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Abstract: Goal programming (GP) can be thought of as an extension or generalization of linear
programming to handle multiple, normally conflicting objective measures. Each of these measures
is given a goal or target value to be achieved. Unwanted deviations from this set of target values
are then minimized in an achievement function. Production planning is an important process that
aims to leverage the resources available in industry to achieve one or more business goals. However,
the production planning that typically uses mathematical models has its own challenges where
parameter models are sometimes difficult to find easily and accurately. Data collected with various
data collection methods and human experts’ judgments are often prone to uncertainties that can affect
the information presented by quantitative results. This study focuses on resolving data uncertainties
as well as multi-objective optimization using fuzzy random methods and GP in production planning
problems. GP was enhanced with fuzzy random features. Scalable approaches and maximum
minimum operators were then used to solve multi-object optimization problems. Scaled indices
were also introduced to resolve fuzzy symbols containing unspecified relationships. The application
results indicate that the proposed approach can mitigate the characteristics of uncertainty in the
analysis and achieve a satisfactory optimized solution.

Keywords: hybrid uncertainty; fuzzy random data; fuzzy random goal programming; fuzzy random
regression model; max–min method; scalable index method

1. Introduction

Goal programming (GP) is a branch of multiobjective optimization, which in turn is a
branch of multi-criteria decision analysis (MCDA), also known as multiple-criteria decision
making (MCDM). This is an optimization programme. It can be thought of as an extension
or generalization of linear programming to handle multiple, normally conflicting objective
measures. Each of these measures is given a goal or target value to be achieved. Unwanted
deviations from this set of target values are then minimized in an achievement function.
This can be a vector or a weighted sum dependent on the GP variant used. As satisfaction of
the target is deemed to satisfy the decision maker(s), an underlying satisfactory philosophy
is assumed. GP is used to perform three types of analysis: Determine the required resources
to achieve a desired set of objectives; Determine the degree of attainment of the goals with
the available resources providing the best satisfied solution under a varying amount of
resources and priorities of the goals.

Production planning provides a blueprint for manufacturers as they carry out the
manufacturing process by planning the allocation of resources, manufacturing capacity,
human resources and capital [1]. This is a complex process that requires a number of
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steps to ensure goods, equipments, and human resources are available when needed [2].
Many factors need to be considered for company management to plan the production of
their products [3]. Determining the operation of new and existing plants is a task that
requires strategic planning by managers to maintain optimal production performance and
profitability [4,5]. Therefore, observations and predictions about the nature of the business
should be made by looking at historical data. Organizations now have more information
to consider than ever before when developing production plans [6]. Predicting production
planning is important because it can help make decisions in aggregate. Forecast results
also help companies plan, prioritize and make choices based on available resources [7].
In addition to the historical data needed for predictions, accurate forecasting techniques
must be considered. To overcome the problem of production planning, mathematical
programming methods [8] such as linear programming, mixed integer programming, and
search result rule algorithms are available in the literature.

Real-life concerns, as well as the nature of decision-making in production planning,
rely on human judgement. Human preferences and knowledge, human and machine
flaws, conflicting expert judgments, and inadequate data all result in ambiguity in decision-
making. Machine precision may compromise numerical historical data such as machine
capacity and running time. All of these characteristics influence to data ambiguity. In order
to acquire realistic findings from data analysis, it is necessary to express the uncertainties in
the data. Interpreting observational information with inherent measurement errors is one of
the most difficult problems. The measurement method may be the source of observational
errors. These inaccuracies are the result of a combination of the observed phenomenon’s
measure of variation and numerous factors that interfere with measurement [9,10]. Biased
estimations can be caused by inaccurately measured data [11]. Data with a variety of
uncertainties, such as political uncertainty, risk, insufficient knowledge, and random
events, might have an impact on the dada’s reliability [12,13]. These uncertainties can have
an impact on the information provided by quantitative results [13]. Despite the substantial
evidence of the impact of uncertainty, measuring uncertainty remains a challenge [12].
Due to the impossibility of eliminating all measurement errors in order to acquire exact
numbers, measurement or approximation with a specific limit is an optimal achievement.

Especially, considering hybrid uncertainty [14], we provide the methodology of fuzzy
goal programming (FGP) in hybrid uncertainty. This paper explains the decision making
in hybrid uncertainty including fuzziness and randomness. That is, under the situation of
fuzzy and randomness hybrid uncertainty, the GP methodology is illustrated.

The paper enables to interpret the decision making in such situation. At the end, we
provide a case study of production planning problem to make the method understood clearly.

The remainder of this article is divided into the following sections: There is a brief
review of GP and fuzzy programming in Section 2. The FGP is described as the primary
technique in Section 3. Section 4 explains the proposed methodology, while Section 5
provides a brief application in production planning. Finally, the conclusions are given in
Section 6.

2. Review of Existing Research Works
2.1. Goal Programming (GP)

GP was first used by Charnes, Cooper and Ferguson in 1955 [15], although the ac-
tual name first appeared in a 1961 text by Charnes and Cooper. Seminal works by Lee,
Ignizio [16], Ignizio and Cavalier [17], and Romero [18] followed. Schniederjans [19] gives
in a bibliography of a large number of pre-1995 articles relating to GP, and Jones and
Tamiz [20] give an annotated bibliography of a decade in 1990. A recent textbook by Jones
and Tamiz [21] gives a comprehensive overview of the state-of-the-art in GP. Mathemat-
ics of fuzzy sets has gained popularity in recent years and are employed in a variety of
research works to solve a m1ulti-goal mathematical programming problem. It is founded
on a concept of contentment. The GP model assists the decision-maker in analyzing many
objectives at the same time and selecting the most rewarding action from a set of options.
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The satisfying notion in GP is to follow decision-makers’ assessment actions in order to
achieve a set of stated goals as effectively as feasible [22,23]. The satisfying concept implies
that decision-makers will be satisfied if their objectives are attained in the given situation.
In decision-making, GPs have proven to be effective. However, GPs face challenges such as
determining the right goal values and the lack of decision makers in the modeling process.

A linear goal system with positive and negative changes between each target and
goal or aspiration level is known as GP [21,24]. In the specified task, this indicates the
most satisfying point for goal accumulation. Based on the concept of “satisfaction”, the
GP model’s response is the optimal compromise a decision maker can make [25]. The GP
model has two components that can be investigated: set limitations and goal functions.

2.2. Fuzzy Goal Programming (FGP)

FGP is goal programming with fuzzy variables, coefficients, data, criteria, constraints
or conditions. For example, a company wants to build a new factory, but it faces many
uncertain conditions and environments, has no data as reference, the market is unsteadily,
costs are difficult to control, etc. In this case, how do we build a suitable plan to make the
new factory profitable? How do we formulate earning target and costs purpose? Like this,
we need consider using GP.

The GP model was enhanced using fuzzy set theory [22] to manage uncertainty data,
resulting in FGP. The main goal is to improve the ability of FGP to deal with the nature of
uncertainty when modeling problems [26,27]. Uncertainties are frequently related to the
goal objectives in a case such as a production planning model. However, uncertainties can
also come from other elements of the model, such as system constraints. FGP, on the other
hand, will only deal with the fuzzy values it has in its model. Other types of uncertainty,
such as randomness, that are common in the environment are not handled by the existing
FGP. Because fuzziness and randomness are common in real-life events, it is impossible to
employ present systematic ways to deal with them, even if they are critical issues that need
to be addressed. To tackle the problem of hybrid uncertainty, the fuzzy random approach
must be integrated with the existing FGP.

The model’s performance can be influenced by the uncertainty found in the historical
data that were used to construct it. Standard analysis is unable to address such data due
to the inherent ambiguity. Many methods must be utilized to transform uncertainty into
certainty in order to discover the best solution because the facts, goals, or conditions are
not always known. The most significant elements to consider are the techniques used and
how they are changed. Unlike the traditional GP, the fuzzy model should be deployed first,
and the demands of decision makers must be addressed. Although the solution process
does not occur simultaneously, the majority of analyses are now employed to deal with
fuzzy objectives, constraints, or coefficients. As a result, in order to produce a suitable and
adequate model’s solution, this study article considers all of the sections at the same time.
From this perspective, developing a fuzzy programming system that can manage many
objectives is advantageous. We explore the renewal of the FGP technique to multi-objective
problems with hybrid uncertainty, which is motivated by the challenges of such scenarios.
Fuzzy random regression [28] is used in this paper to generate a parameter model for
modeling program objectives. The translation of fuzzy symbols is demonstrated using the
scaled index method to increase the range of unknown numbers to an acceptable level. This
is needed to provide flexibility over values as they reflect human decision-making, which
tends to be inaccurate. This strategy is accompanied by empirical results that show that
the model proposed in the optimization problem satisfies various objectives is ultimately
based on the treatment of fuzzy random data that solves the problem of uncertainties in
mathematical modeling.

The original GP was developed with objectives, constraints, and goal values that
had precise values. However, due to the uncertainty in the scenario, determining the
exact value for developing the model is difficult. This occurs when experts are unable
to precisely define the value of uncertainty, or when the value is unknown. As a result,
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fuzzy theory is employed to assist in the conversion of uncertainty into a specific value.
Fuzzy values in GP descriptions are used in some ambiguous and imprecise situations. In
the GP model, imprecise data show decision makers’ ambiguity or tolerance, as well as
expert’s inaccuracies.

To overcome uncertainties in multi-objective decision-making circumstances, FGP
combines GP and fuzzy set theory [27]. It’s acceptable to consider that the possible values
of the model is features and coefficients are unknown and that the decision maker can offer
them, or that these values can be found using historical data or statistical inference. As
a result of this exploratory investigation, many varieties of FGP have been studied and
widely distributed in the literature [29].

2.3. Fuzzy Multi-Criteria Linear Programming with Uncertainty

This method can be used to meet the following research categories: First, historical
data can be used to create an appropriate linear regression model [28] in the event of a
situation of difficulty and uncertainty in developing the target. Second, targets (goals) can
be determined even if past data is imprecise or unknown. Third, dealing with difficulties
that are not specified, such as restrictions or changes in environment.

3. Theoretical Background
3.1. Goal Programming (GP)

The GP model with all deterministic values is written as follows:

max V(µ) =
m

∑
i=1

µi

subject to µi =
Gi(X)− Li

gi − Li

AX ≤ b

µi ≤ 1

X ≥ 0, µi ≥ 0,

i = 1, 2, · · · , m,

(1)

The fuzzy accomplishment function V(u) is used here. In vector, AX ≤ b denotes the
rigid system constraints.

3.2. Fuzzy Goal Programming (FGP)

The problem of FGP is expressed as follows:

Find : x
to satisfy : Fi(x)>̃gi, i = 1, ..., n,
subject to : Ax≤b, x≥0,

(2)

It is worth noting that ∼, such as
∼
A, is not used to explain a fuzzy set or a fuzzy

number because their meaning is obvious in the context.
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3.3. Fuzzy Multi-Criteria Linear Programming with Uncertainty
3.3.1. Fuzzy Sets

Definition 1. Let Pos be a possibility measure defined on the power set Γ of some universe P(Γ).
< is the set of real numbers. A fuzzy variable defined on Γ is said to be a function Y : Γ→ <. The
possibility distribution µY of Y is defined by µY(t) = Pos(Y = t), t ∈ <, which is the possibility
of event (Y = t), for fuzzy variable Y. The possibility distribution µY(t), the possibility, necessity,
credibility of event {Y ≤ t} are given, as follows

Pos{Y ≤ t} = sup
µY

r ≤ τ (t)

Nec{Y ≤ t} = 1− sup
µY

r ≥ τ (t)

Cr{Y ≤ t} = 1
2
(
1 + sup

µY
r ≤ τ (t)− sup

µY
r ≥ τ (t)

) (3)

The credibility is a self-dual function that is defined as the average of the possibility
and necessity metrics cr(·) = (pos(·) + nec(·))/2. The credibility criterion aims to develop
a technique that combines two extreme examples of possibilities and demands. Possibility
is a function that expresses the degree of overlap and is quite optimistic, while being
pessimistic and articulating the level of admission is necessity [30]. According to the
credibility measure, the expected value of a fuzzy variable is as follows:

Definition 2. Assume that Y is a fuzzy variable. Expected value of Y is expressed as

E[Y] =
∫ ∞

0
Cr(Y ≥ t)dr−

∫ 0

−∞
Cr(Y ≤ t)dr (4)

Definition 3. Let Y = (αl , a, αr) be a triangular fuzzy variable with the possibility distribution
shown below.

µY(x) =



x− al

a− al ; al ≤ x ≤ a

ar − x
ar − a

; a ≤ x ≤ ar

0; otherwise

(5)

Based on (5), the expected value of Y is determined.

E[Y] =
al + 2a + ar

4
(6)

More theoretical results on fuzzy random variables can be found in Boading Liu [31],
Shuming Wang & Watada [14], Jaime Gil-Aluja [32]. Figure 1 shows fuzzy random data.
Note that fuzzy numbers occur with probability.
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Figure 1. Fuzzy random data.

3.3.2. Fuzzy Random Variable

Definition 4. Assume that the space (Ω, Σ, pr) is a probability space. Fv is a set of fuzzy variables
defined on the (Γ, P(Γ), Pos) possibility space. A fuzzy random variable is a mapping X : Ω→ Fv
such that Pos{X(ω) ∈ B} is a measurable function of ω for each Borel subset B of <. Let V
be a random variable defined on the probability space (Ω, Σ, pr), and define X(ω) = (V(ω) +
2, V(ω)− 2, V(ω) + 6)τ, which is a triangular fuzzy variable defined on the possibility space
(Γ, P(Γ), Pos) for every ω ∈ Ω. X is a triangular fuzzy random variable [33].

Definition 5. Let X be a fuzzy random variable defined on a probability space (Ω, Σ, pr). The
expected value of X is defined as

E[ξ] =
∫
[
∫ ∞

0
[

∞
inf

0
Cr{Y ≥ t} −

0
inf
−∞

Cr{Y ≤ t}dr] (7)

Given that V is a discrete fuzzy random variable that takes V1 = 3 with probability
0.2 and V2 = 6 with probability 0.8, the expected value of X is calculated.

Assume V is a discrete fuzzy random variable that has a probability of 0.2 for V1 = 3
and 0.8 for V2 = 6. The expected value of X is calculated.

We can deduce the following from Definition 3:

X(V1) = (5, 1, 9)T, pro = 0.2,
X(V2) = (8, 4, 12)T, pro = 0.8,

We may then calculate the following using the equation:

E(X(V1)) = 5,
E(X(V2)) = 8,
E(X) = 0.2×E(X(V1)) + 0.8×E(X(V2)) = 7.4

Definition 6. Let X be a fuzzy random variable specified in a probability space with an expected
value of e, and Var[X] = E[(X− e)2] be the variance of X. We can deduce the following when the
variables are symmetrical triangular fuzzy numbers:
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Var[X] =
(Xr − al)2

24
(8)

3.4. Building GP Models with Fuzzy Random Regression

When fuzzy random data are given, we can build a fuzzy random linear regression as
in Equation (9). In the Equation (9). Y and X are probabilistic fuzzy numbers, often known
as fuzzy random numbers.

Yi =
k

∑
j=1

AjXij (9)

Assume the output data are yi, the estimated value is Yi, and the input data are X. To
determine the estimated value of Yi, the relationship between the data must be discovered.

Yi =
k

∑
j=1

AjXij
FR
⊃ yi (10)

Using
FR
⊃ as a fuzzy random inclusion relationship, the equation is rewritten as follows.

min
Ak ;k=1···k

J(A) =
k

∑
k=1

(Ar
k − Al

k)

subject to Ar
k ≥ A;

l

Yi =
k

∑
j=1

AjXij
FR
⊃ yi

; i = 1, 2, · · · , n
; j = 1, 2, · · · , k

(11)

The technique of Watada and Wang [34], which is an expected value regression model,
is used.

min
Aj ;j=1···k

j(A) =
k

∑
j=1

(Ar
j − Al

j)

subject to Ar
k ≥ A;

l

Yi =
k

∑
j=1

AjXij
h
⊃ E(yi)

; i = 1, 2, · · · , n
; j = 1, 2, · · · , k

(12)

The fuzzy inclusion relation satisfied at level h is combined with the expectation and
variance of a fuzzy random variable, as well as the confidence-interval based inclusion
relation. Table 1 is then transformed into Table 2.
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Table 1. Fuzzy random input–output data.

Sample Output Input

1 Y1 X11 X12 · · · X1j · · · X1k

2 Y2 X21 X22 · · · X2j · · · X2k

...
...

...
...

...
...

i Yi Xi1 Xi2 · · · Xij · · · Xik

...
...

...
...

...
...

n Yn Xn1 Xn2 · · · Xnj · · · Xnk

Table 2. Confidence interval based input–output data.

Sample Output Input

I[eY, σY] I[eX1 .σX1 ] · · · I[eXk σXk ]

1 I[eY1 , σY1 ] I[eX11 σX11 ] · · · I[eX1k σX1k ]

...
...

... I[eX1k σX1k ]

i I[eYi , σYi ] I[eXi1 σXi1 ] · · · I[eXik σXik ]

...
...

... I[eX1k σX1k ]

n I[eYn , σYn ] I[eXn1 σXn1 ] · · · I[eXnk σXnk ]

The confidence interval of a fuzzy random variable is determined by its expectation
and variance. For each fuzzy random variable, the one-sigma confidence interval can be
represented as one-sigma interval [35,36].

I[ex, σx] ' [E(x)−
√

Var, E(x) +
√

Var] (13)

The fuzzy random regression model written as follows:

min
Aj ;j=1···k

J(A) =
k

∑
j=1

(Ar
j − Al

j)

subject to Ar
j ≥ A;

l

Yi =
k

∑
j=1

Aj I[ex, σx]
h
⊃ I[ey, σy]

; i = 1, · · · , n
; j = 1, · · · , k

(14)

The goal equations in this model can be obtained using LINGO.

4. Building Hybrid Uncertainty-GP Model with Scaled Index

The initial method for solving the multi-objective problem discussed in this paper is
GP. Because parameter values in objective programming are often difficult to obtain, fuzzy
random techniques are used to generate these figures using historical data. However, the
uncertainties found in the data to be used to generate the parameter values resulted in a
fuzzy random regression approach being chosen to manage these uncertainties. Therefore,
the hybrid uncertainty GP model is a GP model derived from fuzzy random regression. To
provide an acceptable integer range, an index scale approach was also added in this new
model type.
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4.1. Constraints Definition
4.1.1. Linear-Fuzzy Constrain Equations

Some of the model’s constraints are not predetermined and can be altered in a variety
of ways. Alternatively, one result may have one probability while the other has a different
one. Uncertainty must be considered in this instance, and changes must be made during
the modeling process. Some fuzzy terms, such as “about” and ”roughly equivalent to”,
should be translated into mathematical symbols and numbers. The constraint coefficient is
a fuzzy random variable that is set to the expected value in this research. As a result, it is
expressed using fuzzy symbols. The constraints model is written as,

subject to S(X)1

k

∑
j=1

Ajx1j ≺ gl ;

S(X)2

k

∑
j=1

Ajx2j ≈ g2;
(15)

4.1.2. Solving Fuzzy Constraint Equations

1. Weighting Method
The term “weight” refers to a metric, target, or standard. By comparing them to others,
weights are utilised to determine the model’s parameter relative value. The act of
assigning different weights to different elements to reflect their relative value is re-
ferred to as weighting in the evaluation process. Line supervisors, for example, assess
the overall quality of a product based on its appearance, utility, and manufacturing
time. Weights should be utilised to connect distinct purposes in linear multi-criteria
programming. If the weights are the same, the importance is the same; otherwise,
assign them distinct weights.
Equation weights are given to connect three linear equations into one.

max Yi = 30%×Y1 + 30%×Y2 + 30%×Y3 (16)

2. Substitute the precise value ak for the fuzzy coefficients, which represents the fuzzy
random data. (

pl pr

al
k ar

k

)
. (17)

3. Alter the constraints goals gi
Managerial experience is required to obtain random triangular data. For example,
we estimate the cost to be roughly 800 dollars. The range of this 800 is continually
changing according on the whole supply-demand situation. We can deduce from the
statistics and 10-year reference experience that 3 years equals 700 to 800 and 7 years
equals 800 to 900. As a result, we show that the likelihood of 800 is 0.3, while the
probability of 900 is 0.7. Such situation represents the existence of hybrid uncertainties
namely fuzziness and randomness. The expected value can be calculated to provide
a coordinated solution to set upper and lower bounds after understanding how to
obtain fuzzy random data.

max Yi J(A) =
k

∑
j=1

AjXij

subject to S(X)1 :
k

∑
j=1

ajX1j ≤ E(g1);

S(X)2 :
k

∑
j=1

ajX2j = E(g2);

(18)
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4. Fuzzy Symbols Transformation
The scalable index strategy involves using a scalable number li to raise the range of
an unknown integer to an acceptable range. The scalability index was changed to 1
and the range was changed to 9 or 11. Any number in the range [37,38] is appropriate.
The wider the range, the higher the scalability index. However, it has a low level of
precision. Translate ≺,�≈ to <,>= . ≤,≥

max Yi Yi =
k

∑
k=1

AkXik

subject to S(X)1 :
k

∑
j=1

ajX1j ≤ E(g1) + l1;

S(X)2 :
k

∑
j=1

ajX2j = E(g2) + l2;

(19)

Boundary can be obtained by calculating Equations (18) and (19).

4.2. Model’s Solution
4.2.1. Max–Min Method

Given two types of linear GP models. The goals are f (x), the constraint equations are
s(x), and the interval values are bi and di.

1. Maximizes the similarity of goals and constraints that are smaller than fuzzy
numbers.

Equation (19) is written into the following expression:

max fi(x) =
n

∑
i=1

k

∑
j=1

AjXij

subject to S(X) =


aijxij ≺ [bi, di]

X ≥ 0

(20)

MG(X) is a membership function of the goal equation, f (x)

MG(x) =

n

∑
i=1

k

∑
j=1

Aijxij − G0

d0

d0 = G1 − G2

(21)

The maximum value is G1, whereas the minimum value is G0.
MG(X) is a membership function of the goal equation, f (x)

MG(x) =



1 ;
n

∑
i=1

k

∑
j=1

ajxij ≤ bi

1−

n

∑
i=1

k

∑
j=1

aixij − bi

di
; bi <

n

∑
i=1

k

∑
j=1

ajxi,j ≤ bi + di

0 ;
n

∑
i=1

k

∑
j=1

akxi,j ≥ bi + di

(22)
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To connect MG(X) and MC(X), the auxiliary variable lambda is used.

max λ

subject to


1−

n

∑
i=1

k

∑
j=1

aixij − bi

di
≥ λ

n

∑
i=1

k

∑
j=1

AiXij − G0

d0
≥ λ

(23)

2. Minimize goals and constraint equations greater than fuzzy numbers.

min fi(x) =
n

∑
i=1

k

∑
j=1

AiXij

subject to s(x) =


aixij � [bi, di]

x ≥ 0

(24)

MG(x) =

G0 −
n

∑
i=1

k

∑
j=1

AiXij

d0
, d0 = G1 − G0 (25)

The value is G1, whereas the minimum value is G0. The membership function of
constraints equations S(x) is MC(X).

MG(x) =



1 ;
n

∑
i=1

k

∑
j=1

aixij ≥ bi

1 +

n

∑
i=1

k

∑
j=1

aixij − bi

di
; di − di ≥

n

∑
i=1

k

∑
j=1

aixijxij

0 ;
n

∑
i=1

k

∑
j=1

aixijxij < di − di

(26)

The auxiliary variable λ is used to connect MG(X) and MC(X).

max λ

subject to



1 +
n

∑
i=1

k

∑
j=1

aixij ≥ λ

G0 −
n

∑
i=1

k

∑
j=1

AiXij

d1
≥ λ

(27)
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3. Maximize and minimize goals and constraint equations have ≺,� at the same time.

Evaluation


max fi(x) =

n

∑
i=1

k

∑
j=1

Ai,jXij

min fi(x) =
n

∑
i=1

k

∑
j=1

Ai,jXij

subject to S(x) =


ai,jxij � [bi, di]
ai,jxij ≺ [bi, di]
x ≥ 0

(28)

Introduce the auxiliary variable λ to connect MG(X) and MC(X).

max λ

subject to



1−

n

∑
i=1

k

∑
j=1

aixij − bi

di
≥ λ

1 +

n

∑
i=1

k

∑
j=1

aixij − bi

di
≥ λ

n

∑
i=1

k

∑
j=1

AiXij − G0

d0
≥ λ

G0 −

n

∑
i=1

k

∑
j=1

AiXij

d0
≥ λ

(29)

4.2.2. Constructing Membership Function

1. Goals’ membership function The solution boundary is derived using Equations (28)
and (29). So, the difference is d0 = f1 − f0,

max λ

subject to µ(Yi) =



1 : Yi ≤ f0 + d0

1
d0

[Yi − f0] ; f0 + d0 < Yi ≤ f0 : d0

0 ; Yi > f0

(30)

2. Constraints’ membership function

µ(Yi) =


1 : S(X) ≤ E(gi)

1− 1
li
[S(X)− E(gi)] ; E(gi) < S(X) ≤ E(gi) + li

0 ; S(X) > E(gi) + li

(31)

li is scalable index, s(x) are constraints’ equations, E(gi) is expected value of gi.
3. Connect the goals and constraints of the membership function
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By referring to the max–min approach, an auxiliary variable λ is introduced to obtain
a new equivalent model.

max λ

subject to


1− 1

li
[S(X)− E(gi)] ≥ λ

1
d0

[Yi − f0] ≥ λ

(32)

The proposed method’s process flow is summarized as follows:

(1) To generate goal equations, a regression model was utilised to obtain coefficients by
using series fuzzy random data.

(2) Build constraints equations which includes the fuzzy random data, fuzzy symbols,
fuzzy goal values.

(3) Transform fuzzy random data by calculating the expectation. By adding tolerance to
goal values, convert fuzzy symbols like ≺,�≈ to <,>,= .

(4) Get the boundary numbers o and give the goal equations the same weights when the
importance of the goals is equal. The weights are different if they are not.

(5) The max–min and scalable index approaches were used to formulate the membership
function.

The technique outlined above is sufficient for creating a production planning model
that takes into account hybrid uncertainty.

5. Application to Production Planning Assessment

A company wants to build a new plant, but it lacks precise historical data and rely
on data from previous facilities as a reference. How can a management construct a fair
time, production, and labour cost plan while also satisfying the expectations of other
managers in this scenario? Table 3 provides information on product quantities, working
time, price, and cost from the other factories from the first to the eleventh year. Table 4
shows the capacity and constraints of production. We need to identify some procedures to
formulate a production planning model using the regression model. Working time goals,
pricing goals, and cost targets for the 12th year are all involved. The constraint equation
is then built. Fuzzy coefficients, fuzzy symbols, and constraint fuzzy objectives are all
examples of values that need to be transformed to certain integers. Following that, the
membership function was created using the max–min and scalable index methods. Finally,
solve the equation.

Manager wants to get some objectives based on reference data in Tables 3 and 4.

1. maximize reveues as much as possible over 1800 m
2. produce x1 at least 150
3. produce x2 at least 100
4. Make the working time of 1.2 as close to the maximum limit time as possible.
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Table 3. Original product quantities, working time, price, and cost data.

Year Product Quantities Working Time Price A and B Cost A and B

A B Process 1 and 2 Per Dozen Per Dozen

X1 X2 Y1 (×103) Y2 (×104) Y3 (×104)

1 (
0.5
60,

0.5
70) (

0.5
50,

0.5
55) (

0.1
1.50,

0.9
1.55) (

0.1
8.00,

0.9
8.50) (

0.5
2.00,

0.5
2.50)

2 (
0.4
70,

0.6
75) (

0.5
60,

0.5
75) (

0.1
1.60,

0.9
1.75) (

0.1
8.50,

0.9
9.00) (

0.5
2.00,

0.5
2.80)

3 (
0.3
80,

0.7
95) (

0.6
85,

0.4
95) (

0.6
1.70,

0.4
1.75) (

0.2
9.50,

0.8
9.80) (

0.6
2.50,

0.4
2.80)

4 (
0.3
60,

0.7
70) (

0.4
85,

0.6
95) (

0.6
1.80,

0.4
1.85) (

0.2
9.50,

08
11.00) (

0.6
2.50,

0.4
3.00)

5 (
0.5
90,

0.5
115) (

0.2
75,

0.8
90) (

0.3
1.80,

0.7
1.95) (

0.3
11.00,

07
11.50) (

0.8
2.55,

0.2
3.00)

6 (
0.7

130,
0.3

145) (
0.2
95,

0.8
110) (

0.3
1.90,

0.7
1.95) (

0.1
11.00,

09
12.00) (

0.1
2.55,

0.9
3.00)

7 (
0.7

150,
0.3

165) (
0.1

120,
0.9

130) (
0.8

2.00,
0.2

2.15) (
0.1

12.00,
09

12.50) (
0.2

3.05,
0.8

3.10)

8 (
0.6

135,
0.4

160) (
0.1

140,
0.9

160) (
0.8

2.00,
0.2

2.25) (
0.1

1.200,
09

13.00) (
0.5

35.5,
0.5

3.80)

9 (
0.5

160,
0.5

180) (
0.3

150,
0.7

170) (
0.5

2.10,
0.5

2.25) (
0.5

12.50,
05

13.50) (
0.5

3.65,
0.5

4.00)

10 (
0.5

185,
0.5

215) (
0.5

160,
0.5

180) (
0.1

22.0,
0.9

22.5) (
0.7

12.50,
03

14.50) (
0.4

40.5,
0.6

43.0)

11 (
0.5

215,
0.5

235) (
0.5

180,
0.5

190) (
0.1

2.30,
0.9

2.35) (
0.2

13.50,
08

14.50) (
0.2

4.25,
0.8

4.50)
Note: The above rondom values follow the Definition 17.

Table 4. Production Constraints.

Product

Product quantities X1 (about) X2 (about)

Price (per dozen) 9.00 (×104) 6.00 (×104)

Cost (per dozen) 3.00 (×104) 2.00 (×104)

Process 1 time (per dozen) 2 3

Process 2 time (per dozen) 6 3

5.1. Construction of Goal Equations

Rules or relationships between data should be obtained using regression models to
construct goal equations. Coefficients are relationships in linear regression models. As
a result, obtaining coefficients is a way of setting targets. The linear regression model is
shown in the followings:

Y1 = A11X1 + A12X2
Y2 = A21X1 + A22X2
Y3 = A31X1 + A32X2

(33)

The expectation of Tables 3 and 4 are calculated from Definitions 3 and 4,

5.2. Example

For instance, if we take a fuzzy random number like a1 = (0.3/2, 0.7/7) from the
distribution, and fuzzy random variable takes (0.3/(0.3/(4, 0, 8)), 0.7/(0.5/(9, 5, 13)) , the
expected value a1 can be calculated as follows:

E(a1) = 0.3×0 + 2×4 + 8
4

+ 0.7×5 + 2×9 + 13
4

= 7.5
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Variance value of Table 5 can be calculated based on functions (13) and (14).

Table 5. Expected values.

Year Product Quantities Working Time Price A and B Cost A and B

A B Process 1 and 2 Per Dozen Per Dozen

E(X1) (102) E(X2) (102) E(Y1) (105) E(Y2) (102) E(Y3) (102)

1 7.500 6.25 1.625 8.55 2.35

2 8.300 77.5 1.590 9.05 2.50

3 10.05 79.0 1.820 9.84 2.72

4 8.300 101 1.920 10.80 2.80

5 11.25 97.0 2.005 11.50 2.74

6 14.45 117 2.035 12.00 3.01

7 16.45 139 2.130 12.55 3.19

8 15.50 168 2.150 12.60 3.775

9 18.50 174 2.275 13.10 3.925

10 21.00 175 2.345 13.20 4.30

11 23.50 195 2.445 14.40 4.55

Note: The interval of expected values and variance per year are obtained as Tables 6–8, from function (13).

Table 6. Variance values/Year.

Year Product Quantities Working Time

A B Process 1 and 2

V(X1)
√

V V(X2)
√

V V(Y1)×102
√

V ×102

1 4.17 2.04 1.04 1.02 1.042 1.0210

2 1.04 1.02 9.38 3.06 9.375 0.3060

3 9.38 3.06 4.17 2.04 1.042 0.1021

4 4.17 2.04 4.17 2.04 1.042 0.1021

5 26.0 5.10 9.38 3.06 9.375 0.3062

6 9.38 3.06 9.38 3.06 1.042 0.1021

7 9.38 3.06 4.17 2.04 9.375 0.3062

8. 29.4 3.06 16.67 4.08 26.04 0.5103

9 16.6 4.08 16.67 4.08 9.375 0.3062

10 37.5 6.12 16.67 4.08 1.042 0.1021

11 16.67 4.08 4.17 2.04 1.042 0.1021
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Table 7. Variance values/Year.

Year Product Quantities Price A and B Cost A and B

A B Per Dozen Per Dozen

V(X1)
√

V V(X2)
√

V V(Y2) (×105)
√

V (×103) V(Y3) (×105)
√

V (×102)

1 4.17 2.04 1.04 1.02 10.417 1.0206 10.417 10.21

2 1.04 1.02 9.8 3.06 10.417 1.0206 26.667 16.33

3 9.38 3.06 4.17 2.04 3.750 0.6124 3.750 6.124

4 4.17 2.04 4.17 2.04 93.750 3.0619 10.42 10.20

5 26.04 5.10 9.38 3.06 10.417 1.0206 8.438 9.18

6 9.38 3.06 9.38 3.06 4.1667 2.0412 8.438 9.18

7 9.38 3.06 4.17 2.04 10.417 1.0206 0.104 1.02

8 9.38 3.06 0.16 4.08 41.667 0.4120 2.604 5.10

9 16.67 4.08 16.67 4.08 41.667 2.0412 5.104 7.14

10 37.5 6.12 16.67 4.08 166.67 4.0825 2.604 5.10

11 16.67 4.08 4.17 2.04 41.667 2.0410 2.604 5.10

Table 8. Interval of expectation/year.

Year Product Quantities Working Time Price A and B Cost A and B

A B Process 1 and 2 (Per Dozen) (Per Dozen)
[AL, AR] [BL, BR] [Y L

1 , Y R
1 ] (×103) [Y L

2 , Y R
2 ] (×104) [Y L

3 , Y R
3 ] (×104)

1 72.96 61.48 1.615 8.448 2.248
77.04 63.52 1.635 8.652 2.452

2 81.98 74.44 1.559 8.948 2.337
84.02 80.56 1.621 9.152 2.663

3 97.44 76.96 1.810 9.779 2.659
103.56 81.04 1.830 9.901 2.781

4 80.96 98.96 1.910 10.49 2.698
85.04 103.04 1.930 11.11 2.902

5 107.4 93.94 1.974 11.40 2.648
117.6 100.06 2.036 11.60 2.832

6 141.44 113.94 2.024 11.80 2.918
147.56 120.06 2.045 12.20 3.102

7 161.44 136.96 2.099 12.45 3.180
167.56 141.04 2.161 12.65 3.200

8 151.94 163.92 2.099 12.40 3.724
158.06 172.08 2.201 12.80 3.826

9 180.92 169.92 2.244 12.90 3.854
189.08 178.08 2.306 13.30 3.996

10 203.88 170.92 2.335 12.79 4.249
216.12 179.08 2.355 13.61 4.351

11 230.92 192.96 2.435 14.20 4.499
239.08 197.04 2.455 14.60 4.601
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The coefficients can be obtained using Equation (14) and LINGO. The Y1 calculation
method is as follows, and the Y2 and Y3 calculation processes are the same.

min J(A) = Ar
i1 − Al

i1 + Ar
i2 − Al

i2
subject to Al

i1×Il
X1

+ Al
i2×I + X2

l ≤ Il
Y1

Ar
i1×Ir

X1
+ Ar

i2×I + X2
r ≥ Ir

Y1



7.296× 101×Al
11 + 6.149× 101×Al

12 ≤ 1.615× 103

8.198× 101×Al
11 + 7.444× 101×Al

12 ≤ 1.540× 103

9.744× 101×Al
11 + 7.696× 101×Al

12 ≤ 1.810× 103

8.096× 101×Al
11 + 9.896× 101×Al

12 ≤ 1.910× 103

1.4× 103×Al
11 + 9.394× 101×Al

12 ≤ 1.974× 103

1.414× 102×Al
11 + 1.139× 102×Al

12 ≤ 2.025× 103

161.4× 102×Al
11 + 1.370× 102×Al

12 ≤ 2.099× 103

151.9× 102×Al
11 + 1.639× 102×A.

12l ≤ 2.099× 103

180.9× 102×Al
11 + 1.699× 102×A.

12l ≤ 2.244× 103

203.9× 102×Al
11 + 1.709× 102×A.

12l ≤ 2.335× 103

230.9× 102×Al
11 + 1.930× 102×Al

12 ≤ 2.435× 103

7.704× 102×Ar
11 + 6.149× 101×Ar

12 ≥ 1.635× 103

0.840× 102×Ar
11 + 8.056× 101×Ar

12 ≥ 1.626× 102

1.036× 102×Ar
11 + 8.104× 101×Ar

12 ≥ 1.830× 103

8.650× 102×Ar
11 + 1.030× 102×Ar

12 ≥ 1.930× 103

1.176× 102×Ar
11 + 1.001× 102×Ar

12 ≥ 2.036× 103

1.476× 102×Ar
11 + 1.201× 102×Ar

12 ≥ 2.045× 10.3

1.676× 102×Ar
11 + 1.410× 102×Ar

12 ≥ 2.161× 103

1.581× 102×Ar
11 + 1..721× 102×Ar

12 ≥ 2.201× 103

1.891× 102×Ar
11 + 1.781× 102×Ar

12 ≥ 2.306× 103

2.161× 102×Ar
11 + 179.08×102×Ar

12 ≥ 2.335× 103

2.391× 102×Ar
11 + 197.04×102×Ar

12 ≥ 2.455× 103

From above, the coefficients are obtained.
To construct the three goals, we use the average number as the final value.

Y1 = 9.05X1 + 8.21X2
Y2 = 366.74X1 + 604.1X2
Y3 = 134.68X1 + 143.06X2

(34)

5.3. Formulation of Constraints’ Equations

Table 10 is derived from Table 9. The data are obtained based on references and
past experience. [8.500 × 104, 9.500 × 104; 0.3, 0.7] indicates that x1’s price is in the in-
terval of 8.500 × 104 with probability 0.3 to 9.500 × 104 with probability 0.7. Using the
Definitions 3 and 4, the expected values are acquired.
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Table 9. Coefficients’ values.

A11 Average Value A12 Average Value

AL
11 AR

11
(AL

11 + AR
11)

2
AL

12 AR
12

(AL
12 + AR

12)

2
0.1967 18.09 9.05 12.62 3.803 8.21

A21 A22

AL
21 AR

21
(AL

21 + AR
21)

2
AL

22 AR
22

(AL
22 + AR

22)

2
0.1967 733.5 366.7 735.7 472.5 604.1

A31 Average Value A32 Average Value

AL
31 AR

31
(AL

31 + AR
31)

2
AL

32 AR
32

(AL
32 + AR

32)

2
0.6474 269.4 134.7 59.34 226.8 143.1

Manager wants their requirements to be met based on the reference data in Tables 10 and 11.

1. maximize revenues as much as possible over 1800 m.
2. produce product x1 at least 150.
3. produceproduct x2 at least 100.
4. Make the working time of products 1 and 2 as near to the maximum time restriction

as possible.

Table 10. Production constraints.

Product

A B

Product quantities X1 X2

Price (per dozen) [8.500 × 104, 9.500 × 104; 0.3, 0.7] [5.800 × 104, 6.200 × 104; 0.2, 0.8]

Cost (per dozen) [2.600 × 104, 3.600 × 104, 0.5, 0.5] [1.800 × 104, 2.200 × 104; 0.7, 0.3]

Process 1 time (per dozen) [1.8, 2.2; 0.4, 0.6] [2.7, 3.3; 0.6, 0.4]

Process 2 time (per dozen) [5.5, 6.5; 0.3, 0.7] [2.8, 3.2; 0.9, 0.1]

Table 11. Production constraints expected value.

Product

A B

Product quantities X1 X2

Price (per dozen) 9.200 × 104 96.12 × 104

Cost (per dozen) 3.100 × 104 1.920 × 104

Process 1 time (per dozen) 2.04 2.94

Process 2 time (per dozen) 6.2 2.84
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The needs of managers are presented in fuzzy numbers, which must be converted to
fuzzy random data.

1. maximize revenues are [1.700 × 107, 1.900 × 107; 0.5, 0.5]
2. produce product x1 is [140, 160; 0.3, 0.7]
3. produce product x2 is [80,120; 0.5, 0.5]
4. make working time of products 1 and 2 as [800,1000; 0.5,0.5] and [1600,2000; 0.4,0.6]

Five constraints equations are constructed based on the production constraints and
the manager’s requirements. The expression of numbers and symbols is in fuzzy.

Si(x)
{

g1 : about 2×X1 + about 3×X2 ≺ about 900
g5 : about 6×X1 + about 3×X2 ≺ about 1800

(35)

After that, the numbers are converted to expected values, and the formulae are
employed to calculate the lower limits.

Si(x)


g1 : 6.100 × 104×X1 + 4.200 × 104×X2 � 1.800 × 107

g2 : X1 � 154
g3 : X2 � 100
g4 : 2.04×X1 + 2.94×X2 ≺ 900
g5 : 6.2×X1 + 2.84×X2 ≺ 1840

(36)

To alleviate the uncertainty of fuzzy symbols, scalable indicies are introduced (unde-
termined relation). We give scalable index 1,000,000 to g1, 20 to g2, 20 to g3, 100 to g4, and
200 to g5. As a result, the following are the new constraints equations:

Si(x)


g1 : 61000×X1 + 42000×X2 ≥ 19000000
g2 : X1 ≥ 174
g3 : X2 ≥ 120
g4 : 2.04×X1 + 2.94×X2 ≤ 1000
g5 : 6.2×X1 + 2.84×X2 ≤ 2040

(37)

These equations are to be regarded as upper bounds in this case [37,38].

5.4. Solution of the Multi-Criteria Linear Goal Models

Three goal models are built in the following:

Y1 = min
X1,X2

9.05×X1 + 8.21×X2;

Y2 = max
X1,X2

3.6674× 102×X1 + 6.041× 102X2;

Y3 = min
X1,X2

1.3468× 102×X1 + 1.4306× 102×X2;

(38)

To meet all of the tree goals at the same time, we assign the same weights of 0.333 and
merge them into a single equation.

max
X1,X2

0.333×(9.05×X1 + 8.21×X2) + 0.333×(3.667× 102×X1 + 6.041× 102×X2)

= −0.333×(1.347× 102×X1 + 1.431× 102×X2);
(39)

After linking the objective and constraint equations, the upper and lower limits
are obtained.
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max {−0.333×(9.05×X1 + 8.21×X2) + 0.333×(366.74×X1 + 604.1×X2)
−0.333×(134.7×X1 + 143.1×X2)};

Subject to 6.1004×x1 + 4.200× 104×x≥1.800× 107;
x1 ≥ 1.540× 102;
x2 ≥ 1.000× 102;
2.04×x1 + 2.94×x2 ≤ 9.000× 102;
6.2×x1 + 2.84×x2 ≤ 1.840× 103;

(40)

Y1 = min
X1,X2

9.05×X1 + 8.21×X2;

Y2 = max
X1,X2

3.6674× 102×X1 + 6.041× 102×X2;

Y3 = min
X1,X2

1.3468× 102×X1 + 1.4306× 102×X2;

(41)

max
X1,X2

{−0.333×(9.05×X1 + 8.21×X2) + 0.333×(366.7×X1 + 604.1×X2)

−0.333×(134.68×X1 + 143.06×X2); }
Subject to 6.1000× 104×x1 + 4.2000× 104×x2 ≥ 1.9000× 107;

x1 ≥ 174;
x2 ≥ 120;
2.04×x1 + 2.94×x2 ≤ 1.000× 103;
6.2×x1 + 2.84×x2 ≤ 2.040× 103;

(42)

By calculation, the upper and lower limits are

(X1 = 1.6144× 102, X2 = 1.9411× 102)
(X1 = 1.7400× 102, X2 = 2.1940× 102)

Y1 = [3.0548,×103, 3.3760× 103]
Y2 = [1.7647× 105, 1.9635× 105]
Y3 = [4.9512× 104, 5.4822× 104]

The fuzziness are d1 = 321.29, d2 = 19883.94, d3 = 5309.56.
The following equation is built by utilizing max–min method and Equations (20)

and (21).

µGi (x) =



1
3.2129× 102 [30.547× 103 − f (Y1)]

1
1.9883× 104 [ f (Y2)− 1.7647× 105]

1
5.3096× 103 [4.9512× 104 − f (Y1)]

(43)

By combining the two membership functions and adding the auxiliary variable λ, a
new equivalent model is created.
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max λ

subject to



1
1.3213× 102 [3.0547× 103 − f (Y1)] ≥ λ

1
1.9884× 104 [ f (Y2)− 1.1765× 105] ≥ λ

1
5.3100× 103 [4.9512× 104 − f (Y1)] ≥ λ

1 +
1

1.000× 106 [s1(x)− 1.8000× 107] ≥ λ

1 +
1

20
[s2(x)− 154] ≥ λ

1 +
1

20
[s3(x)− 100] ≥ λ

1 +
1

100
[s4(x)− 100] ≥ λ

1 +
1

200
[s5(x)− 100] ≥ λ

(44)

Through calculation, x1 = 1.446 ×102, x2 = 2.218 ×102 and λ = 0.5299 are obtained.
The values are then used in the following equations:

Y1 = 9.05×X1 + 8.21×X2;
Y2 = 3.667 × 102 ×X1 + 6.041 × 102 ×X2;
Y3 = 1.347 × 102 ×X1 + 1.431 × 102 ×X2,
Y1 = 3.129 × 102, Y2 = 1.8701 × 105, Y3 = 5.1203 × 104,

The upper and lower limits are obtained as

Y1 = [3.0547 × 103, 3.3760 × 103],
Y2 = [1.7647 × 105, 1.9635 × 105],
Y3 = [4.9512 × 104, 5.4822] × 104.

These results are acceptable.

6. Conclusions

The production planning process in industry involves a variety of responsibilities and
real situations. It requires the management to make judgments and decisions that are in the
best interests of the factory or business. As a result, the mathematical solution approach has
been found to be beneficial in assisting in the creation of a solution. The FGP approach has
been discovered to be capable of addressing the three categories of challenges listed below
from two perspectives. To begin, if a manager faces a situation in which he or she is unsure
how to achieve a realistic goal, an acceptable linear regression model can be developed
using historical data to generate a target problem model. Second, even if earlier data failed
to precisely predict the current condition, which should not be surprising, mathematical
models can still be produced utilizing the uncertainty technique while accounting for this
uncertainty. Third, some unidentified issues, such as constraints, can be solved where the
situation is not improving and can be altered. The data utilized, on the other hand, have an
impact on the model’s accuracy. Because the model parameters are obtained from the raw
data, this is the case. There are numerous sources of uncertainty, including inaccuracies,
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which can affect the accuracy of the data and forecast findings. As a result, for data with
uncertainty characteristics, additional data processing approaches are required.

This research has provided the GP model to deal with hybrid uncertainty, hybrid
uncertainty, interval fuzziness, type 2 fuzziness. This paper concentrated only on fuzzy
multi-criterion decision making by means of fuzzy regression method. The method enables
us to treat such uncertainty by using fuzzy numbers. Especially, using the application to
ploduction planning, we provided the assessment method of uncertainty. Repeatedly, we
emphasize the points we provided in the paper that considering hybrid uncertainty [14],
we provided the methodology of FGP in hybrid uncertainty. This paper explained the
decision making in hybrid uncertainty including fuzziness and randomness.

The paper enabled us to interpret the decision making in such situation using the case
study of production planning problem.

Future Research

We have discussed hybrid uncertainty-GP model. Such hybrid uncertainty comes
from fuzzy sets, interval fuzzy sets, type 2fuzzy sets as well as intuitionistic fuzzy sets.
tevarious uncertainties such as interval fuzzy sets, type 2 fuzzy sets, intuitionistic fuzzy
sets. Inorder to deal with such uncertainty, we can employ rough sets [39], support vector
machine [40–44], neural networks [45,46], as well as deep learning. We proposed the
decision making under hybrid uncertainty by means of fuzzy random GP. Regarding
decision making we may employ a rough set approach [47,48] which has capability to
obtain decision rules in the method [41,42] and develop further horison in GP. Regarding
fuzzy linear regression model, we may employ fuzzy support vector machine [42] to deal
with non-lenear descrimination [41,49]. Regarding an intuitionistic fuzzy sets approach [50],
the FGP can be rebuild various methodologies as intuitionistic FGP [50]. We understand
plural heuristics can develop more effective and efficient methodologies than a single
heuristic method. We will develop such plural heuristic methodologies to build further
methodologies in our future research.
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