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Abstract: Artificial intelligence is more present than ever in virtually all sectors of society. This
is in large part due to the development of increasingly powerful deep learning models capable
of tackling classification problems that were previously untreatable. As a result, there has been a
proliferation of scientific articles applying deep learning to a plethora of different problems. The
interest in deep learning in agriculture has been continuously growing since the inception of this type
of technique in the early 2010s. Soybeans, being one of the most important agricultural commodities,
has frequently been the target of efforts in this regard. In this context, it can be challenging to keep
track of a constantly evolving state of the art. This review characterizes the current state of the art
of deep learning applied to soybean crops, detailing the main advancements achieved so far and,
more importantly, providing an in-depth analysis of the main challenges and research gaps that still
remain. The ultimate goal is to facilitate the leap from academic research to technologies that actually
work under the difficult conditions found in the the field.
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1. Introduction

Soybean (Glycine max L.) has become the most important oilseed crop and one of
the five most important food crops worldwide [1,2]. Its high protein content makes
soybean a prime source of feed for livestock, and soybean oil is used for both human
consumption and industrial applications [1]. While the demand for soybeans continues to
grows worldwide [3], environmental pressures due to climate change are becoming more
widespread and extreme [4]. In order for the soybean yield to keep up with the demand,
new solutions to current production limitations are needed. Although extensive breeding
efforts have led to the development of varieties quite robust to different conditions, soybean
crops are still vulnerable to many factors. Stresses caused by diseases, pests, unfavorable
weather, nutrition imbalances, and others, are responsible for losses that can easily surpass
20% of the total world production [2]. Although completely eliminating losses is likely
unfeasible, closely monitoring each one of the relevant variables can greatly mitigate the
problem [5]. However, continuous monitoring may require too large a workforce, unless
some type of automation is employed. In this context, artificial intelligence techniques
emerge as powerful aiding tools for farm monitoring and management [6].

One of the possible definitions for artificial intelligence (AI) states that this is “a
computational data-driven approach capable of performing tasks that normally require
human intelligence to independently detect, track, or classify objects” [7]. Techniques fitting
this definition have existed for many decades, including expert systems, neural networks
and other types of machine learning algorithms. With the inception of deep learning
models in the first half of the 2010s, the application of artificial intelligence has grown
steeply both in number and scope. This is certainly true in the case of agriculture, for which
applications like plant disease recognition [5], yield estimation [8], plant nutrition status [9],
and biomass estimation [10], among many others, have experienced a surge in the number
of articles employing artificial intelligence. Among AI techniques, deep learning has been
particularly successful and well adapted to difficult classification problems. One of the
reasons for this success is that with deep learning, the explicit extraction of features from the
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data is no longer required [11,12], making the classification process more straightforward,
less biased and more robust to different types of conditions [13].

While the leap between academic research and practical solutions has been successfully
completed in some cases (e.g., weed detection and control), in most cases, real-world
conditions and variability are too challenging for techniques and models that are, more
often than not, trained on data that represent only a small fraction of reality [14]. The
most direct way to address this problem is to expand the datasets used to train the models.
This is by no means a trivial task, especially considering that the variability involved in
some classification problems may require a number of images that can reach the order of
millions. Increasing the practice of data sharing and exploring citizen science concepts
can help reduce the problem, but in many situations, all-encompassing datasets may be
unfeasible [14]. If supervised learning is adopted, there is the additional challenge of data
annotation, a process that is often expensive, time-consuming and error-prone [15]. New
annotation strategies capable of speeding up the process are already being studied [16], but
these were still incipient when this article was written.

AI models failing when presented with new data with distinct statistical distribution,
a phenomenon often called “covariate shift” [17], is arguably the most important hurdle for
the more effective use of artificial intelligence-based technologies in agriculture, but other
factors are almost always present. Each application has its own challenges, so systemically
understanding how data and technical issues affect the performance of the models is
fundamental for the construction of suitable solutions. Many of these challenges have
already been experienced in previous studies and reported in the literature, so a proper
understanding of the current state of the art is critical to the novelty of new research and
to avoid repeating mistakes. Research on deep learning applied to crop management has
been extensive across different types of crops, so including all research would make the
article somewhat redundant and impractically long. Soybean, being a major agricultural
commodity, has received considerable attention from researchers, to the point that it
encapsulates most of the approaches adopted across different crops. This was the main
motivation for narrowing the scope of the review to research related to this crop only.

The use of deep learning for soybean monitoring started to gain momentum after 2015.
Early research was mostly dedicated to disease and pest detection, but soon, applications
like phenotyping, seed counting, cultivar identification and yield prediction began being
explored. Since the beginning, studies have been focusing on the investigation of different
deep learning models and architectures in the context of each different application and
domain. Although this type of research has yielded relevant results, there are not many
technologies being effectively used in practice. One important exception is weed detection,
as machinery from different manufacturers already have the ability to not only detect the
weeds but also actuate to eliminate the problem. For most applications, there are still
significant challenges that require more suitable solutions. New approaches emphasizing
model interpretability and fine tuning are beginning to be explored [18–20], but the research
gap is still substantial. In this context, the main objective of this review is to properly
characterize the current state of the art of deep learning applied to soybean monitoring
and management. Special emphasis is given to the main challenges and research gaps
reported in the articles, as well to issues that are not usually addressed by the authors
but are relevant for the effectiveness of the proposed techniques nonetheless. This article
differs from other reviews because it does not focus on findings that are specific to each
application, concentrating instead on general trends and challenges that affect most efforts
to apply deep learning to solve problems related to the soybean.

The article is organized as follows. Section 2 presents the definitions of some relevant
terms used in this review, as well as some acronyms used throughout the text. Section 3
describes the current state of the art of the application of deep learning in the context of
soybean crops. Section 4 provides an in-depth discussion about the main challenges and
research gaps that still require additional research effort. Finally, Section 5 offers some
final remarks.
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2. Definitions and Acronyms

Some terms deemed to be of particular importance in the context of this work are
defined in this section. Most of the definitions are adapted from [7,21]. A list of acronyms
used in this article with the respective meanings is given in Table 1.

Table 1. Acronyms used in this review.

Acronym Meaning

AI Artificial Intelligence
AtLSTM Attention-based Long Short-Term Memory
CAE Convolutional Auto-Encoder
CIR Color Infrared
CNN Convolutional Neural Network
CSAE Convolutional Selective Autoencoder
DCNN Deep Convolutional Neural Network
DIM-U-Net Dense Inception Module based U-Net
DRCNN Deep Residual Convolutional Neural Network
DRNN Deep Recurrent Neural Network
FCDNN Fully Connected Deep Neural Network
FPN Feature Pyramid Network
GAN Generative Adversarial Network
IoU Intersection over Union
JULE Joint Unsupervised Learning
LSTM Long Short-Term Memory
R-CNN Region-based Convolutional Neural Network
RMSE Root Mean Squared Error
SNP Single Nucleotide Polymorphism
SR-AE Sparse Regularized Auto Encoder
SSD Singleshot Detector
UAV Unmanned Aerial Vehicles
VGG Visual Geometry Group
VI Vegetation Index
YOLO You Only Look Once

Artificial intelligence: a computational data-driven approach capable of performing tasks
that normally require human intelligence to independently detect, track, or classify objects.

Data annotation: the process of adding metadata to a dataset such as indicating the
objects of interest in an image. This is typically performed manually by human specialists.

Deep learning: a special case of machine learning that utilizes artificial neural networks
with many layers of processing to implicitly extract features from the data and recognize
patterns of interest. Deep learning is appropriate for large datasets with complex features
and where there are unknown relationships within the data.

Domain adaptation: techniques that have the objective of adapting the knowledge
learned in a source domain to apply it to a different but related target domain.

Image augmentation: process of applying different image processing techniques to alter
existing images in order to create more data for training the model.

Machine learning: application of artificial intelligence (AI) algorithms that underpin
the ability to learn characteristics of the classes of interest via extraction of features from a
dataset. Once the model is developed, it can be used to predict the desired output on test
data or unknown images.

Model: a representation of what a machine learning program has learned from the data.
Overfitting: when a model closely predicts the training data but fails to fit the testing

data.
Proximal images: images captured in close proximity to the objects of interest.
Segmentation: the process of partitioning a digital image containing the objects of

interest into multiple segments of similarity or classes either automatically or manually. In



Seeds 2023, 2 343

the latter case, the human-powered task is also called image annotation in the context of
training AI algorithms.

Semi-supervised learning: a combination of supervised and unsupervised learning in
which a small portion of the data is used for a first supervised training, and the remainder
of the process is carried out with unlabeled data.

Supervised learning: a machine learning model, based on a known labeled training
dataset that is able to predict a class label (classification) or numeric value (regression) for
new unknown data.

Transfer learning: machine learning technique that transfers knowledge learned from
one domain to other. Weight fine-tuning and domain adaptation are arguably the most
employed transfer learning techniques.

Unsupervised learning: machine learning that finds patterns in unlabeled data.

3. Literature Review

The search for articles was carried out in May 2023 on Scopus and Google Scholar,
as both encompass virtually all relevant bibliographic databases. The terms used in the
search were “deep learning” and “soybean”. The terms were deliberately kept general
in order to reduce the likelihood of relevant work being missed. The downside of this
strategy is that the filtering process was labor-intensive and time-consuming. Only articles
in which soybeans were featured prominently were kept, which means that references in
which soybean was only one among several crops were removed. Although high-quality
conference papers do exist, in most cases, the review process is either absent or lacks rigor,
so this type of publication was also removed. After that, the list of references of the selected
literature were inspected for articles that were missed in the original search, leading to the
final number of 61 articles.

This section is divided into four subsections according to the type of data used as input
for the deep learning models: proximal images, UAV images, satellite data (images and
vegetation indices) and other types of data (weather, soil, yield, etc.). Figure 1 summarizes
the types of data employed according to the acquisition distance.

Figure 1. Types of data used in the articles considered in this review according to the acquisition
distance.
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3.1. Proximal Images as Main Input Data

In the context of this review, investigations employing proximal images are by far
the most common (34 out of 61 articles, Table 2). Applications related to plant health
(weed detection, disease recognition, and pest detection) dominate, but other applications,
like seed counting and cultivar identification, are also common. Most approaches use
common RGB images, but the use of hyperspectral images is growing fast due to their
ability to offer a detailed spectral profiling for any object of interest. It can also be observed
that while classification accuracies are almost always very high, accurate object detection
(localization) is harder to achieve. It is important to emphasize, however, that the high
classification accuracies are almost always obtained on data with rather limited variability,
so the reported results are not necessarily valid for real practical conditions (this issue is
addressed in more depth in the next section).

Table 2. List of articles employing proximal images and deep learning for soybean monitoring
and management.

Ref. Context Image Type Main Techniques Accuracy

[13] Weed detection RGB VGG16, ResNet50, InceptionV3 0.99 1,2

[22] Weed detection RGB Faster R-CNN, SSD, YOLO v5 0.72 2

[1] Disease recognition RGB DenseNet201 0.97 1

[23] Water stress detection RGB AlexNet, GoogLeNet, Inception V3 0.93 1

[24] Root phenotyping RGB CAE 0.66–0.99 4

[15] Weed detection RGB JULE, DeepCluster 0.97 1

[11] Volunteer corn detection RGB, CIR GoogleNet 0.99 1

[25] Disease severity RGB FPN, U-Net, DeepLabv3+ 0.95–0.98 3

[3] Pest detection HS Attention-ResNet 0.95 1

[26] Stem phenotyping RGB YOLO X 0.94 1

[27] Pod detection, yield prediction RGB YOLO v5 0.94 4

[28] Disease recognition RGB DCNN 0.98 1

[29] Seed counting RGB Two-column CNN 0.82–0.94 1

[30] Pest detection RGB Modified YOLO v4 0.87 2

[31] Disease severity RGB RetinaNet 0.64–0.65 1,2

[32] Weed detection RGB Faster R-CNN, YOLO v3 0.89–0.98 1

[19] Defoliation estimation RGB, synthetic AlexNet, VGGNet and ResNet 0.98 3

[33] Disease recognition RGB DIM-U-Net, SR-AE, LSTM 0.99 2

[34] Weed detection RGB DCNN 0.93 1

[35] Pest detection RGB Several CNNs 0.94 1

[12] Seed-per-pot estimation RGB DCNN 0.86 1

[36] Cultivar identification RGB ResNet-50, DenseNet-121, DenseNet 0.84 1

[37] Disease recognition RGB AlexNet, GoogLeNet, ResNet-50 0.94 1

[38] Pod counting RGB YOLO POD 0.97 4

[39] Seed phenotyping RGB, synthetic Mask R-CNN 0.84–0.90 4

[40] Yield prediction, biomass HS DCNN 0.76–0.91 4

[41] Disease recognition RGB GAN 0.96 1

[42] Disease recognition RGB Faster R-CNN 0.83 5

[43] Weed detection RGB Faster R-CNN 0.99 1

[44] Pod counting RGB R-CNN, YOLO v3, YOLO v4, YOLO X 0.90–0.98 5

[45] Seed defect recognition RGB MobileNet V2 0.98 1

[46] Seed counting RGB P2PNet-Soy 0.87 4

[47] Cultivar identification HS DCNN 0.90 1

[48] Cultivar identification HS Several CNNs 0.90–0.97 1

Legend: 1 Accuracy; 2 F1-score; 3 Correlation; 4 R2; 5 mAP.

A problem that affects virtually all research using agricultural images but is rarely
mentioned is that the datasets used in the experiments normally only cover a small part of
the variability that can be found in practice [35]. This is mostly due to the impracticality
of capturing the whole range of conditions and variations found under real uncontrolled
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conditions [5]. Image augmentation can be a partial solution for the lack of variability, as
long as it is applied correctly following the guidelines discussed in Section 4. This type
of technique has been used, for example, to increase the size of challenging classes, with
encouraging results [1]. It has also been applied in the context of unsupervised learning,
also yielding superior results [15]. In any case, as briefly discussed in the introduction, the
lack of training data variability is arguably the most important challenge for making deep
learning models more broadly applicable in the context of agriculture.

Because of the challenges posed by the variety of characteristics found in the agricul-
tural environment, in many cases, the research is conducted under relatively controlled
conditions, which can differ significantly from real field conditions [11,44]. Situations that
are common under daily operations, like the presence of stains, debris and other spurious
objects, normally are not present in experimental data [30], and the complex backgrounds
found in real fields can pose significant challenges to most deep learning architectures [46].
Occlusions can also make it difficult to detect and classify the objects of interest, and suit-
able solutions may require unconventional sensor configurations or statistical corrections
to mitigate this problem [46]. As difficult as they may be, the exclusion of these less than
ideal but relatively common conditions can cause the model to become highly biased, mak-
ing it difficult to anticipate how the model will perform with new data [1]. Interestingly,
some authors tried to increase data variety by training the model with both images of
attached leaves and severed leaves placed on an alternative background as a means to
make the model more robust, but the opposite occurred [1]. The authors speculated that
the background may contain information that actually helps with the classification, but
more research is needed to reach a more reliable conclusion.

Utilizing fully synthetic images is another possible way to increase datasets without
the need for collecting new data or manual annotation [39,42]. Although this type of
image may not be an exact representation of real samples, there are some classification
problems that have well-defined characteristics, which can be properly captured by the
synthetic samples, and generative approaches using architectures like GANs can produce
representative synthetic images [41]. Hybrid datasets containing both real and synthetic
images have been successfully employed for seed phenotyping purposes [39].

Another difficulty that is often present in classification problems using proximal
images is class imbalance. Usually, some classes will naturally occur more often, while
others may be much rarer. As a result, the former will tend to have more samples associated
than the latter. If the difference in the number of samples across the classes is too severe,
the model will likely be biased toward the larger classes and will perform poorly for
the underrepresented ones [13]. The most straightforward way to reduce the problem
is by either increasing the number of samples of the smaller classes by means of image
augmentation, or by removing samples from the larger classes. There are also neural
network architectures (e.g., RetinaNet) that are less susceptible to this type of problem [31].
It is worth noting that class imbalance does not seem to always have a negative effect. In
the context of unsupervised learning, some results with unbalanced datasets were similar
or even better than those obtained with balanced classes [15].

Depending on the characteristics of the problem to be solved, a single data source
may not provide enough information for unambiguous answers. For this reason, the
field of research called data fusion, which tries to find the most effective ways to combine
different types of data, has been growing considerably in the last few years. One of the most
common data fusion types is the combination of different types of images [49]. This type
of approach has been particularly useful in the context of remote sensing, and especially
satellite images [50], but it has also been adopted for proximal images. In Flores et al. [11],
the authors combined the information contained in RGB and CIR images for weed detection,
with fused images being generated using wavelet transforms.
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3.2. UAV Images as Main Input Data

Agricultural monitoring is among the most natural applications for UAVs, as fields
tend to be vast, and the probability of accidents with injuries is low due to those areas
usually being sparsely populated. As in the case of proximal images, RGB is predominant,
but other types of imaging sensors are starting to be employed as technology evolves and
costs fall. Weed detection is by far the most common application, with other uses like yield
prediction and disease recognition also being explored (Table 3).

Table 3. List of articles employing UAV images and deep learning for soybean monitoring and
management.

Ref. Context Image Type Main Techniques Accuracy

[51] Weed detection RGB DRCNN 0.97 1

[22] Weed detection RGB Faster R-CNN, SSD, YOLO v5 0.72 2

[52] Weed detection RGB DCNN 0.98 1

[15] Weed detection RGB JULE, DeepCluster 0.97 1

[53] Yield prediction RGB, MS, Thermal DCNN 0.72 4

[54] Weed detection RGB VGG19 0.70 1,2

[55] Weed detection RGB MobileNetV2, ResNet50, CNN 0.98 1

[56] Weed detection RGB Faster RCNN 0.67–0.85 7

[57] Yield prediction, plant height MS, VI Fully Connected CNN 0.42–0.77 3

[35] Pest detection RGB Several CNNs 0.94 1

[58] Disease recognition RGB Several CNNs 0.99 1

[59] Herbicide damage RGB DenseNet121 0.82 1

[60] Maturity estimation RGB DCNN 3.00 6

[61] Crop mapping RGB, MS, VI U-Net 0.94 5

[62] Defoliation estimation RGB DefoNet CNN 0.91 1

[63] Maturity estimation RGB DS-SoybeanNet CNN 0.86–0.99 1

[64] Yield estimation RGB, MS DCNN 0.78 1

Legend: 1 Accuracy; 2 F1-score; 3 Correlation; 4 R2; 5 Kappa coefficient; 6 RMSE; 7 IoU.

Complex backgrounds are often a challenge when images are captured in the field.
This is particularly true in the case of UAV-captured images because not only are the
conditions not controlled but there is also little room for adjustments of the angle and
position of capture. This is particularly problematic in the detection of small objects,
although certain models for object localization (e.g., YOLO v5) are particularly well-suited
for the detection of small targets [22].

Although there are some precautions that can be taken in order to produce images
of good quality, including the careful selection of the most appropriate time of the day
and weather for carrying out the UAV flight missions, it is often impossible to prevent the
sub-optimal conditions that produce low-quality images. Lighting effects like shadows
and specular reflections can be particularly damaging [62]. In cases like these, even highly
trained experts can fail to correctly analyze the image [52]. Images with these characteristics
should not be used for training, but the model will inevitably have to deal with this type of
situation if applied in practice. In order to avoid problems, it is good practice to consider
only classifications that reach a certain confidence threshold (most models are capable of
associating a probability to each classification) [52].

The issues of data imbalance and lack of data variability were also identified in the
case of UAV images [52]. Similarly to what occurs with proximal images, the presence of
one or both problems tends to lead to biased models that lack robustness and generalization
capability, albeit some architectures being capable of dealing with these problems more
effectively than others [55]. Although addressing these problems is not always straight-
forward, this is a requirement for the development of technologies that work under real
conditions. One relatively straightforward way to increase variability is to gather data
through multiple different years [59]. Class imbalance, on the other hand, can be counter-
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acted by a number of techniques that include data subsampling, data augmentation and
class weighting [62].

Most studies adopt fully supervised learning [60], as the process is more controllable
and the results tend to be better. However, as mentioned in the introduction, the annotation
process is expensive and time-consuming, so unsupervised approaches can become very
attractive if the considerable challenges can be overcome. One study dedicated to weed
detection obtained some encouraging results and led to interesting remarks, like the fact that
using a number of data clusters much higher than the number of classes actually improves
classification, and that cluster granularity can play an important role in improving models
arising from unsupervised learning [15].

Semi-supervised learning is often adopted as a relatively straightforward way to
combine the advantages of both supervised and unsupervised learning. In order to reduce
the need for manual labeling, the study described in Menezes et al. [54] introduced a
pseudo-labeling process that automatically annotates a large dataset based on a small set of
pre-labeled samples. Although this automatic labeling process is not perfect, the additional
samples used for training led to significantly higher accuracies.

Data fusion has also been applied in the context of UAV images. In Maimaitijiang et al. [53],
thermal information was fused with spectral and visual features for yield estimation across
different soybean phenotypes. The combination of all three types of data yielded results
that were superior to those obtained with any single sensor or pair of sensors. In addition,
the deep learning model greatly outperformed other machine learning algorithms in terms
of adaptability to different soybean varieties and to spatial variations.

One peculiarity of UAV images is that there is a trade-off between flight height and
spatial resolution [60]. In many cases, an altitude believed to provide enough resolution
for the problem at hand is selected, and no more thought is given to the matter. However,
with low flights, one of the most attractive advantages of UAVs, which is the fast sweep
of large areas, is reduced. The ideal approach is to perform several flights at different
altitudes and investigate the influence of this factor on the accuracy. A quicker and cheaper
alternative is to carry out a low-altitude mission and then simulate different altitudes by
undersampling the images [56]. This is not ideal because image distortions may vary
depending on the altitude, and the interference between neighboring pixels is partially
lost by simply reducing the number of pixels in the image, but the results should be
reliable enough to determine the flight height that provides the best balance between object
resolvability and area coverage [62]. It should also be considered that multispectral and
hyperspectral sensors can provide valuable information about the spectral responses of the
objects of interest, but they usually have lower spatial resolutions (especially the latter) and
may require considerably lower flights [61].

There are other consequences attached to flying low other than image resolution.
If rotary-wing UAVs are used, the airflow through the blades can disturb plants and
soil, affecting the quality of the information present in the images [65]. In addition, the
likelihood of collisions increase, and time for recovery is smaller. Higher flight altitudes can
be possible with the use of higher-resolution cameras [35], but these tend to be considerably
more expensive.

3.3. Satellite Images as Main Input Data

Satellite images are very convenient for agricultural monitoring, as they cover large
areas and many satellites have relatively short revisit times. However, despite the notable
evolution of the spatial resolutions offered by images taken from orbit, these are still
not enough for many applications. The two main problems associated with insufficient
spatial resolutions are the instances in which objects of interest cannot be resolved, and
the presence of mixed pixels containing information pertaining to multiple classes [66].
Thus, it is not a surprise that applications which can be enabled with relatively coarse
spatial resolutions prevail, like yield prediction and crop mapping (Table 4). All articles



Seeds 2023, 2 348

selected in this review employ either multispectral images or derived features (especially
vegetation indices).

Table 4. List of articles employing other types of data and deep learning for soybean monitoring
and management.

Ref. Context Image Type Main Techniques Accuracy

[67] Disease detection MS (VI) FCDNN 0.76–0.86 1

[68] Yield prediction MS DCNN (YieldNet) 0.80–0.88 3

[69] Yield prediction MS (VI), weather DCNN 0.76 4

[66] Yield prediction MS 2D and 3D ResNet-18 0.86–0.87 4

[70] Yield prediction MS (VI), weather LSTM 0.32–0.68 6

[50] Yield prediction MS (VI), weather Deep CNN-LSTM 0.74 4

[71] Crop mapping MS LSTM 0.82–0.86 5

[20] Crop mapping MS AtLSTM 0.98 1,2

[72] Crop mapping MS U-Net 0.81–0.92 1,7

Legend: 1 Accuracy; 2 F1-score; 3 Correlation; 4 R2; 5 Kappa coefficient; 6 RMSE; 7 IoU.

One advantage of satellite images that is beginning to be explored more effectively is
the possibility to extract temporal information [71]. Although in principle, it is possible to
build time series using proximal and UAV images, this is much easier in the case of satellites,
as their revisits are predefined and time series are naturally generated, and also because
of the difficulty in guaranteeing consistency of reflectance values and spatial alignment
over time when using UAV images [60]. The incorporation of temporal information can
provide valuable cues that lead to better models [67]. The authors remarked, however, that
the collection frequency of satellite imagery may not correspond to the development of
diseases, which can lead to delayed responses and significant losses. Also, too-short time
series can lead to overfitting [71].

Extreme weather events are relatively rare but do have a big impact on the satellite
data time series. Including data captured during those rare events is very important to teach
the model to recognize those types of situations, especially considering that predictions
become more challenging when conditions are not typical. With climate change, extreme
events tend to become more common across the globe, which emphasizes even more the
need for the training data to be as complete and comprehensive as possible [50].

Methods heavily reliant on temporal information can suffer greatly when the time
series is broken by the removal of spurious pixels, normally due to the presence of clouds
and shadows [71]. Data imputation by interpolation algorithms can mitigate the problem,
but these are not perfect, and the estimated pixels can cause misclassifications. Once again,
building models carefully designed with robustness in mind is the best option to deal with
imperfect data [71].

Severe class imbalance was also observed for satellite images. In Bi et al. [67], the
authors observed that there were many more instances of healthy areas than diseased
ones. Instead of increasing the number of samples of the smaller class by image augmen-
tation or decreasing the number of samples of the larger class, the authors opted for an
approach in which the costs for the misclassification of the smaller class were increased,
thus producing a more balanced model. The authors observed that this approach leads to a
trade-off between precision and recall: the larger the weights given to the smaller class, the
fewer associated false negatives there will be, but the number of false positives inevitably
increases. Ultimately, the ideal class weight will depend on the application and the type of
error deemed more damaging.

Training deep neural networks from scratch can be very time-consuming, especially
if the amount of training data is high. For this reason, it is common practice to freeze the
weights in the backbone of pretrained networks and update only the weights in the last few
layers of the architecture, a procedure commonly called transfer learning. There are several
standard CNN models that were pre-trained using the 1000-class ImageNet dataset [73],
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including AlexNet, GoogleNet, Xception and ResNet, among others. Although using these
general pre-trained models usually works well, transfer learning can be applied in a more
targeted way. Using satellite images for yield prediction, the authors in Khaki et al. [68]
showed that a model trained from scratch for a given crop can be successfully transferred
to other crops without significant accuracy loss. The choice between training from scratch
and transfer learning will ultimately depend on the time available for the experiments and
on the perceived importance of having a model fully tuned to the training data.

Historically, spectral indices extracted from satellite images have been used more
frequently than the images themselves. Although those indices have been shown to
produce good results for a variety of applications, they can limit the transferability of
machine learning models over space and time and usually require careful selection of the
features used to feed the models [66]. With the inherent ability of deep learning architectures
to implicitly extract appropriate features from the data, some studies have adopted a more
direct approach by using either raw [50,66] or slightly preprocessed images [20,68,71].
This allows a rich variety of nonlinear, hierarchical and complex features to be learned
from the data itself [66]. Despite the shortcomings of using spectral indices, it is worth
considering that the combination of carefully selected VIs with raw images can lead to
superior results [66].

While obtaining satellite images for classification purposes is relatively easy, the
same cannot be said about the reference ground data. Some of the challenges involved
in obtaining ground data were discussed in Xu et al. [71]: field surveys and censuses are
expensive, labor-intensive, and time-consuming; visual comparison with high-resolution
RGB photos from GPS records and Google Earth require considerable effort and are not
appropriate for large-scale monitoring; and government-sponsored national-scale surveys
are available in only a few countries. Transferring models trained on regions with rich
ground reference data to target regions seem to be one of the most viable options [71], but
generating models with this level of generalization capability is far from trivial as discussed
in Section 4.

3.4. Other Types of Data as Main Input for the Models

Only five articles selected in this review used data other than proximal, UAV or
satellite images (Table 5). From those, one employed microscopy images, two used genetic
data, and two adopted a variety of data sources. Phenotyping applications, which include
yield prediction, are the most common in this case.

Table 5. List of articles employing satellite images and deep learning for soybean monitoring
and management.

Ref. Context Data Type Main Techniques Accuracy

[74] Nematode counting Microscopy CSAE 0.94–0.95 1,2

[75] Yield prediction Soil, weather, yield, management DCNN, DRNN 0.86–0.88 3

[69] Yield prediction MS, weather DCNN 0.76 4

[76] Phenotype prediction SNPs Dual stream CNN 0.40–0.67 3

[18] Yield prediction Genotype, weather LSTM 0.73–0.79 4

Legend: 1 Accuracy; 2 F1-score; 3 Correlation; 4 R2.

The challenges identified in the case of microscopy images are often similar to those
found when other types of images are used. The variability of the data, especially regarding
the visual appearance of the objects of interest, is a problem that seems to always be present
when it comes to agricultural data [74]. Images that are cluttered with both the objects of
interest and spurious debris also pose significant challenges.

Digital images usually have a tridimensional data structure, with two spatial dimen-
sions and one spectral dimension with length varying from 3 (RGB) to several hundreds
(hyperspectral). Other types of data are often unidimensional, requiring networks with
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structures that are slightly different from those employed with images. In Khaki et al. [75],
a hybrid CNN-RNN model was adopted to extract information from variables related to
soil, weather, yield and crop management. This approach, despite being rather sensitive to
some variables, showed good generalization capabilities.

The performance of artificial intelligence models depend not only on the quality of
the data collected, but also on the quality of the annotations and reference data used to
teach the model. This is especially true when the reference values are quantitative, and data
like yield and weather variables can contain inconsistencies from a variety of causes that
include filling errors and sensor malfunction. Prediction models are particularly susceptible
to those inconsistencies, so a solution that is frequently applied is to filter the reference data
in order to remove outliers. However, as argued in Li et al. [69], if the filtering criteria are
not carefully designed, atypical data that are actually caused by uncommon events may
also be removed, which ultimately may lead to models that lack robustness to abnormal
conditions. Thus, keeping all the data tends to be the best strategy in many cases [69].

Studies dealing with genotypes have some specific characteristics that are not usually
found for other types of data [18,76]. Genotype matrices usually have missing values, so
it is common practice to fill those values using imputation methods that estimate those
values from a template population. However, some studies employing deep learning have
reported better results with no imputation, probably because imputation fills most missing
values with reference alleles, thus deflating the effects of different genotypes [76]. Indeed,
deep learning models show remarkable robustness to noisy inputs [18], so imputing data
that may not represent well the missing values will often have an adverse effect.

4. Discussion

High data variability and the associated phenomenon of covariate shift are om-
nipresent in agricultural applications. Many articles considered in this review do not
even acknowledge this issue, but many recognize that the data used in the respective
experiments do not cover the whole variability expected for that application, and that more
data collection and research efforts are needed in order to increase the robustness of the
models [35,62]. With the number of publicly shared datasets growing, the variability of
available data also tends to grow [60]. However, it is unlikely that more data collection
alone will solve the problem, as the number and depth of factors that introduce variability
are usually very high. In this context, domain adaptation techniques arise as a suitable
way to make models more adaptable to different conditions. Domain adaptation aims at
adapting a given classifier to data with statistical distributions that differ from the data
used for training [77]. This type of technique is frequently applied in the context of satellite
images, but its use is quickly being extended to proximal and UAV images as well.

Data augmentation can be valuable to artificially increase the number and variety of
samples and produce more robust models. However, this technique is not always applied
correctly, and one particularly egregious mistake is to apply augmentation prior to division
into training and test sets. The problem with this procedure is that many augmentation
operations produce new images that are only slightly modified versions of the original
image. Thus, there will exist several almost identical copies of the same image. This is not
a problem if augmentation is applied only to the training set but causes severely biased
and unrealistic results if applied prior to the set division because very similar images will
be present in both the training and test sets, which in practice is equivalent to using the
exact same images for training and testing. Unfortunately this is a problem that has become
widespread [14], and the situation is not better in the literature considered in this review.
Both authors and reviewers should be aware of this problem to avoid the publication of
reports containing invalid results. It is also worth mentioning that while it is often claimed
that image augmentation decreases overfitting, the opposite can easily happen because the
new images generated are still highly correlated to the original ones [60]. This has led some
authors to argue that employing the dropout technique during training is often a more
suitable option [60]. In any case, the only way to properly evaluate the effectiveness of
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augmentation and alternative techniques is by carrying out experiments with independent
datasets, which is rarely done.

The division into training, test and validation sets is usually performed randomly.
Although this is indeed the best option in most cases, there is always a chance that the
statistical distributions in one or more of the sets is biased, causing the results to become
unreliable. One way to avoid this problem is the adoption of cross validation, in which ex-
periments are repeated a certain number of times (folds) using different data partitions, that
is, the sets are always different in each repetition. Unfortunately, only a small percentage of
the studies adopt this strategy, probably because of the added training effort. The absence
of cross validation, together with the improper use of image augmentation, causes many of
the results reported in the literature to be unreliable and, in some cases, misleading.

Data annotation is a demanding process no matter the application, not only because of
the time and cost involved but also due to possible inconsistencies arising from its inherent
subjectivity [60,62] and from measurement inaccuracies [39]. This is a problem because the
generated labels are used as reference for both training and evaluation of the models, and
if those are not consistent, both the models and the associated results could be biased [62].
These challenges are even more pronounced in the case of pixel-wise classification. This
approach, which requires that each pixel in an image be correctly labeled, is often adopted
for applications such as disease severity estimation and crop mapping. Considering that
deep learning models usually require large amounts of data for proper training and that
there are very few available datasets with this kind of annotation [25], this is a hurdle
difficult to overcome. Semi-automatic labeling can be helpful in cases like this, but further
research is needed for more suitable solutions.

Despite the annotation challenges posed by pixel-wise classification, if individual
pixels indeed carry enough information to enable such a fine-grained classification, a large
amount of training samples can be obtained even if only a few images are available. In
most cases, this does not solve the lack of variability problem, as just a few images will
almost certainly not be representative enough, even under moderate variability. However,
having a large number of samples coming from just a few images can be advantageous in
cases for which the variability is rather low, like, for example, in the analysis of seeds using
flatbed hyperspectral imaging systems. Hyperspectral images are particularly suitable
for pixel-wise classification because each pixel carries a wealth of information about the
spectral characteristics of that specific point in space [47].

The number of parameters used in deep learning models can vary greatly, a fact that
has motivated many authors to investigate the computational load associated to different
models [1,13,58]. While those differences can indeed have a great impact on the time spent
training the models [69], it is worth pointing out that, once trained, even the larger models
can run at reasonable times in most devices [21], although memory usage can become
a problem under more restrictive conditions [55]. Thus, unless computational resources
are scarce and real-time operation is required, the size of the model tends to not have a
large impact on its usability. When real-time operation is required, architectures especially
designed to be lightweight are usually employed, especially if the model is coupled with
some kind of actuator [32].

In classification problems, experiments usually try to maximize accuracy, which often
results in relatively similar values for precision and recall, that is, the number of false
negatives and false positives tend to balance out. However, for some applications, one
type of error may be much more damaging than the other [62]. The case of weed detection
is a good example. If other objects are recognized as weeds (false positives), there will
be a waste of herbicide but the crop will still be protected [32]. On the other hand, if the
model fails to detect the weeds, they will remain in the field and can potentially spread,
causing losses. It is worth pointing out that most studies do address this point and offer
some useful comments on the subject. This also stresses the importance of employing the
right evaluation metrics in order to fully characterize the methods being proposed.
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One aspect of machine learning models that has been attracting considerable attention
is the issue of interpretability [20]. In many instances, the relationship between input data
and the answer provided by the model is not clear, making it difficult to gain scientific
insights and increasing the risk of wrong conclusions. Some studies have been conducting
experiments specifically designed to investigate and increase interpretability [18–20], but
this is still an open problem that will require considerable research effort to be solved.

It is common practice to reduce the size of the images inputted to the models, either
because a pretrained model with standard input size is being used, or due to computer
memory and processing constraints. This reduction inevitably leads to loss of information,
which in turn may result in lower accuracy [56]. In order to preserve all the information
originally captured, properly selecting patches of appropriate size and processing them
separately can yield better results [63], even if the object of interest is broken up in the
process [78]. Although patch selection is not always a trivial task, there are a few simple
techniques that can be used to select potential candidates with relative ease [78]. Some of
the studies considered in this review adopted this strategy [29,56,74].

When training from scratch is adopted, all weights of the network need to be initialized
and updated as training progresses. Frequently, those weights are initialized randomly,
but under certain conditions, unfavorable initial weights may lead to excessive training
times and, more importantly, the network may end up in a local minima that can be far
from the best possible results. For this reason, it may be a better approach to employ
some pre-initialization method capable of selecting more appropriate initial weights [34]. It
is also worth mentioning that the strategy (algorithms) used for training can have a big
impact on the results [35].

Figure 2 summarizes all challenges and weaknesses identified in this review.

Figure 2. Challenges and weaknesses identified in this review for each type of data.
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5. Conclusions

This review explored the current state of the art of deep learning applied to problems
attached to soybean crops. The number of articles dedicated to the subject has been
growing steadily, and significant progress has been achieved not only in terms of accuracy
but also in understanding how the models arrive at their answers. Despite this progress,
there are still many challenges and research gaps that lack suitable solutions. Many of
those challenges were identified and discussed in this article, and potential solutions were
proposed whenever possible. Among the tendencies for future work that could be inferred,
some seem to be quickly gaining momentum, including the fusion of different types of data,
the attempt to increase interpretability and untangle the inner workings of deep learning
models, and the incorporation of temporal information whenever appropriate. The leap
from academic research to practical solutions has already been completed in a few cases,
but there is still much to be done in order for artificial intelligence and deep learning to
realize their full potential in soybean crop management and monitoring. It is our hope that
the discussion developed in this review will help achieve this goal in a timely manner.

As for future perspectives, based on the way artificial intelligence and crop manage-
ment have evolved so far, some tendencies are likely to prevail in the near future. Artificial
intelligence and deep learning techniques should continue to evolve at a fast pace, contin-
uously expanding the range of applications related to crop management that can benefit
from this type of technique. At the same time, improved interpretability and a better
understanding of the way deep learning architectures work will likely make it feasible
to design models that are both lighter and more robust. As technical and technological
hurdles are removed, the number of technologies based on deep learning ready to be used
under more realistic conditions should grow. On the other hand, limitations related to
data representativeness and model generalization will continue to exist, but these will tend
to become less intense as sensors and data gathering techniques continue to evolve. It
is also worth pointing out that the rapid development of other branches of AI can also
have an impact that is difficult to foresee as exemplified by ChatGPT’s repercussion across
society [79].
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