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Abstract: Non-fungible tokens (NFTs) are a type of digital record of ownership used in a unique way:
ensuring authenticity and uniqueness. Due to these characteristics, NFTs have been used in several
markets: games, arts, and sports, among others. In 2020, the volume of negotiations of the NFTs was
about USD 200 million. Despite the strong interest of economic agents in operating with NFTs, there
are still gaps in the literature, regarding their dynamics and price interrelation with other potentially
related assets, which deserve to be studied. In this sense, the main purpose in this paper is to analyze
the cross-correlation between NFTs and larger cryptocurrencies. To this end, our methodological
approach is based on a Detrended Cross-Correlation Analysis correlation coefficient, with a sliding
windows approach. Our main finding is that the cross-correlations are not significant, except for
a few cryptocurrencies, with weak significance at some moments of time. We also carried out an
analysis of the long-term memory of NFTs, which demonstrated the antipersistence of these assets,
with results seemingly corroborating the market inefficiency hypothesis. Our results are particularly
important for different classes of investors, due to the analysis on different time scales.

Keywords: non-fungible tokens; detrended fluctuation analysis; detrended cross-correlation analysis;
efficiency

1. Introduction

Non fungible tokens (NFTs) are a type of digital record of ownership, used in a
unique way as a kind of intellectual property certificate, which guarantees authenticity
and uniqueness. NFTs cannot be exchanged, due to their individual specifications, unlike
cryptocurrencies. The main advantage of the technology is the possibility of guaranteeing
the authenticity of something, without the need for a regulatory body [1]. Due to this, NFTs
are being used for authenticity in several markets: games, arts, sports, and music, among
others. NFTs are not a new technology per se, given the launch of the first one in 2012,
called Colored Coins, also known as Bitcoin 2.x, although that was without much success.

Currently, the most common example of a NFT is the ERC-721 standard, which
operates on the Ethereum network, but there are also other standards, such as Enjin’s ERC-
1155, which is designed for use in video games. Ethereum is probably the second-most-
famous cryptocurrency in the world, after Bitcoin. For a NFT, however, it is fundamental,
because the cryptographic key is stored in the Blockchain Ethereum (ETH), which supports
the recording of the extra information that differentiates ETH as a virtual currency from a
NFT as a single asset (see, for example, [2]).

The financial trading volume of the three major NFT markets was about USD 342 million
in February 2021, as interest in digital collectibles increased. For comparison purposes,
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NFTs worth just USD 12 million were traded in December 2020, while the full-year of
trading was about USD 200 million [2]. A signal of the increasing interest in NFTs is
demonstrated by the fact that, in March 2021, a single NFT digital collage by the artist
Mike Winkelmann was sold at a Christie’s auction for USD 69.3 million [3]. With this, the
popularity of NFTs has increased, as can be seen in Figure 1. This figure shows the weekly
searches for the term “non-fungible tokens” in the last five years (between 29 June 2016 to
29 June 2021), according to Google Trends. The increase in searches, especially between
mid-2020 and early 2021, can clearly be seen. With the increase in the demand for NFTs
and cryptocurrencies, initial coin offerings (ICO) have emerged, which are a new form
of funding that generates billions to the blockchain, potentially challenging traditional
equity or business angel offerings. They represent a new business branch, emerging from
crowdfunding by employing blockchain technology to issue and exchange shares in startup
companies. From an issuing company’s perspective, ICOs have several benefits. First,
startups raise capital from investors without diluting their holdings. Second, the ICO
mechanism allows reaching a global investor base with almost no transaction costs [4,5].
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Studies into NFTs and finance are scarce, however. Ref. [6] found low volatility trans-
mission across NFTs, Bitcoin, and Ethereum returns, with limited low spillover between
these assets, even across NFT markets. Using a wavelet coherence analysis, the authors
found some comovements between the Decentral and LAND token markets and between
the Bitcoin and Ethereum cryptocurrencies. Their results show that NFTs and the cryp-
tocurrency markets appear to be distinct. Other examples of studies involving NFTs are
those of [7,8], which, although not directly related with our work, demonstrate the rele-
vance of the NFTs in different research areas. Furthermore, ref. [9] analyzed the interaction
between the cryptocurrency and the NFT markets, with their results showing that BTC and
ETH prices affect the NFT market, while the NFT market does not significantly influence
the price of cryptocurrencies. Finally, ref. [10] carried out a systematic review on NFTs,
concluding there was a scarcity of articles published in major economics journals, despite
the growing interest in the topic.

The Efficient Markets Hypothesis (EMH) refers to the way asset prices reflect available
information [11]. Studies into the efficiency of cryptocurrency markets have been carried
out by several authors, with some evidence of possible inefficiency (see, for example,
ref. [12] for a survey). Regarding NFTs, ref. [13] analyzes market efficiency from the dataset
of all secondary markets trading Decentral and LAND tokens, between March 2019 and
March 2021, and found antipersistence in daily data and a pattern close to the efficiency for
weekly data.

Regarding the cryptocurrency market, there are many studies assessing their mar-
ket efficiency (see [14–17], among many others). Recently, and already considering the
COVID-19 pandemic crisis, ref. [18] used the generalized Hurst exponent to analyze five
cryptocurrencies: Bitcoin, Ethereum, Ripple, Litecoin, and Binance. The authors concluded
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that in all cases, except for Bitcoin, the value of the Hurst exponent decreased when the
COVID-19 pandemic spread, showing that these cryptocurrencies have become less multi-
fractal and, therefore, more efficient. Furthermore, based on an asymmetric multifractal
detrended fluctuation analysis, ref. [19] studied Bitcoin, Litecoin, Ripple, and Ethereum
and found that they became less efficient after the beginning of the pandemic.

Specifically analyzing the reality of Fintech, we could find several papers devoted to
this topic. Ref. [20] used an exploratory study to assess the evolution of data aggregation
as well as the infrastructure in Fintech operations, through a vast database with thousands
of respondents. Among the main results, it was found that Fintechs offer innovative
financial services, while reaching additional markets than those of traditional financial
intermediaries. Ref. [21] studied the economic basis of projects implemented by Fintechs,
in order to compare their efficiency against conventional banks, through the traditional
analysis of cost–benefit and total cost of ownership, concluding for the greater operational
efficiency of Fintechs. Ref. [22] analyzed the use of financial services by Fintechs in the
pre- and post-COVID period in Bulgaria. Based on a questionnaire with hundreds of
individuals, those authors found that most respondents did not adequately know the
technologies of Fintech firms before the pandemic, although they started to use these tools
more often after that particular crisis. Finally, ref. [23] examined the risk profile of Fintechs
against non-Fintech firms in the US, using traditional econometric methods and machine
learning, concluding that no significant differences exist between Fintech and non-Fintech
firms, for that particular issue.

This article is organized as follows: after this introductory section, Section 2 presents
the methods and data used; Section 3 discusses the results; and Section 4 draws the final
conclusions.

2. Materials and Methods

Both data regarding NFTs and cryptocurrencies were retrieved from the websites
nofunglible.com and coinmarketcap.com, the former corresponding to NFT sales in USD
and the latter to the valuation of the cryptocurrencies under analysis. This study used
daily data from 23 June 2017 to 28 February 2021, with the choice of the cryptocurrencies
made by considering the ones with the highest trading volume at the moment of the first
observation.

Regarding the methodology and considering the type of data, we decided to apply two
different statistical physics methods: Detrended Fluctuation Analysis (DFA) and Detrended
Cross-Correlation Analysis (DCCA), in particular its correlation coefficient (ρDCCA). With
DFA, we intend to assess the long-range dependence of each individual time series, while
with ρDCCA we assess the paired correlation long-range dependence.

The DFA is applied for individual time series, as follows:

(i) Let xt of length N, starting by the calculation of the profile Xt = ∑ t
i=1(xi − 〈x〉), with

〈x〉 the mean observed value;
(ii) This Xt profile is then divided into different boxes of length n;
(iii) From each one, the local trend X̃t is calculated through the ordinary least squares, to

detrend the profile Xt and to calculate F(n) =

√
1
N ∑ N

t=1

(
Xt − X̃t

)2
;

(iv) After repeating the process for the different size boxes, the log–log regression is
applied between F(n) and n, with the DFA being expressed by the power law F(n) ∝
nα, which identifies α as the Hurst exponent.

If α = 0.5, the time series could be described as a random walk, which in the context
of financial markets means that the asset is efficient. If 0.5 < α < 1, the time series has a
persistent behavior, and if α < 0.5 it has an antipersistent behavior.

Originally proposed by [24], the DFA has been previously applied in financial markets
and even in the cryptocurrency market. The studies of [14,25,26] are just some examples of
studies applying DFA.
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The DCCA makes a similar analysis to the one of the DFA, but for paired relationships
and with similar steps, as follows:

(i) Based on two different time series, xt and yt, with equal length, the first step is the
calculation of the profiles Xt = ∑ t

i=1(xi − 〈x〉) and Yt = ∑ t
i=1(yi − 〈y〉), with 〈.〉 for

the mean observed values;
(ii) Both profiles are divided into boxes of length n, and the local trends X̃t and Ỹt are also

obtained through ordinary least squares;
(iii) The local trends are used to detrend the profiles and to obtain the covariance of the

residuals, given by f 2
DCCA(n) =

1
n−1 ∑ i+n

k=i

(
Xk − X̃k

)(
Yk − Ỹk

)
;

(iv) These residuals are the base of the calculation of the detrended covariance, given by
F2

DCCA(n) =
1

N−n ∑ N−n
i=1 f 2

DCCA;
(v) Proposed by [27], the DCCA was combined with the DFA by [28], generating the

DCCA correlation coefficient (ρDCCA), given by ρDCCA =
F2

DCCA
FDFA{x}FDFA{y}

This is an efficient coefficient [29,30] and testable through the procedure of [31], which
was used in this paper to obtain the confidence levels. The ρDCCA has already been used
in finance, including in the cryptocurrency market, by [17], for example. In our study, in
both cases, we wanted to evaluate the evolution of the parameters over time, so we applied
sliding windows approaches, based on windows of 250 observations. Other applications in
finance include [32–36].

Based on these robust methodologies, we want to analyze the evolution of the ef-
ficiency of the assets under analysis (through the use of DFA with a sliding windows
approach), as well as the way those assets evolve, considering their cross-correlations.
Considering the possible lack of liquidity of NFT, it is possible that a given asset could
suffer from some kind of inefficiency, which could be relevant when analyzing the cross-
correlation with the cryptocurrency market.

3. Results

We started our analysis by calculating the DFA with sliding windows, obtaining the
results presented in Figure 2. As can be seen, most of the assets under analysis evolved
from DFA exponents higher than 0.5 to a pattern at around the 0.5 level. The exceptions
are clearly USDT and NFT, which present a strong antipersistent behavior throughout the
period under analysis.

Regarding the cryptocurrencies, since 2018 the DFA has tended to approach the
0.5 level, which is consistent with the random walk behavior and with market efficiency.
However, with the COVID-19 pandemic that affected financial markets at the beginning
of 2020, represented in the figure by the first vertical dashed line, we can see that cryp-
tocurrencies seemed to become less efficient, with a slight but visible increase in the DFA
exponent, showing a persistent behavior.

Other behaviors observed were the clear antipersistent behavior of Dogecoin and
Litecoin and the more visible and persistent behavior of XRP and XLM. This may be
associated with the volume traded on the cryptocurrency market since the COVID-19
pandemic, with a greater increase in prices in some cases (for example, between 7 March
2020 to 6 March 2021, Bitcoin rose from USD 5182 to USD 61,195.3, representing an increase
of more than 1000% over a one-year period).

For NFTs, after the COVID-19 pandemic, the DFA value fell, showing greater antiper-
sistence, a trajectory contrary to market efficiency. This may be related to the fact that NFT
markets are still new, so they do not have as many agents involved as other markets.
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Regarding the ρDCCA, Figure 3 presents the evolution of the correlation coefficients
between NFTs and the different cryptocurrencies, for the time scales of 4, 16, 33, and 60 days.
It can be observed that most of the cryptocurrencies present nonstatistically significant
correlations with NFTs, during most of the periods under analysis.
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test the statistical significance of the correlations.

Evaluating the behavior of the 4-day time scale, it can be seen that, at the beginning
of 2019, there was a negative cross-correlation between the returns of the NFTs and the
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analyzed cryptocurrencies. Between the end of 2019 and the beginning of 2020, the returns
of the analyzed NFTs and cryptocurrencies showed a positive cross-correlation, significant
albeit relatively weak. At the end of 2020, a positive cross-correlation between the returns
of NFTs and the Litecoin cryptocurrency can be identified.

For the time scales of 16 and 33 days, we can find a similar movement, with a weak
negative cross-correlation between the returns of NFTs and some cryptocurrencies, in
early 2019, with that cross-correlation becoming positive in late 2019 and early 2020. After
that, the only significant correlation was the one between NFTs and Litecoin. For the
longer time scale (60 days), no negative cross-correlation was detected. On the contrary,
the Bitcoin, Dogecoin, Ethereum, Litecoin, and XRP cryptocurrencies showed weak and
positive cross-correlations with NFTs, in mid-2019 and mid-2020.

It is noteworthy that the existent significant correlations are relatively weak, with no
values above 0.4 at any time during the period under analysis. These results corroborate
the findings of [6], which concluded that NFTs are relatively independent assets in relation
to the cryptocurrency market, i.e., movements in cryptocurrencies do not affect NFTs nor
affect them weakly and at certain moments.

4. Conclusions

NFTs are assets used in several markets, such as sports, arts, and entertainment, with
a popularity that has increased recently. At the same time, some cryptocurrencies such
as Bitcoin and Ethereum have been setting record prices in 2020 and at the beginning of
2021. Based on this, we analyzed the cross correlation between the NFT market and some
cryptocurrencies to identify whether the boom in the NFT market correlates with the boom
in the cryptocurrency market.

Most of the time, a nonsignificant correlation was found between NFTs and cryp-
tocurrencies; when the correlations are significant, they are weak and restricted to some
cryptocurrencies. This is evidence that NFT returns are not correlated with those of cryp-
tocurrencies, corroborating the results found by [6], namely that NFTs are a distinct class
of assets. Despite the fact that some NFTs are created using a similar structure to some
cryptocurrencies, such as in the case of Ethereum, the price dynamics of these markets are
independent.

The dependence of the assets under analysis could be related to their market efficiency,
as NFTs show an antipersistent behavior throughout the period under analysis, a similar
result to that found by [13]. Moreover, after the start of the COVID-19 pandemic, NFT
returns became less efficient, which could be associated with the large trading volume that
was registered during this period, making the market more predictable.

Furthermore, analyzing the efficiency of the cryptocurrencies until the COVID-19 pan-
demic crisis indicates that these cryptocurrencies were becoming more efficient. However,
this changed after the COVID-19 crisis, with some signs of persistence, except for Dogecoin.
At the beginning of 2021, some cryptocurrencies became persistent (XRP and XLM) and oth-
ers became antipersistent (Dogecoin and Litecoin), showing that the COVID-19 pandemic
changed the market efficiency of some cryptocurrencies, given the detected heterogeneous
behavior.

The chosen methodologies are relevant for the purpose of our study. Firstly, DFA is a
robust methodology that is able to detect long-range dependence, even in the presence of
a nonstationary time series. DCCA and its correlation coefficient share the same feature,
although they are being used to analyze the relationship between variables for different
time scales (while other methodologies do not allow this feature). In particular, the results
show the absence of a relationship between the compared assets. It is possible that the
difference of liquidity levels could demonstrate that both markets are segmented, which
could be relevant for investors, when building their portfolios.

The present work has the limitation of estimating the correlation between assets in
a monofractal way. A generalization of this estimate and, consequently, an improvement
would be the use of a multifractal correlation (MF-DCCA), which would allow for a more
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detailed analysis. A suggestion for future work, therefore, would be the use of this tool.
Moreover, despite the conclusion about the possible existence of inefficiency, a deeper study
about the possible sources of inefficiencies would also be interesting and worth considering
for future research.
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