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Abstract: Both biotic and abiotic environmental filters drive the occurrence, distribution, and persis-
tence of plant species. Amongst drivers that influence the distribution of plants in harsh environments,
seed predation and temperature are particularly important in habitats that are prone to fire. In this
study, we highlight the combined effects of predation and high temperature simulating fire to un-
derstand its effects on the germination percentage and germination speed of the fire prone species
Copaifera oblongifolia. Groups of seeds attacked by the beetles Rhinochenus brevicollis and Apion sp.,
seeds manipulated by the ant Atta laevigata, and seeds left intact were put to germinate in controlled
environments. To evaluate the effects of abiotic filters, seeds with intact elaiosomes and seeds with
elaiosomes removed by the ant Atta laevigata were exposed to temperatures of 27, 60, 100, and 200 ◦C.
The results showed that only 2.8% of the seeds attacked by R. brevicollis germinated. Seeds attacked by
Apion sp. germinated faster, followed by seeds with their elaiosomes removed and seeds with intact
elaiosomes. Seeds attacked by Apion sp. had the lowest germination percentage. The temperature of
200 ◦C killed seed embryos, whereas seeds exposed to 100 ◦C took longer to germinate than seeds
exposed to other temperatures. Our results reveal that fire intensity and seed damage are important
drivers of seed germination of C. oblongifolia.

Keywords: Copaifera oblongifolia; environmental filters; fire prone ecosystems; seed dormancy;
seed predation

1. Introduction

Biotic and abiotic environmental filters are able to regulate the recruitment of different
plant species and shape the organization of natural communities [1–4]. However, some
seed traits allow these environmental filters to be overcome, giving them a high capacity
to colonize and be established in specific habitats [5,6]. Identifying the mechanisms that
regulate seedling recruitment in different habitats is key to understanding the patterns of
distribution and abundance of plant species and establish strategies for the conservation
and management of terrestrial ecosystems [7]. This is particularly important in an an-
thropized world characterized by global and accelerated changes in abiotic factors such as
temperature and fire regimes, with serious impacts on plant and animal communities [8].

One of the main biotic filters that determine the seedling recruitment success of many
plant species in natural communities is seed consumption by different organisms [9–13].
The relationship between herbivores and seeds can range from negative [14–16] to neu-
tral [13,17] to positive [18,19]. Some insects lay their eggs directly on fruits and the devel-
opment of immature individuals take place inside the seeds [20]. These insects, which feed
on the endosperm and embryo (often causing their death), act as true predators [12,21].
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In other cases, insects partially consume the seeds without causing direct damage to the
embryo, producing cracks in the tegument that can facilitate the imbibition and accelerate
seed germination [13,19]. On the other hand, endosperm consumption can affect the avail-
ability of resources for the seed embryo and negatively affect germination and seedling
establishment [22,23]. Finally, some organisms can also feed on the external seed structures
without causing apparent damage to the embryo [24–26].

In fact, many plant species produce seeds with an appendage (elaiosome) rich in
nutrients such as lipids, carbohydrates, proteins, and vitamins [27,28] that are attractive
food resources for many animal species, including ants, birds, and small primates [12,24].
For example, it has been reported that the dispersion of seeds and fruits in more than 3000
plant species belonging to 80 families of plants is made by ants [29]. In this mutualistic
relationship, the elaiosomes are key structures as ants collect seeds to use elaiosomes as a
food resource [24,28]. Additionally, the dispersion of these propagules to distant habitats
from the parental plants can promote predation-free spaces, favoring the recruitment of
new seedlings [25,27,30,31]. Furthermore, some studies suggest that the manipulation of
seeds by ants during elaiosome removal can cause cracks in the seed coat, which facilitate
imbibition and accelerate germination [32–34]. Thus, myrmecochory (i.e., seed dispersal
by ants) can positively affect seed germination, seedling survival, and plant community
dynamics [35,36].

Many plant species of fire-prone ecosystems produce seeds that are adapted to resist
high temperatures as a result of occasional fires [37–40]. Previous studies suggest that
high temperatures can break seed dormancy, favoring the germination of fire-adapted
species [37,41–44]. However, seed responses to different temperatures can vary within
and between plant species [42,44,45]. For example, in Mimosa leiocephala, seed germination
was positively related with the increase of temperature, whereas germination rates and
seed viability of Mimosa pteridifolia and Harpalyce sp. were negatively associated to high
temperatures [44]. Because the intensity and frequency of fires depends on the levels of
drought and temperature in a particular habitat [46], it is possible to expect important
consequences for the plant communities prone or adapted to fire. Therefore, understanding
the effects of fire on expected future climate change scenarios is crucial to assess how
species will respond to altered climatic conditions, as well as changes in the availability of
mutualistic and antagonistic interacting species.

The Cerrado is the second largest biome in Brazil and represents one of the world’s
biodiversity hotspots [47]. This biome harbors about 13,400 plant species whose phenology
is related to local climatic seasonality and soil quality [39,48,49]. The vegetation of the
Cerrado has its own characteristics, which probably arose in response to local stressors,
such as fire and herbivory [39,50]. As such, many plants in the Brazilian Cerrado produce
seeds with adaptations to resist high temperatures resulting from wild fires [40] or seeds
with nourishing appendages that favor dispersal and recruitment [51,52]. Furthermore,
leaf cutting ants belonging to Atta and Acromyrmex genera are the principal defoliating
agents of Cerrado vegetation [53]. These ant species can also collect and transport seeds
of myrmecocoric plants to their nests, impacting seed germination of many Cerrado
plants [54,55] and influencing ecosystem services.

Copaifera oblongifolia Mart. ex Hayne (Fabaceae: Caesalpinioideae) is a shrub species
that occurs in the central region of the Brazilian Cerrado. The seeds of C. oblongifolia have a
hard coat and are partially covered by a fleshy, lipid-rich elaiosome [56]. The shrubs occur
in dense patches and often invade pastures and cultivated areas, becoming dominant and
negatively affecting the productivity of agricultural systems [57]. Therefore, characterizing
the role of local environmental filters in the variation of seed germination success of this
plant species is essential to understand its population dynamics and its invasiveness
potential. In this study, we evaluated the effects of both biotic and abiotic environmental
filters on seed germination of C. oblongifolia. The specific questions addressed were: (i) is
seed germination of C. oblongifolia affected by the variation of the different insect damage
levels? and (ii) how does seed germination of C. oblongifolia respond to thermal variation?
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2. Materials and Methods
2.1. Study System

Copaifera oblongifolia popularly known in Brazil as pau d’olinho, is a shrub growing
up to 2.5 m [56]. It is endemic to the Cerrado areas of central Brazil, occurring in open
areas and disturbed environments such as abandoned pastures, roadsides, and edges
of Cerrado fragments. Flowering occurs from February to May and fruits ripen from
August to October. When the fruit is opened, an ellipsoid, black, and shiny seed, partially
covered by a yellow–orange fat-rich elaiosome, is exposed. This propagule represents a
food resource for birds, small marmosets, and different groups of insects [57,58].

Among insects, Rhinochenus brevicollis Chevrolat (Curculionidae: Cryptorhynchinae)
represents the main insect predator of C. oblongifolia seeds. Females lay their eggs directly
on the fruit in initial stages of seed formation and the larvae develop inside the seeds,
feeding on the cotyledons and often causing damage to the embryo [12]. Different species
of Apion (Brentidae: Apioninae) also attack the seeds of C. oblongifolia. This group of insects
feeds upon the outermost parts of the seeds, such as the seed coat and the surface of the
cotyledons [59,60]. Ants of the genus Atta also collect these seeds and use their elaiosomes
to cultivate fungi inside their nests [61]. This ant species removes seeds from plants and
transports them to the nest. Once the elaiosome is removed, the ants discard the seeds
without elaiosomes onto the loose soil around the anthill [62].

2.2. Obtaining Seeds

Seeds were collected from a population of C. oblongifolia located in an abandoned
pasture (−17.215, −44.414 UTM) in a rural area of the municipality of Jequitaí, northern
Minas Gerais State, Brazil. This region has a semi-arid climate with well-defined dry
and rainy seasons. The average annual temperature is 23 ◦C, and precipitation is around
1000 mm/year [63]. The region is located in a transition zone between the Cerrado and
Caatinga biomes, evidencing a mosaic of phytophysiognomies such as campo rupestre,
cerrado sensu stricto, semi-deciduous seasonal forests, and riparian forests [64].

Prior to the dispersion of fruits (August 2018), 40 reproductive-stage individuals of
C. oblongifolia were identified and tagged in the field. These individuals were periodically
monitored to ensure the seed collection only from the open fruits or in the process of
opening. We collected at least 30 fruits with seeds for each plant sampled for the two
germination experiments. All fruits collected were taken to the laboratory and stored
individually in test tubes for a period of 30 days for the emergence of adult insects, which
allowed the identification of predators and the type of damage caused to the seeds. The
seeds were subsequently grouped into three classes of damage: (i) healthy seeds (intact
seeds with no evidence of damage), (ii) seeds attacked by R. brevicollis, and (iii) seeds
attacked by Apion sp. We evaluated a total of 70 seeds predated by R. brevicollis, 70 seeds
attacked by Apion sp., and 350 intact seeds. In addition to collecting fruits from the plants,
six nests of Atta laevigata Smith. (Hymenoptera: Formicidae) were identified in the study
area to collect seeds manipulated by individuals of this ant species. We collected 350 non-
elaiosome seeds (about 60 seeds per A. laevigata nest) located on the soil mounds of the six
A. laevigata nests to be used in two germination bioassays.

2.3. Bioassay 1: Effects of Predation on Seed Germination

To evaluate the effects of different levels of seed predation by different insects (Figure 1)
on the germination of C. oblongifolia seeds, 70 seeds from each of the four treatments (seeds
without predation with intact elaiosome; seeds manipulated by A. laevigata without elaio-
some; seeds attacked by Apion sp.; and seeds attacked by R. brevicollis) were placed to
germinate in individual cells of four Styrofoam trays (one tray per treatment). This experi-
mental design assumes that each seed represents a statistically independent experimental
unit and allows comparing germination percentages among treatments using the binomial
distribution [6,65]. Approximately 3.0 g of sterile vermiculite was used as the germination
substrate in each tray cell. The four trays were placed to germinate in a germination
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chamber with controlled photoperiod, temperature, and light intensity (12 h/light at 28 ◦C
and 12 h/dark at 28 ◦C, 47.5 µmol.m.−2s−1 irradiation). The humidity of the germination
substrate was kept constant by the daily addition of 3 mL of distilled water to each ger-
mination cell. Seeds were monitored daily to determine germination percentage and the
time required for germination. Seeds were considered germinated when they presented
primary root protrusion.
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Figure 1. Images of seeds of C. oblongifolia showing different predation treatments: (A) 
unmanipulated seeds with elaiosome intact, (B) seeds with elaiosome removed by Atta laevigata, (C) 
seeds damaged by Apion sp., and (D) seeds preyed upon by Rhinochenus brevicollis. 

3. Results 

Figure 1. Images of seeds of C. oblongifolia showing different predation treatments: (A) unmanip-
ulated seeds with elaiosome intact, (B) seeds with elaiosome removed by Atta laevigata, (C) seeds
damaged by Apion sp., and (D) seeds preyed upon by Rhinochenus brevicollis.

Generalized linear models (GLM) were used, followed by analysis of variance (ANOVA)
to assess whether germination percentage varied among predation treatments. In this
model, seed treatments were used as the explanatory variable, and seed germination
(0 or 1) was used as the response variable, with a binomial distribution (corrected for qua-
sibinomial). Survival analysis with the Weibull distribution was used to test whether mean
germination time differed among seed treatments [66]. In this analysis, seed treatments
were used as the explanatory variable and seed germination time as the response variable.
Residual analyses were performed to check the suitability of all models. After ANOVA
tests, differences among treatments were assessed using contrast analysis, grouping levels
that were similar and separating levels that were statistically different. These analyses were
performed using R software version 3.5.0 [67].

2.4. Bioassay 2: Effects of Heating and Manipulation by Atta Laevigata on Seed Germination

To evaluate the interactions between abiotic and biotic factors on seed germination,
an initial batch of 560 seeds of C. oblongifolia was divided into two groups. The first group
consisted of 280 intact seeds (elaiosome present) collected directly from the plants. The
second group consisted of 280 seeds manipulated by Atta laevigata (elaiosome removed)
that were collected near the loose soil of A. laevigata nests. Each group of seeds was evenly
divided into four subgroups of 70 seeds and subjected to four different heat treatments:
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(27, 60, 100, and 200 ◦C) using a heating oven (QUIMIS Q314M) to simulate the effects
of seed exposure to different intensities of fire [68]. Thus, the oven was preheated to the
desired temperature (27, 60, 100, or 200 ◦C) and immediately turned off, and 70 seeds
from each treatment (seeds manipulated by ants and seeds with elaiosome) were placed
inside. The oven door remained open until room temperature was reached, at which
point the seeds were removed from the oven. This procedure was repeated for the four
heating treatments. After fire simulation, each seed of the eight treatments were placed in
individual cells of eight Styrofoam trays and placed to germinate in a B.O.D., as described
in the previous bioassay.

GLMs, followed by ANOVA tests were used to assess whether germination percentage
varied between heating and seed manipulation treatments. In this model, heating, seed
manipulation by ants, and the interaction between them were used as explanatory variables
and seed germination (0 or 1) as the response variable, with the binomial distribution (cor-
rected for quasibinomial). The effects of different temperatures and of seed manipulation
by A. laevigata on seed germination time were evaluated by survival analysis using the
Weibull distribution [66]. In this analysis, treatments (heating and seed manipulation by
ants) were used as the explanatory variables, and seed germination time was considered
as the response variable. Residual analyses were performed to check the suitability of all
models. Contrast analyses were used to group levels that were similar and separate levels
that were statistically different when ANOVA indicated significant differences among
treatments. These analyses were performed using R software version 3.5.0 [67].

3. Results
3.1. Bioassay 1

Our results showed that the percentage of seed germination of C. oblongifolia seeds
significantly varied among the different treatments of predation (Table 1). Contrast analysis
showed that germination percentage did not vary between non-manipulated seeds (with
elaiosome) and seeds manipulated by ants. However, seeds attacked by Apion sp. had a
lower germination percentage than intact seeds or seeds manipulated by ants. Only two
seeds attacked by R. brevicollis germinated (Figure 2).
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Figure 2. Variation in the percentage of seed germination for C. oblongifolia seeds in relation to
different types of predation. Seeds preyed upon by Rhinochenus brevicollis had the lowest germina-
tion percentage followed by seeds attacked by Apion sp., non-manipulated seeds, and seeds with
elaiosomes removed by Atta laevigata.
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Table 1. Generalized linear models used to evaluate the effects of different type of predators on germination time and
percentage for C. oblongifolia seeds. (d.f. = degrees of freedom, Dev = deviance). Values in bold indicate statistically
significant values at alfa = 5%.

Response Variable Explanatory Variable Error
Distribution D.f. Residual

Deviance
Residual
Df Dev F p

Time for germination Predation treatments Weibull 2 — 131 28.278 — <0.001
Germination percentage Predation treatments Quasibinomial 2 249.57 207 24.169 11.912 <0.001

The time required for germination of C. oblongifolia seeds varied among the differ-
ent predation treatments (Table 1). Particularly, contrast analysis indicated that seed
germination time varied among the three treatments analyzed, with seeds attacked by
Apion sp., ants and unmanipulated seeds requiring, respectively, 11.2 ± 0.5, 16.9 ± 0.8,
and 22.3 ± 0.9 days for germination of 50% of seeds (Figure 3). Finally, it is important
to emphasize that only two seeds (2.8%) attacked by R. brevicollis germinated, and this
treatment was not included in the survival analyses.

Seeds 2021, 1, FOR PEER REVIEW 6 
 

 

The time required for germination of C. oblongifolia seeds varied among the different 
predation treatments (Table 1). Particularly, contrast analysis indicated that seed germi-
nation time varied among the three treatments analyzed, with seeds attacked by Apion 
sp., ants and unmanipulated seeds requiring, respectively, 11.2 ± 0.5, 16.9 ± 0.8, and 22.3 ± 
0.9 days for germination of 50% of seeds (Figure 3). Finally, it is important to emphasize 
that only two seeds (2.8%) attacked by R. brevicollis germinated, and this treatment was 
not included in the survival analyses. 

 
Figure 3. Variation in the probability of germination for C. oblongifolia seeds in relation to germination percentage for seeds 
in each treatment. The intersection of vertical lines with the horizontal line indicates the probability of 50% germination 
for seeds of each treatment (in days). 

3.2. Bioassay 2 
Initially, it should be emphasized that no seed of the 200 °C treatment germinated, 

and this treatment was excluded from statistical analysis. The seed germination percent-
age of C. oblongifolia did not vary as a function of temperature (i.e., temperatures of 27, 60, 
and 100 °C), seed manipulation by ants, and their interaction (Table 2, Figure 4). 

Figure 3. Variation in the probability of germination for C. oblongifolia seeds in relation to germination
percentage for seeds in each treatment. The intersection of vertical lines with the horizontal line
indicates the probability of 50% germination for seeds of each treatment (in days).

3.2. Bioassay 2

Initially, it should be emphasized that no seed of the 200 ◦C treatment germinated,
and this treatment was excluded from statistical analysis. The seed germination percentage
of C. oblongifolia did not vary as a function of temperature (i.e., temperatures of 27, 60, and
100 ◦C), seed manipulation by ants, and their interaction (Table 2, Figure 4).

The time required for the germination of C. oblongifolia seeds varied statistically
among treatments involving manipulation by ants, temperature, and their interaction
(Table 2). Contrast analysis showed that seeds subjected to the 100 ◦C treatment had
a slower germination speed than the seeds subjected to the 27 and 60 ◦C treatments.
Seeds manipulated by ants required less time to germinate than non-manipulated seeds.
However, a statistically significant interaction showed that the effect of seed manipulation
by ants was evident only at the temperature of 27 ◦C, when seed manipulation reduced
germination time by 5.3 days compared to non-manipulated seeds (Figure 5).
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Table 2. Generalized linear models used to evaluate the effects of predation (seeds that had elaiosome removed by ant
manipulation or seeds with an intact elaiosome) and temperature treatments on germination time and percentage for C.
oblongifolia seeds. (d.f. = degrees of freedom, Dev = deviance).

Response Variable Explanatory Variable Error
Distribution D.f. Residual

Deviance
Resid.
Df Dev F p

Time for germination
Elaiosome

Weibull
2 — 293 4.135 — <0.001

Temperature 1 — 294 24.372 — 0.0419
Elaiosome * temperature 2 — 291 6.987 — 0.0303

Germination percentage
Elaiosome

Quasibinomial
1 506.12 418 0.04621 0.0456 0.8311

Temperature 2 503.17 416 2.95142 1.4546 0.2347
Elaiosome * temperature 2 501.99 414 1.17516 0.5792 0.5608
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laevigata and temperature. The intersection of vertical lines with the horizontal line indicates the
probability of 50% germination for seeds of each treatment (in days).
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4. Discussion

The results of the bioassay of insect damage to seeds showed that seed predation by R.
brevicollis drastically reduced the probability of germination of C. oblongifolia seeds. Females
of these beetles lay their eggs inside the newly formed seeds where the immature insects
complete their development, feeding on reserves and the embryo [12]. Seed predation by
this beetle can reach 30% for seeds produced by C. langsdorffii [10]. If this same pattern
occurs with C. oblongifolia, R. brevicollis can be responsible for the death of a high proportion
of seeds produced by C. oblongifolia under natural conditions.

Seeds attacked by Apion sp. had a significant and strong reduction in germination
compared to seeds of the control group. These beetles are external predators that feed on
only part of the seeds, and, in many cases, do not cause death to the embryo. Despite the
negative effect on germination percentage, seeds attacked by Apion sp. exhibited higher
germination speed than seeds of the control treatment. This difference is probably related
to cracks that these beetles causes in the seed pods, which increase imbibition speed [13].
Rapid germination is an efficient strategy for colonizing less competitive habitats, such as
those in the early stages of succession [69]. In this scenario, seeds attacked by Apion sp.
that still retain their elaiosomes could be expected to be dispersed by other animals and
obtain some germination success away from the mother plants.

Our results showed that seeds manipulated by ants had a higher germination speed
than non-manipulated seeds with elaiosomes intact. When ants transport seeds and remove
the elaiosome, they cause wear to the integument, which promotes greater water absorption
and accelerates germination [33,70]. Increased water absorption capacity is especially
important under natural conditions because it allows a better use of a resource that is often
scarce in seasonal environments such as the Brazilian Cerrado. Decreased germination
time can also limit the amount of time seeds are in contact with pathogenic microorganisms
in the soil, thereby increasing their germination probability. Therefore, seed transport
and manipulation by ants may positively affect the dispersal and colonization of new
habitats by C. oblongifolia. However, the directional dispersion performed by A. laevigata
(i.e., from the plant towards the ant hill) could help to explain the clustered distribution of
C. oblongifolia often observed in the field.

The germination percentage for seeds manipulated by the ant A. laevigata did not
differ from that for non-manipulated seeds (with elaiosomes). Previous studies have
shown that seed manipulation by ants can positively [35,36,71] or negatively [55] affect the
probability of seed germination. Different mechanisms have been suggested to explain this
variation. For instance, ants can release antibiotic substances during seed manipulation
that protect the seeds against microorganism infection, thereby increasing the germination
percentage [71]. On the other hand, removal of the elaiosomes by ants can expose the seed
micropyle, which represents a window for microorganisms to enter the interior of the seed
and cause its death [55,72]. Our experiment was conducted under aseptic conditions, and
no fungal growth was observed in the seeds. Thus, variation in germination related to
the action of microorganisms between treatments did not interfere with the germination
results of C. oblongifolia. Furthermore, it is also important to emphasize that although
some studies suggest elaiosomes can produce substances that inhibit seed germination, our
results do not support the evidence that these structures can act as a germination inhibitor
of C. oblongifolia seeds.

The results of the heating bioassay showed that seeds of C. oblongifolia did not resist
high temperatures, as no seed submitted to the highest temperature of 200 ◦C germinated.
Generally, fire in the Cerrado is characterized by high frequency (occurring every 3–4 years),
superficial occurrence, and low intensity, with rapid consumption of the dry biomass of the
subshrub stratum [68,73]. Soil surface temperatures during fires in the Cerrado range from
74 to 768 ◦C [74], but temperatures of the soil layers immediately below the surface do not
exceed 80 ◦C [68]. Thus, considering that the germinability of C. oblongifolia did not vary
among temperatures from 27 to 100 ◦C, and that this species is restricted to the Cerrado, it is
reasonable to consider that seeds of C. oblongifolia have resistance to moderate temperatures.
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These results also indicate that fire does not directly stimulate the germination of these
seeds. However, it has been observed that gases released during fires, such as ethylene
and ammonia, can stimulate the germination of species of fire-prone ecosystems [41,75–77].
Thus, further studies testing this hypothesis of the indirect effects of fire on the germination
of C. oblongifolia are still needed.

Moderately high temperatures (100 ◦C) slowed the germination rate. Seeds exposed
to this temperature are likely to have a reduction in moisture content. Reduced moisture
inhibits the production of gibberellin [78], which is important in the process of breaking
seed dormancy [79,80]. Furthermore, we observed that, despite heating, seeds manipulated
by ants had a higher germination speed. Thus, seeds manipulated by ants, even when
subjected to fire, must absorb water more quickly and have a higher germination speed.
Elaiosomes are lipid-rich appendices that partially involve the seed aril [55] and, therefore,
could act as a thermal insulator, protecting the embryo from thermal oscillations. However,
seeds manipulated and not manipulated by ants differed in the time for germination only
at the temperature of 27 ◦C. These results, associated to fact that germination percentage
was not affected by moderate temperatures, suggest that the elaiosome did not protect
seeds of C. oblongifolia against thermal fluctuations. Thus, the resistance of the C. oblongifolia
seeds to fire would be mainly associated with the hardness of the seed tegument.

Finally, our results show evidence that ants do not influence seed germinability,
whereas beetle damage has serious negative consequence on seed germination of C. ob-
longifolia. We also highlight that C. oblongifolia seeds have a high tolerance to moderate
temperatures typical of Cerrado environment. Leaf cutting ants and low intensity fire
are two important biotic and abiotic filters capable of driving community organization
in Cerrado areas, and we suggest that C. oblongifolia seed is adapted to overcome these
environmental filters. Thus, these seed traits should be considered in future management
strategies of this plant species in Cerrado areas.
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