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Abstract: In contemporary devices, the number and diversity of sensors is increasing, thus, requiring
both efficient and robust interfacing to the sensors. Implementing the interfacing systems in advanced
integration technologies faces numerous issues due to manufacturing deviations, signal swings, noise,
etc. The interface sensor designers escape to the time domain and digital design techniques to
handle these challenges. Biology gives examples of efficient machines that have vastly outperformed
conventional technology. This work pursues a neuromorphic spiking sensory system design with
the same efficient style as biology. Our chip, that comprises the essential elements of the adaptive
neuromorphic spiking sensory system, such as the neuron, synapse, adaptive coincidence detection
(ACD), and self-adaptive spike-to-rank coding (SA-SRC), was manufactured in XFAB CMOS 0.35 µm
technology via EUROPRACTICE. The main emphasis of this paper is to present the measurement
outcomes of the SA-SRC on-chip, evaluating the efficacy of its adaptation scheme, and assessing its
capability to produce spike orders that correspond to the temporal difference between the two spikes
received at its inputs. The SA-SRC plays a crucial role in performing the primary function of the
adaptive neuromorphic spiking sensory system. The measurement results of the chip confirm the
simulation results of our previous work.

Keywords: analog front-ends; self-X properties; adaptive spiking sensory electronics

1. Introduction

The progress in integration technologies on the one hand has facilitated using sensors
and sensor systems, on the other hand it has aggravated the design of the corresponding
electronics. The utilization of cutting-edge technologies in implementing mixed-signal
systems offers power and speed gains, as stated in [1]. This is primarily attributed to the
reduced capacitance value and lower supply voltage. However, to interface efficiently with
an expanding range of sensors, sensor systems must possess highly accurate, robust, and
flexible analog front-ends with self-X (self-calibration, self-trimming, self-optimization,
and self-healing) properties. Developing dependable AFEs is paramount to the overall
success of the application system. In contemporary cutting-edge integration technologies,
the conventional analog design that relies on amplitude-domain information representation
encounters progressively harder-to-surmount obstacles. As mentioned in [2], circuit design
encounters numerous challenges, such as reduced intrinsic device gain, noise, aggravated
device mismatch, lower supply voltage, decreased signal swing, and manufacturing de-
viations. When transitioning to smaller technologies, these challenges complicate signal
processing in the amplitude domain, particularly for complex mixed-signal systems such
as ADC [1–4].

State-of-the-art designs aim to tackle the challenges associated with analog-to-digital
converters (ADCs); various structures have been proposed in the literature. An instance
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of this is the synthesizable stochastic flash ADC architecture, which necessitates a sig-
nificant amount of resources to execute, such as 3840 comparators to achieve 5.3 bits of
resolution [1,2]. In [5], the researchers suggested a structure for a 4-bit ADC that uses
memristors, along with a trainable artificial neural network (ANN) calibration. This design
aims to minimize inaccuracies caused by device mismatch and allow the circuit to adapt
to environmental changes. As well, the authors of [6,7] introduced a synthesizable ADC
that draws inspiration from a neural network. This ADC utilizes the crossbar architecture
of resistive random-access memory (RRAM) in a dual-path setup. The architecture of the
ADC comprises three layers of hardware substrate for a general neural network: the input
layer, the hidden layer, and the output layer.

Nevertheless, the ADCs in [1,2,5–7] employ amplitude-coded signals that encounter
difficulties in modern node CMOS technology. In contrast, the gate delay in digital circuits
is reduced by scaling the transistor dimension and supply voltage in CMOS technology. As
a result, the time resolution improves with CMOS scaling, leading to a growing interest in
the time domain, as reported by [8,9]. This motivated the researchers to create electronic
sensor systems that use spike or time-coded signals, which possess a technology-agnostic
property that remains robust even as technology scales up, as demonstrated in [10–15]. A
scalable ADC based on the neural engineering framework was proposed by the authors
in [10]. This approach leverages the inherent parallelism of neural networks by designing
the encoder and neurons in the analog domain, and implementing the decoding and
signal reconstruction in the digital domain. Furthermore, an ADC-based current sensing
model [12] utilizes the Izhikevich neuron model to implement a current-to-frequency
converter, while digital blocks are used to implement frequency-to-digital conversion in its
architecture. The process of translating analog input values into input pulse frequencies
through a large number of spikes can result in increased power consumption as the spiking
neural network (SNN) structure grows deeper and larger. Consequently, these traits may
not be well-suited for power-efficient and robust devices in edge computing [13,15].

In order to address these obstacles, a previous design of the sensor to spike to dig-
ital converter (SSDCα) chip utilized spike timing to simulate acoustic localization [11].
However, it did not incorporate adaptivity, which is essential for maintaining system func-
tionality in the face of drift, aging, lesions, or damage. The ability to create an accurate,
robust, and adaptable design is crucial for the overall application system’s success. Conse-
quently, we have integrated the essential blocks of our proposed neuromorphic spiking
sensory system that possesses self-X properties and utilizes either spike or time-coded
signals in our chip [16]. This system was designed with a technology-agnostic feature that
remains resilient even with technology scaling. This adaptive approach carries the promise
to compensate both static and dynamic degradations, reversible and irreversible ones in
both cases. In earlier work [17–20], the concept of using spike timing was introduced, to
convey information and emulate acoustic localization.

2. Inspirations from Biological Sensory Systems

Living organisms utilize interaural time differences (ITDs), which refers to the time
delay between signals reaching the two ears, to determine the location of a sound source.
In 1948, Jeffress introduced the concept of acoustic localization [21], which is grounded
on three fundamental principles: delay lines, coincidence detectors, and place map [22].
Figure 1a displays a distinct adaptive spiking neural network (SNN) model for acoustic lo-
calization. In Figure 1b, we present a neuromorphic spiking sensory system that integrates
adaptation features in a two-stage configuration, which emulates Jeffress’s model [21]. In
the first stage, the sensor signal-to-spike converter (SSC) converts the sensor signal into
two spikes that vary in time difference (TD) based on the sensor signal. The early work
conducted initial research on a CMOS image sensor that utilized a light-to-frequency or
light-to-spike-code converter, with a focus on high dynamic range imaging [23]. In subse-
quent studies, researchers expanded upon the concept by incorporating additional sensor
modalities and exploring the time to the first spike coding [11]. Furthermore, they explored
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its application to differential representation using the Wheatstone bridge sensor, for ex-
ample, in the case of xMR sensors. The technologies known as giant magnetoresistance
(GMR) and tunnel magnetoresistance (TMR) have emerged and are collectively referred to
as xMR. The second stage, the self-adaptive spike-to-digital converter (SA-SDC), generates
a digital code corresponding to the TD value. The three core principles of Jeffress’s theory
are integrated into the SA-SDC through synapse weights, an array of adaptable coincidence
detection, and a winner-takes-all (WTA) mechanism with memory [18].
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Figure 1. (a) Acoustic localization model. To determine the location of a voice, the brain relies on the
interaural time differences (ITDs) between the signals that reach each ear. These ITDs are calculated
as the difference between the arrival times of the voice at the left and right ears, denoted as t1 and t2,
respectively. (b) Block diagram of proposed neuromorphic spiking sensory systems.

In our chip, we addressed the aforementioned issues by making two contributions
to the universal-sensor-interface with self-X properties (USIX), as described in our earlier
publication [16]. The multi-project-chip (MPC) USIX is named as such because we inte-
grated the fundamental blocks of contributions based on amplitude- and spike-domain
representation with self-X for analog front-ends (AFE). The first contribution pertains to
reconfigurable hardware, and its outcomes have already been published in [24]. This
paper aims to complement the spiking part using the chip and measurement results of the
second contribution in section four of the previous paper [16]. Figure 2a displays the chip
layout implementation, while Figure 2b shows the specifics of the post-manufacturing chip
that incorporates the essential components of the adaptive neuromorphic spiking sensory
system, including neurons, synapses, adaptive coincidence detection (ACD), and SA-SRC.
Due to the passivation coating and the top metal layer applied to the chip, the details of
the die surface are not visible. The main objective of this project is to perform a test on
the essential component of our proposed neuromorphic spiking sensory system, which is
SA-SRC, using our chip.
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Figure 2. MPC USIX chip. (a) The chip layout comprises the pad frame as well. (b) The manufactured
chip exhibits both the sealing ring and the bonding wires.

3. Proposed Methodology

There has been a surge in demand for sensor systems in Industry 4.0 and IoT that can
effectively operate in a dynamic environment and tackle the limitations of conventional
sensor systems in the amplitude domain. The aim of this project is to create an innovative
neuromorphic spiking sensory system that possesses self-X capabilities, which exhibits
several promising features such as low-voltage operation, noise-robust conditioning, and
low power consumption, overcoming the technology scaling issues. The neuromorphic
spiking sensory system transmits information through spike time, making it suitable for
implementation in advanced sensory electronic systems with high reliability using cutting-
edge technologies. The proposed neuromorphic spiking sensory system consists of SSC
and SA-SDC, as illustrated in Figure 1.

3.1. Sensor Signal-to-Spike Converter (SSC)

The sensor output span seldom equals the input span of the SA-SDC, as shown in
Figure 3, and if the sensor span is smaller than the input span of the SA-SDC, as shown in
Figure 3a, the dynamic range of the SA-SDC is not fully utilized; it will not make use of
all ACDs. Furthermore, the spans of the sensor and SA-SDC may be equal, but they are
offset, as shown in Figure 3b. On the other side of the sensor, if the span is greater than the
input range of the SA-SDC, as shown in Figure 3c, then sensor data is lost. In another case,
there is a difference in both duration (200 ns and 300 ns) and offset (100 ns) of the spans, as
illustrated in Figure 3d. Often the spans are offset and unequal. Therefore, amplification
and level shifting in the time domain are needed to match the spans. The mismatched spans
require an expensive increase in the SA-SDC dynamic range or loss of sensor data; therefore,
the spans of the sensor and SA-SDC must be matched to obtain optimum performance. The
SSC is a conditioning circuit that matches the sensor and SA-SDC, making the spans equal
without a level shift. The SSC is so versatile that it amplifies and level shifts in the time
domain of the sensor signal simultaneously. In the next step of the design, we will develop
an SSC unit, which is required for the proposed project.
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Figure 3. An instance of spans that need correction. (a) The sensor’s range is narrower than the
input range of the SA-SDC. (b) The sensor and SA-SDC have the same range, but there is an offset
between them. (c) The sensor’s range is wider than the input range of the SA-SDC. (d) The sensor
and SA-ADC have different ranges and also a positional offset.

3.2. Self-Adaptive Spike-to-Digital Converter (SA-SDC)

The SA-SDC that is being proposed consists of two components, the first being the
self-adaptive spike-to-rank coding (SA-SRC) and the second being the winner-take-all
(WTA) mechanism that incorporates memory, as illustrated in Figure 1. The SA-SRC has
a tendency to produce spike orders that correspond to the time difference between two
spikes received at its inputs. Spike order codes are a type of coding method that relies on
the arrangement of spikes across a group of neurons, which is determined by the firing
sequence of those neurons [25,26]. The rank order code is converted into digital numbers
through the second component, WTA. By adding more ACDs in a cascade, the ability to
measure time intervals between in1 and in2 can be enhanced, resulting in an increased
resolution of the SA-SDC. The number of ACDs needed to achieve a specific number of bits
(NOB) can be determined using Equation (1), which was developed in [18].

NOB = ld(x) (1)

where x is the number of ACDs. Sixteen adaptive coincidence detection (ACD) units are
employed to implement the proposed SA-SRC for the current stage of the development,
as shown in Figure 4. The NOB can be calculated by using Equation (1), which yields a
result of 4 bits. The SA-SRC consists of two symmetrical sections, specifically the upper
and lower parts, which generate the SA-SRC outputs from Out1 to Out8 and Out9 to
Out16, respectively. Therefore, the presented concept can work for both single-ended and
differential or difference sensorial input, the current implementation uses (spike time)
difference input. This system is equipped with two inputs, referred to as in1 and in2. In
the upper section, input in1 is linked straight to the first input of the ACDs. On the other
hand, the input in2 is transmitted through the ACDs sequentially, representing the delay
chains of the upper section. In contrast, in the lower section, input in2 is directly connected
to the first input of the ACDs, while input in1 is transmitted through the ACDs one by one,
representing the delay chains of the lower section. The duration of the delay chain unit
depends on when the neuron fires, which is influenced by the amount of input current it
receives. However, the input current to the neuron is adjusted by the synapse weight. As a
result, the weights of the synapses adjust to the delay of each unit in the chain, even when
there are variations.

Each ACD unit consists of one neuron (N) and two adaptive synapses (AS). In [18], we
suggested an adaptive synapse that utilizes the CMOS memristor to imitate the short-term
plasticity (STP) and long-term plasticity (LTP) of a biological synapse. Figure 5 displays the
schematic of the adaptive synapse we proposed.

Indiveri’s neuron model, known as the leaky integrate and fire (LIF) neuron model,
includes various components that allow for setting an arbitrary refractory period, spike
frequency adaptation, positive feedback, modulating the neuron’s threshold voltage, mem-
brane capacitor, a transistor for controlling the current leakage, and a digital inverter for
pulse generation [27]. The essential characteristics necessary for the ACD involve the
ability of neurons to implement time delays in a neural network, along with an inverse
correlation between the magnitude of incoming charges and the timing of the first spike.
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These properties are inherent in any neural spiking model. We modified the Indiveri neuron
model in [16] to fulfill the needs of ACD and enhance power efficiency, area utilization, and
processing speed. A schematic of the modified neuron model can be observed in Figure 6.
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Figure 4. The SA-SRC has self-X capabilities that rely on a two-layer adaptivity approach. The first
layer is executed through the autonomous circuit of ACD, while the second layer employs VLEAK

and VRFR to regulate the neuron and vg1 and vg2 to manage the synapses.

There are two modes of operation for the ASRC. The first is the normal mode, in which
both synapses of the ACD are connected to the neuron. The second mode is the adaptation
mode, which was created in [18] by implementing a two-layer adaptation hierarchy. The
first layer operates at the ACD level, while the second layer operates at the SA-SRC level.
The first layer is entirely self-adaptive and local, operating in an unsupervised manner. In
the first layer, the weight of a synapse is determined by the timing of neuron firing, which
is based on the input current it receives. This approach depends on the fact that the timing
of neuron firing is affected by the input current, and the weight of the synapse regulates
this current. Consequently, the weight of the synapse is directly proportional to the timing
of the neuron’s firing. We created a self-adaptive method for the first layer of the ACD by
designing an autonomous control circuit, as illustrated in Figure 7 in [18]. This adaptivity
is facilitated through the reset, adapt_pulse, and adapt I/O pins of the SA-SRC. Upon
receiving the reset signal, the SA-SRC enters the adaptation mode and sets the adapt output
to one upon completion of the unsupervised adaptation of the first level. The SA-SRC
utilizes the pulse of the adapt_pulse input to adapt itself. Once the adaptation process is
complete, the SA-SRC returns to normal mode, during which it can receive input pulses
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on its two inputs (in1 and in2), and adjust the output code based on the time difference
between them.
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Figure 5. The adaptive synapse (AS) in our proposed circuit, with transistor sizes specified in
micrometers, mimics the synaptic plasticity, short-term plasticity (STP), and long-term plasticity (LTP)
found in biological synapses using CMOS memristor technology.

The adaptation process in the first level occurs simultaneously for all ACDs through the
control of switches T1, T2, T3, T4, and T5, as shown in Figure 4. As a result, the time required
for adaptation will not increase with the number of synapses since all synapses are adjusted
simultaneously. The weight of the first synapse in all ACDs is adapted simultaneously
by the autonomous circuit, achieved by connecting the first synapse while disconnecting
the second synapse. Likewise, the weight of the second synapse is also adapted. The
maximum adaptation time is determined by multiplying the maximum number of steps by
the duration of adapt_pulse. According to [18] (page 246), our adaptation scheme allows
for a maximum of 512 steps. The actual adaptation time will be influenced by process,
voltage, and temperature (PVT) conditions. Upon powering-up the MPC USIX chip, all
weights are initially set to zero, and the weight corresponds to the delay. The process of
adaptation starts from scratch and progresses until the desired synapse weight is achieved,
resulting in uniform delays across all connections.
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Figure 7. The ACD’s autonomous control circuit executes the self-adaptation of the synapses’ weights
in the first layer.

The second level of adaptation operates above the first level and is responsible for
adjusting the variables vg1, vg2, VLEAK, and VRFR. This level operates above the first
level and waits for the first level to complete its solution after every modification to these
variables. If the solution successfully corrects the synapse weight, the adaptation process
ends. If not, the second level updates the variables (vg1, vg2, VLEAK, and VRFR) and initiates
adaptation for the next round. At present, these four variables are being manually adjusted
in the current stage of development of our design.
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4. Experimental Setup

A shipment of 32 packaged chips was received from the XFAB foundry. For the current
investigation, only chip number four was analyzed, while the remaining chips will be
examined in a subsequent step. The FPGA evaluation board from Red Pitaya was selected
as the edge computing device for the demonstration prototyping to evaluate the essential
components of the adaptive neuromorphic spiking sensory system at the physical hardware
level. An appropriate PCB with a socket extended the Red Pitaya system to complete the
demonstration board, which could then be used to explore the essential neuromorphic
spiking sensory system blocks such as a neuron, synapse, ACD, and SA-SRC on the MPC
USIX chip, as shown in Figure 8.

Red Pitaya 

Board
Chip

Figure 8. Photo of MPC USIX chip test setup based on auxiliary PCB and Red Pitaya.

Using the Verilog hardware descriptive language, we developed a control module on
the programmable logic (PL) present in the Red Pitaya, as shown in Figure 9. This control
module has the responsibility of overseeing the reset, adapt_pulse, and adapt I/O pins of
the SA-SRC cell. Additionally, it generates two input pulse with time differences for the in1
and in2 of the SA-SRC. The control module utilizes the general-purpose I/O pins present
on the Red Pitaya to establish a direct interface with the I/O pins of the SA-SRC cell on the
MPC USIX chip.

In the second level, there are four variables, namely, vg1, vg2, VLEAK, and VRFR. These
variables have been manually adapted in the current stage of our design development.
Initially, their values were determined based on empirical results and observations from
measurement results, as illustrated in Table 1.

Table 1. Second-level variable values at room temperature of 22 ◦C.

vg1 vg2 VLEAK VRFR

2 V 2 V 0.45 V 0.78 V
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the SA-SRC cell on the MPC USIX chip.

5. Experimental Results

In this experiment, we investigated the properties of the SA-SRC cell and its ability to
adapt on a manufactured chip. The adaptation process of the first level is illustrated in [18]
(page 243, Figure 11) and begins with resetting the SA-SRC. Once the reset signal returns to
one, the SA-SRC adapts using a pulse signal called adapt_pulse, as depicted in Figure 10.
The output signal, adapt, indicates whether the SA-SRC is undergoing self-adaptation
or not, with a value of 0 indicating that it is. The adaptation of weights is accomplished
through the input pulse adapt_pulse, operating at a frequency of 2 MHz. Therefore, the
time of one step is 500 ns. During the experiment, the adaptation time and the number
of steps taken by the SA-SRC were recorded, and at a room temperature of 22 ◦C, the
measurements were 210 µs for adaptation time and 420 steps.

Reset

Adapt

Adapt_pulse

Figure 10. Measurement results of the adaptation process for the SA-SRC cell on the MPC USIX chip.

According to the experimental findings, the SA-SRC cell has the ability to produce
16 distinct spike order codes that correspond to the time difference values between its
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input signals. The time difference (TD) between in1 and in2 ranges from −120 to 120 ns, in
increments of 15 ns, which is equivalent to a 4-bit binary code, as the experiment results in
Tables 2 and 3 show. In the current experiment, we emulated the first block of our proposed
system, SSC, by utilizing the programmable logic (PL) available in the Red Pitaya. The
input of the SA-SRC block is fed by two outputs, in1 and in2, from the SSC that is emulated
in Red Pitaya. Consequently, the time difference between in1 and in2 was constrained by
the capabilities of the Red Pitaya board. As a result, instead of the expected steps of the time
difference (15 ns, 30 ns, 45 ns, and so on until 120 ns), we obtained time steps as listed in
Tables 2 and 3. However, this limitation will not persist when we implement the SSC block
in our future work. The experiment results presented in Figures 11 and 12 demonstrate
that the SA-SRC generates different codes for each value of TD when two pulses with
different TD values are applied to its input. The SA-SRC outputs, labeled out1 to out16,
represent the one spike order code, and the numbers indicated on the output waveforms
represent the sequence of the spike order relative to the other outputs. Figure 11 depicts the
instance where in2 comes before in1 within a time difference of 120 ns. On the other hand,
Figure 12 exhibits the opposite scenario, where in1 comes before in2 within a time difference
of 15 ns. The rank codes were decoded using the algorithm conceived in [18], page 253.
The SA-SRC’s operational capability is demonstrated under varying voltages. The output
spike orders are observed to fluctuate as the power supply changes from 3.3 V to 3 V, as
depicted in Figure 13 and Table 4. The automatic adaptation mechanism of the first layer
compensates for these variations, resulting in the output spike orders being reset to their
initial states, as illustrated in Figure 12 and Table 4. Through the time of the experiment,
the SA-SRC’s adaptation time and the number of steps it took were documented. At a
room temperature of 22 ◦C, the results showed an adaptation time of 225 µs and 450 steps.
The capacity of SA-SRC to counteract process and voltage fluctuations has been confirmed
by the measurement results. The chip’s measurement results have verified our previous
work’s simulation results. Table 5 illustrates the comprehensive comparisons between the
state-of-the-art approaches and the findings presented in this work.

Table 2. The on-chip SA-SRC measurement outcomes indicate that the output spike sequence of in2
preceded in1 with a time difference ranging from 15 ns to 120 ns at a room temperature of 22 ◦C.

Time Difference * 15 ns 32 ns 40 ns 55 ns 70 ns 95 ns 107 ns 120 ns

Binary Output 0000 0001 0010 0011 0100 0101 0110 0111

SA-SRC Outputs Spikes Order

out1 1 1 1 1 1 1 1 1
out2 3 2 2 2 2 2 2 2
out3 5 4 3 3 3 3 3 3
out4 7 6 5 4 4 4 4 4
out5 9 8 7 6 5 5 5 5
out6 11 10 9 8 7 6 6 6
out7 13 12 11 10 9 8 7 7
out8 15 14 13 12 11 10 9 8
out9 2 3 4 5 6 7 8 9
out10 4 5 6 7 8 9 10 10
out11 6 7 8 9 10 11 11 11
out12 8 9 10 11 12 12 12 12
out13 10 11 12 13 13 13 13 13
out14 12 13 14 14 14 14 14 14
out15 14 15 15 15 15 15 15 15
out16 16 16 16 16 16 16 16 16

* The time difference deviates from the ideal steps due to the Red Pitaya hardware limitation.
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Table 3. The on-chip SA-SRC measurement outcomes indicate that the output spike sequence of in1
preceded in2 with a time difference ranging from 15 ns to 120 ns at a room temperature of 22 ◦C.

Time Difference * 16 ns 30 ns 42 ns 53 ns 74 ns 90 ns 105 ns 124 ns

Binary Output 1000 1001 1010 1011 1100 1101 1110 1111

SA-SRC Outputs Spikes Order

out1 2 3 4 5 6 7 8 9
out2 4 5 6 7 8 9 10 10
out3 6 7 8 9 10 11 11 11
out4 8 9 10 11 12 12 12 12
out5 10 11 12 13 13 13 13 13
out6 12 13 14 14 14 14 14 14
out7 14 15 15 15 15 15 15 15
out8 16 16 16 16 16 16 16 16
out9 1 1 1 1 1 1 1 1
out10 3 2 2 2 2 2 2 2
out11 5 4 3 3 3 3 3 3
out12 7 6 5 4 4 4 4 4
out13 9 8 7 6 5 5 5 5
out14 11 10 9 8 7 6 6 6
out15 13 12 11 10 9 8 7 7
out16 15 14 13 12 11 10 9 8

* The time difference deviates from the ideal steps due to the Red Pitaya hardware limitation.
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Figure 11. The SA-SRC’s measurement results on-chip with in2 preceded by in1 with a difference of
120 ns at a room temperature of 22 ◦C.
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Table 4. In addition to compensating for process variations from PVT issues, voltage variation is
regarded here for a dynamic voltage drop from 3.3 V to 3 V before and after adaptation with a time
difference of 16 ns and 55 ns and in1 preceding in2 at a room temperature of 22 ◦C. The automatic
adaptation mechanism of the first layer compensates for these variations, leading to a resetting of the
output spike orders to the correct sequence.

Before Adaptation After Adaptation

Time Difference * 16 ns 55 ns 16 ns 55 ns

Binary Output 1000 ** 1011 ** 1000 1011

SA-SRC Outputs Spikes Order

out1 2 4 2 5
out2 4 6 4 7
out3 6 8 6 9
out4 8 10 8 11
out5 10 12 10 13
out6 11 14 12 14
out7 15 15 14 15
out8 16 16 16 16
out9 1 1 1 1
out10 3 2 3 2
out11 5 3 5 3
out12 7 5 7 4
out13 9 5 9 6
out14 12 7 11 8
out15 13 9 13 10
out16 14 11 15 12

* The time difference deviates from the ideal steps due to the Red Pitaya hardware limitation. ** The degradation
in the rank code is not reflected in degradation or change in the 4-bit binary code computed by the algorithm
in [18], Figure 24, for the given perturbation.
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Figure 12. The SA-SRC’s measurement results on-chip with in1 preceded by in2 with a difference of
15 ns at a room temperature of 22 ◦C.



Chips 2023, 2 155

out1

out2

out3

out7

out6

out5

out4

out8

out16
out15
out14

out10
out11
out12
out13

out9

2

1

4

3

6

5

8

7

10

9

11

12

15

13

16

14

Figure 13. The measurement results of SA-SRC indicate that the on-chip signal in1 leads in2 with a
difference of 15 ns. The sequencing of the output spikes varies with the change in voltage from 3.3 V
to 3 V at a room temperature of 22 ◦C.

Table 5. Displays comprehensive comparisons between the state of the art and the present work.

[6] [28] [5] [29] [30] [11] This Work *

Resolution (bits) 6 8 4 8 6 8 4
Technology 130 nm Off-the-shelf 180 nm 130 nm 180 nm 350 nm 350 nm

CMOS Components CMOS CMOS CMOS CMOS CMOS
Power Supply (V) 1.2 No data 1.8 1.5 1/1.8 3.3 3.3
Power Consumption (mW) 18 7.4 0.515 25 1.95 No data 0.297
Area (mm2) 0.01 No data 3.96 0.02 0.212 8.5 0.97
Sampling Frequency (MHz) 1000 10 NUS ** 1000 20 0.15 2.7
Nyquist Bandwidth (MHz) 500 5 No data 500 10 0.075 1.35
Adaptable Yes Yes Yes Yes Yes No Yes

* This is the result of the main block SA-SRC of our proposed design. ** NUS: nonuniform sampling.

6. Conclusions

Having sensors and appropriate sensor electronics that connect an application system
to the physical world is crucial for its overall success. Therefore, our objective was to
create an adaptive neuromorphic spiking sensory system that boasts several advantageous
features, such as resilience to noise, efficient power usage, compatibility with technology
scaling, and low-voltage operation. The information representation method is based on the
pulse or spike domain, which draws significant inspiration from biological sensor systems.
This work aims to supplement the measurement results of the adaptive implementation of
a neuromorphic spiking sensory system using a chip. Our chip, which includes the fun-
damental components of the adaptive neuromorphic spiking sensory system, namely, the
neuron, synapse, ACD, and SA-SRC, was manufactured in XFAB CMOS 0.35 µm technology
via EUROPRACTICE. The main emphasis of this paper is on the measurement outcomes of
the SA-SRC, which is responsible for carrying out the primary functionality of the adaptive
neuromorphic spiking sensory system. In this work, we examined the effectiveness of its
adaptation method and appraised its ability to generate spike sequences that reflect the
time difference between the two input spikes. The SA-SRC cell’s first level of adaptivity
is described, which operates in an unsupervised manner and is completely self-adaptive
and local. The measurement outcome of this initial layer of the adaptation hierarchy is
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presented. The operational capability of the SA-SRC is demonstrated to withstand voltage
variations. The output spikes’ magnitudes change in response to voltage fluctuations, but
the adaptation mechanism resets them to their original levels. The adaptation time of
the first-level SA-SRC was measured, and it was 210 µs. The fabricated SA-SRC cell can
produce 16 unique output spike orders, corresponding to a 4-bit resolution. Regarding
energy consumption, the SA-SRC cell utilizes 297 µw of energy. In terms of speed, the con-
version time for the SA-SRC is 370 ns. The selection of the 0.35 µm technology and the 4-bit
version for implementation was driven by cost considerations and aimed to demonstrate
the feasibility of the solution. However, it should be noted that the concept is not limited
to these parameters and can be scaled up in terms of both bit capacity and technology
used. Table 5 presents a thorough comparison between the findings presented in this work
and the state-of-the-art approaches. Finally, the simulation results of our previous work
were confirmed by the experiment’s results on the MPC USIX chip presented in this paper.
In future work, we will present the measurement outcomes of the other cells of our chip,
neuron, synapse, and ACD. Furthermore, we will develop an SSC unit which is essential
for the presented work. In the presented investigation, we have only utilized one chip out
of our 32 packaged chips. We will investigate the adaptation for the complete batch of chips
under static and dynamic variations, e.g., temperature. The ADC standard characteristics
such as INL, DNL, and SNR will be measured next.
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Abbreviations
The following abbreviations are used in this manuscript:

AFE Analog front-ends
USIX Universal-sensor-interface-with-self-X-properties
AFEX Analog front-ends with self-X properties
ADC Analog-to-digital converters
ANN Artificial neural network
RRAM Resistive random-access memory
ITD Interaural time differences
WTA Winner-takes-all
MPC Multi-project-chip
GMR Giant magnetoresistance
TMR Tunnel magnetoresistance
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SSDCα Sensor to spike to digital converter
SSC Sensor-to-spike converter
SDC Spike-to-digital converter
TD Time differences
SA-SDC Adaptive spike-to-digital converter
SA-SRC Self-adaptive spike-to-rank coding
ACD Adaptive coincidence detection
NOB Number of bits
LIF Leaky integrate and fire
PVT Process, voltage, and temperature
PCB Printed circuit board
NUS Nonuniform sampling
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