.; Robins, R.P. Estimating Time Varying Risk Premia in Term Structure: The ARCH-M Model. Econometrica 1987, 55, 391–407. [Google Scholar] [CrossRef]
- Hall, P.; Yao, P. Inference in ARCH and GARCH Models with Heavy-Tailed Errors. Econometrica 2003, 71, 285–317. [Google Scholar] [CrossRef]
- Banerjee, A.; Sarkar, S. Modelling Daily Volatility of the Indian stock Market Using Intraday Data’, Working Paper No. 588, IIM, Calcutta. 2006. Available online: http://www.iimcal.ac.in/res/upd%5CWPS%20588.pdf (accessed on 22 November 2022).
- Heracleous, M.S. Volatility Modeling Using the Student’s t Distribution. Ph.D Thesis, Virginia Pol-ytechnic Institute and State University, Blacksburg, Virginia, 2003. [Google Scholar]
- Wilhelmsson, A. 2006, GARCH Forecasting Performance under Different Distribution Assumptions. J. Forecast. 2020, 25, 561–578. [Google Scholar] [CrossRef]
- Ghalanos, A. Package ‘rugarch’. R Team Coop. 2018. [Google Scholar]
- Iwunze, R. Insurance in 2021: Optimism Hinged on Economic Recovery, Stronger and Enforcement. Insurance and You. Vanguard Online Paper. 2021. Available online: https://www.vanguardngr.com/2021/01/insurance-in-2021-optimism-hinged-on-econom-ic-recovery-stronger-enforcement/ (accessed on 12 November 2022).
- Colato, J. Nigeria: Central Bank Announces Stimulus Measures in March to Combat COVID-19 Impact. FOCUSECONOMICS. 2020. Available online: https://www.focus-econom-ics.com/countries/nigeria/news/monetary-policy/central-bank-announces-stimu-lus-measures-in-march-to-combat (accessed on 12 November 2022).
- Oluwadere, K. COVID-19 and the Nigeria Oil Economy. Financial Nigeria. 2020. Available online: https://www.financialnigeria.com/covid-19-and-the-nigerian-oil-economy-blog-562.html (accessed on 12 November 2022).
Insurance | Food and Bevarages | Oil and Gas | Banking | Consumer Goods | |
---|---|---|---|---|---|
min: max: median: mean: standard-dev skewness: kurtosis: J-B Test | −0.0826 0.06104 0.00236 0.0015 0.0176 −0.3161 6.135866 Chi-squared: 125.2742 p Value: <2.2 × 10−16 | −0.0554 0.0565 −0.0002 −0.0003 0.0148 0.0970 7.5910 Chi-squared: 258.2982 p Value: <2.2 × 10−16 | −0.0587 0.06747 0 0.0002 0.0145 −0.0425 10.27226 Chi-squared: 651.2702 p Value: <2.2 × 10−16 | −0.1339 0.0769 −0.0003 4.2941e−05 0.0252 −0.8527 7.4399 Chi-squared: 277.7695 p Value: <2.2 × 10−16 | −0.0908 0.0637 0.0003 0.0003 0.0172 −0.6472 8.0291 Chi-squared: 331.875 p Value: <2.2 × 10−16 |
Test statistic: | −11.9886 | −11.5032 | −12.0659 | −11.9441 | −11.2705 |
Critical value | −5.08 | −5.08 | −5.08 | −5.08 | −5.08 |
Breakpoint | 261 (20 January 2021) | 60 (26 March 2020) | 142 (27 July 2020) | 50 (23 March 2020) | 57 (23 March 2020) |
Arch Test (lag 15) | = 74.761, df = 15, p-value = 6.253 × 10−10 | = 36.051, df = 15, p-value = 0.001738 | = 30.743, df = 15, p-value = 0.009507 | = 88.179, df = 15, p-value = 2.166 × 10−12 | = 85.276, df = 15, p-value = 7.48 × 10−12 |
Insurance | ||||||
---|---|---|---|---|---|---|
Student t-Distribution | Skewed Student t-Distribution | |||||
Models | AIC | Half-Life | Persistence | AIC | Half-Life | Persistence |
sGARCH(1,1) | −5.430249 | 4.700756 | 0.8629018 | −5.433678 | 4.685996 | 0.8625011 |
gjrGARCH (1,1) | −5.434756 | 3.320903 | 0.8116204 | −5.440714 | 3.933909 | 0.8384519 |
eGARCH (1,1) | −5.435603 | 5.540889 | 0.8824115 | −5.443353 | 6.159152 | 0.8935622 |
apARCH(1,1) | −5.438118 | 3.227181 | 0.8067156 | −5.443518 | 3.653911 | 0.8272072 |
iGARCH(1,1) | −5.423510 | −Inf | 1.0000000 | −5.430062 | −Inf | 1.0000000 |
TGARCH(1,1) | −5.443094 | 3.187461 | 0.8045593 | −5.449578 | 3.700418 | 0.8291817 |
NGARCH(1,1) | −5.415279 | 7.247415 | 0.9087906 | −5.419009 | 10.795367 | 0.9378101 |
NAGARCH (1,1) | −5.434218 | 3.419928 | 0.8165404 | −5.440077 | 4.250878 | 0.8495404 |
AVGARCH(1,1) | −5.436992 | 3.218895 | 0.8062697 | −5.443787 | 3.908028 | 0.8374741 |
Food, Beverages and Tobacco | ||||||
---|---|---|---|---|---|---|
Student t-Distribution | Skewed Student t-Distribution | |||||
AIC | Half-Life | Persistence | AIC | Half-Life | Persistence | |
sGARCH(1,1) | −6.187684 | −1.736062 | 1.4907273 | −6.181459 | −1.711531 | 1.4992826 |
gjrGARCH (1,1) | −6.191418 | −1.719803 | 1.4963648 | −6.184810 | −1.712649 | 1.4988863 |
eGARCH (1,1) | −6.204170 | 11.631495 | 0.9421486 | −6.198026 | 12.052532 | 0.9441120 |
apARCH(1,1) | −6.177988 | NA | NA | −6.179059 | NA | NA |
iGARCH(1,1) | −6.178557 | −Inf | 1.0000000 | −6.172347 | −Inf | 1.0000000 |
TGARCH(1,1) | −6.181729 | 12.360041 | 0.9454638 | −6.175283 | 12.299470 | 0.9452027 |
NGARCH(1,1) | −6.182122 | NA | NA | −6.176249 | NA | NA |
NAGARCH (1,1) | −6.192942 | −2.572041 | 1.3093005 | −6.184288 | −4.106239 | 1.1838874 |
AVGARCH(1,1) | −6.173895 | 13.416227 | 0.9496471 | −6.174778 | 13.949783 | 0.9515255 |
Oil and Gas | ||||||
---|---|---|---|---|---|---|
Student t-Distribution | Skewed Student t-Distribution | |||||
AIC | Half-Life | Persistence | AIC | Half-Life | Persistence | |
sGARCH(1,1) | −6.407924 | 19.71041 | 0.9654446 | −6.402832 | 25.74334 | 0.9734340 |
gjrGARCH (1,1) | −6.414883 | 16.54482 | 0.9589704 | −6.401627 | 28.62948 | 0.9760798 |
eGARCH (1,1) | −6.47725 | 20.33172 | 0.9664827 | −6.495382 | 12.72524 | 0.9469867 |
apARCH(1,1) | −6.395022 | NA | NA | −6.398517 | NA | NA |
iGARCH(1,1) | −6.401054 | −Inf | 1.0000000 | −6.395362 | −Inf | 1.0000000 |
TGARCH(1,1) | −6.400915 | 13.02266 | 0.9481655 | −6.395914 | 12.42958 | 0.9457605 |
NGARCH(1,1) | −6.411548 | NA | NA | −6.401687 | NA | NA |
NAGARCH (1,1) | NA | NA | NA | −6.401862 | 23.18114 | 0.9705413 |
AVGARCH(1,1) | NA | NA | NA | NA | NA | NA |
Banking | ||||||
---|---|---|---|---|---|---|
Student t-Distribution | Skewed Student t-Distribution | |||||
Models | AIC | Half-Life | Persistence | AIC | Half-Life | Persistence |
sGARCH(1,1) | −4.953219 | −8.225464 | 1.0879209 | −4.946755 | −7.966655 | 1.0909033 |
gjrGARCH (1,1) | −4.947277 | −7.488073 | 1.0969864 | −4.940784 | −7.338821 | 1.0990535 |
eGARCH (1,1) | −4.949498 | 11.857763 | 0.9432206 | −4.943097 | 11.894102 | 0.9433890 |
apARCH(1,1) | −4.945765 | NA | NA | −4.939431 | NA | NA |
iGARCH(1,1) | −4.956633 | −Inf | 1.0000000 | −4.950104 | −Inf | 1.0000000 |
TGARCH(1,1) | −4.939225 | 12.750837 | 0.9470902 | −4.932824 | 12.833706 | 0.9474227 |
NGARCH(1,1) | −4.952212 | NA | NA | −4.945352 | NA | NA |
NAGARCH (1,1) | −4.950176 | −7.353524 | 1.0988460 | −4.943644 | −7.378198 | 1.0984997 |
AVGARCH(1,1) | −4.918602 | 22.477988 | 0.9696339 | −4.912585 | 24.508573 | 0.9721144 |
Consumer Goods | ||||||
---|---|---|---|---|---|---|
Student t-Distribution | Student t-Distribution | |||||
Models | AIC | Half-Life | Persistence | AIC | Half-Life | Persistence |
sGARCH(1,1) | −5.764543 | −14.214268 | 1.0499727 | −5.758081 | −14.379034 | 1.0493862 |
gjrGARCH (1,1) | −5.758090 | −14.067359 | 1.0505076 | −5.751610 | −14.259526 | 1.0498102 |
eGARCH (1,1) | −5.774400 | 10.903340 | 0.9384065 | −5.768480 | 11.137049 | 0.9396593 |
apARCH(1,1) | −5.750216 | −1.158048 | 1.8194753 | −5.743754 | −1.114669 | 1.8623544 |
iGARCH(1,1) | −5.769523 | −Inf | 1.0000000 | −5.763061 | −Inf | 1.0000000 |
TGARCH(1,1) | −5.753324 | 14.029914 | 0.9517956 | −5.746889 | 14.202949 | 0.9523687 |
NGARCH(1,1) | −5.756656 | −1.625200 | 1.5318860 | −5.749859 | −1.291511 | 1.7103445 |
NAGARCH (1,1) | −5.759109 | −13.832033 | 1.0513886 | −5.752596 | −13.716094 | 1.0518340 |
AVGARCH(1,1) | −5.746987 | 18.283307 | 0.9627982 | −5.741949 | 12.201455 | 0.9447749 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adenomon, M.O.; Idowu, R.A. Modelling the Impact of the COVID-19 Pandemic on Some Nigerian Sectorial Stocks: Evidence from GARCH Models with Structural Breaks. FinTech 2023, 2, 1-20. https://doi.org/10.3390/fintech2010001
Adenomon MO, Idowu RA. Modelling the Impact of the COVID-19 Pandemic on Some Nigerian Sectorial Stocks: Evidence from GARCH Models with Structural Breaks. FinTech. 2023; 2(1):1-20. https://doi.org/10.3390/fintech2010001
Chicago/Turabian StyleAdenomon, Monday Osagie, and Richard Adekola Idowu. 2023. "Modelling the Impact of the COVID-19 Pandemic on Some Nigerian Sectorial Stocks: Evidence from GARCH Models with Structural Breaks" FinTech 2, no. 1: 1-20. https://doi.org/10.3390/fintech2010001