
Citation: Garzón, E.; Yavits, L.;

Teman, A.; Lanuzza, M. Approximate

Content-Addressable Memories: A

Review. Chips 2023, 2, 70–82.

https://doi.org/10.3390/

chips2020005

Academic Editor: Andrea Boni

Received: 17 January 2023

Revised: 8 March 2023

Accepted: 27 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Approximate Content-Addressable Memories: A Review
Esteban Garzón 1,* , Leonid Yavits 2 , Adam Teman 2 and Marco Lanuzza 1

1 Department of Computer Engineering, Modeling, Electronics and Systems (DIMES), University of Calabria,
87036 Rende, Italy

2 Emerging Nanoscaled Integrated Circuits & Systems (EnICS) Labs, Faculty of Engineering,
Bar-Ilan University, Ramat-Gan 5290002, Israel

* Correspondence: esteban.garzon@unical.it

Abstract: Content-addressable memory (CAM) has been part of the memory market for more
than five decades. CAM can carry out a single clock cycle lookup based on the content rather
than an address. Thanks to this attractive feature, CAM is utilized in memory systems where a
high-speed content lookup technique is required. However, typical CAM applications only support
exact matching, as opposed to approximate matching, where a certain Hamming distance (several
mismatching characters between a query pattern and the dataset stored in CAM) needs to be tolerated.
Recent interest in approximate search has led to the development of new CAM-based alternatives,
accelerating the processing of large data workloads in the realm of big data, genomics, and other data-
intensive applications. In this review, we provide an overview of approximate CAM and describe its
current and potential applications that would benefit from approximate search computing.

Keywords: CAM; content-addressable memory; ternary CAM; associative memory; associative
processor; approximate CAM

1. Introduction

Content-addressable memory (CAM) or associative memory is a storage structure
that accesses memory by content rather than by location [1]. In addition to the write
and read operations that are supported by static random access memory (SRAM) and
dynamic RAM (DRAM), CAM allows massively parallel search operations between an
input query pattern and the entire dataset stored within the memory architecture. Thanks
to this property, CAM is a commonly sought after component for constructing state-of-the-
art memory-based systems where high-speed parallel search is required. CAM has been
adopted in a wide spectrum of application domains, from network routers and switches
to digital signal processing, data analytics, and microprocessors. Within microprocessors,
parallel search operations are required by many components, including fully associative
cache memory, translation look-aside buffers, branch prediction buffers, and more [1–5].
Conventional CAM is mainly designed to reveal exact matches between the input query
pattern and the stored information. However, in the past decade, approximate search has
become an attractive feature for different data-intensive applications such as comparison-
intensive big data workloads, machine learning, and pattern recognition applications
in images, DNA sequencing, and biomedical data [6–10]. For this class of emerging
applications, the main aim is to find similar rather than exact matching patterns. In other
words, mismatching characters can exist between the query pattern and a stored data entry.
Therefore, a certain Hamming distance is tolerable, and such a stored pattern should still be
considered a “match”. With applications of similarity search growing quickly, approximate
search-capable CAM has become a subject of active scientific research. Accordingly, this
paper provides a review of approximate search-capable CAM circuit solutions and their
main applications.

The target of this manuscript is to familiarize the reader with the state-of-the-art
approximate search solutions, present the advantages and drawbacks of past and existing

Chips 2023, 2, 70–82. https://doi.org/10.3390/chips2020005 https://www.mdpi.com/journal/chips

https://doi.org/10.3390/chips2020005
https://doi.org/10.3390/chips2020005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chips
https://www.mdpi.com
https://orcid.org/0000-0002-5862-2246
https://orcid.org/0000-0001-5248-3997
https://orcid.org/0000-0002-8233-4711
https://orcid.org/0000-0002-6480-9218
https://doi.org/10.3390/chips2020005
https://www.mdpi.com/journal/chips
https://www.mdpi.com/article/10.3390/chips2020005?type=check_update&version=1

Chips 2023, 2 71

approximate CAM solutions, discuss their main limitations, and summarize our findings,
insights, and conclusions. This paper considers today’s data and comparison-intensive ap-
plications, state-of-the-art similarity search solutions, and their main design considerations.

This review is organized as follows. Section 2 presents the conventional CAM topolo-
gies. Section 3 discusses the different classes of approximate CAM, highlighting their past
and current prospects. Section 4 presents some applications of approximate search CAM.
Finally, Section 5 summarizes the main conclusions of this work.

2. Background

The following subsections overview the structure and common implementations
of conventional CAMs, introducing the challenges and trade-offs that limit their use in
approximate search applications. The CAM architecture described below is the basis for
any type of approximate CAM implementation. The CAM architecture is used “as is” when
implementing software-based approximate solutions. For hardware-based approaches,
additional circuitry is considered.

2.1. CAM Hardware Implementation

Figure 1 shows the top-level view of the CAM architecture. It is mainly built from
m × n CAM bit cells (BCs), search data registers (SDRs), and match line sense amplifiers
(MLSAs). The CAM cells are based on the structure of the standard six-transistor SRAM bit
cells (6T-SRAM), thereby enabling write and read operations through word lines (WLs) and
complementary bit lines, which are called search lines (SLs) in the case of CAM structures.
Similar to SRAM, both the write and read operations are carried out by asserting the WLs.
When a write operation is required, the data are driven onto the SLs through the search
data registers or drivers (SDRs). During read access, the data of the CAM cells are sampled
from the SLs following the completion of the read by means of SL sensing circuitry (not
shown in Figure 1).

WL0

WL1

ML0

ML1

CAM

BC

CAM

BC

CAM

BC

CAM

BC

CAM

BC

CAM

BC

CAM

BC

CAM

BC

CAM

BC

Search data registers/drivers (SDRs)

ML

sense

amplifiers

(MLSAs) m×n

MLm ̶ 1

WLm ̶ 1

SLn ̶ 1 SLn ̶ 1 SLn ̶ 2 SLn ̶ 2 SL0 SL0

Figure 1. CAM top-level view.

The main difference between CAM and random-access memory is the compare opera-
tion. Compare operations are applied by driving the query pattern onto the SLs through
the SDRs. A match occurs when the stored data matches the query pattern; otherwise, a
mismatch is asserted. Match and mismatch cases depend on the voltage level of the MLs,
which are sensed by the MLSAs.

Chips 2023, 2 72

Conventional CAM can be classified as having NOR- or NAND-based architectures.
The schematic cells for the NOR and NAND CAM memory structures are shown in
Figure 2a,b. For the sake of simplicity, the WL wires are not shown. The core of the
cells is the cross-coupled inverter that holds the volatile data within the internal nodes D
and D. The data nodes are connected to XNOR circuitry composed of M1–M4 (Figure 2a)
and M1–M3 (Figure 2b) transistors for the NOR and NAND cells, respectively. For the NOR-
type cell, the XNOR operation is carried out by conditionally pulling down the ML through
M1/M3 (or M2/M4). As for the NAND-type cell, the XNOR operation is implemented by
conditionally enabling the pass transistor (M1) through the M2/M3 transistors. Figure 2c,d
shows the connectivity schemes of CAM memory words based on the NOR ML and NAND
ML, along with their MLSA and pre-charge or evaluation circuitry.

Match

result

(c)

(a) (b)

D

SL

D

SL
ML ML'i+1

SLSL

D D

XNOR

NOR

cell

NOR

cell

NOR

cell

MLSA

pre

Match

result
MLSA

pre

(d)

NOR

cell

ML
SL SL

NAND

cell

SL SL

ML'i

ML'i+1
ML'i

NAND

cell

NAND

cell

NAND

cellev
a
l

ML'i,n ML'i,n ̶ 2ML'i,n-1 ML'1 ML'0

M1

M3

M2

M4

M1

MLi

MLi

M3

SLn ̶ 1 SLn ̶ 1 SLn ̶ 2 SLn ̶ 2 SL0 SL0

SLn ̶ 1 SLn ̶ 1 SLn ̶ 2 SLn ̶ 2 SL0 SL0

M2

MPC

MPC

ME

Figure 2. CAM cells based on (a) NOR and (b) NAND. For the sake of simplicity, word lines (WLs)
are not shown in (a,b). CAM memory words based on (c) NOR match line and (d) NAND match line
(adopted from [1]). The CAM words employ a match line sense amplifier (MLSA).

Chips 2023, 2 73

2.2. CAM Operation Principle

NOR-based and NAND-based CAM carry out the compare operation in two phases:
(1) pre-charge and (2) evaluation. For the NOR-based CAM, the comparison operation
is performed through the pre-charge transistor (MPC), while for the NAND-based CAM,
the comparison depends on the MPC and ME transistors. To avoid unwanted operations,
the SLs have to be discharged down to ground prior to the compare operation. During
the pre-charge phase, the pre signal is asserted, and the ML is charged to VDD in both
configurations. For a NAND-based CAM, the gate of the ME is driven to ground dur-
ing precharge. During the evaluation phase, the NOR and NAND CAM behave in a
complementary manner.

In the context of an NOR CAM, a search is performed by applying an inverted pattern
to the search lines. If any of the stored bits do not match the inverted search bit, then
a discharge will occur on one of the match lines (either M1/M3 or M2/M4), indicating a
mismatch. The value of the inverse match line (MLi) at the end of the comparison cycle
will be zero in this case. If the stored bit in every cell is not equal to the inverted search bit,
the ML has no path to discharge through. Therefore, the ML voltage level remains high
at the end of the comparison cycle, indicating a match. In the case of the NAND CAM,
if the stored bit in every cell is equal to the search bit, then the ML is able to discharge
through the series of M1,i transistors (refer to Figure 2b), resulting in a drop to zero and a
match being signaled at the end of the comparison cycle. If there is even a single mismatch
among the NAND CAM cells, then the ML will stay high, indicating that a match has not
been found.

2.3. CAM Limitations for Approximate Search

The exact match CAM circuits, which were described above, feature several design
challenges that have limited their use for approximate search CAM. These limitations,
including accuracy, complexity, and cost, are elaborated upon hereafter:

• Accuracy: Conventional CAM memory is built to carry out exact match (rather than
approximate match), and thus approximate search is not expressly supported.

• Complexity: Implementing approximate match capabilities in conventional CAM
memory can be challenging, and it may increase the overall design complexity.

• Cost: To add approximate matching capabilities to conventional CAM memory, modifica-
tions to the hardware or software may be necessary. This may incur an additional cost.

Overall, while it is possible to carry out approximate search with conventional CAM
memory without modifying the memory array structure, dedicated approximate match
CAM may be more effective and efficient for this purpose. This is discussed further in the
following section.

3. Approximate Content-Addressable Memory

In recent years, there have been numerous proposals for ternary and binary CAM
cell designs that utilize NOR and NAND cells. These designs range from CMOS-based
approaches to novel memory-based solutions, and most of them are mainly built to support
exact match [10–32]. Due to the presence of possible bit errors or “do not care” bits in the
data pattern, there are several applications which greatly benefit from approximate search
rather than exact search. These applications will be introduced in Section 4.

In approximate search, a certain number of mismatching characters between a query
pattern and the data stored in CAM is allowed. If the difference between the stored pattern
and the query pattern is below a predetermined threshold, then the comparison should be
deemed a “match”. In simpler cases, the difference is limited to replacements, meaning
that a certain data element is replaced by another. However, in text and sequenced DNA
data processing, there are two possible additional variations: insertions and deletions. The
former is the insertion of a data element into a sequence of data elements, while the latter

Chips 2023, 2 74

is the deletion of a data element from a sequence. Collectively, these changes to a data
sequence (replacements, insertions, and deletions) are known as edits.

While most solutions for approximate search have been focused on software solutions, there
have been a considerable number of studies that have proposed hardware-level alternatives.

3.1. Classes of Approximate CAM

In this subsection, we elaborate on the past and current prospects of approximate
CAM reported in the state of the art. We discuss various hardware- and software-level
solutions proposed for approximate search in CAM. Additionally, we will highlight the
limitations and challenges of these solutions and their potential for future improvements.
Approximate search CAM classes are represented in Figure 3 and are discussed below.

Figure 3. Classes of approximate CAM.

3.1.1. Error-Tolerant CAM

CAM designs that provide soft error tolerance using error-correcting codes were
proposed in [33–35]. The error-tolerant CAM of Pagiamtzis et al. [33] is based on an error-
correcting match circuit that utilizes parity bits for each CAM word and modifies the match
line-sensing circuitry to tolerate up to one mismatching bit. Krishnan et al. [34] proposeed
error-correcting codes for ternary CAM (TCAM) by replacing the match line sense amplifier
with an analog comparator. Efthymiou [35] exploited NAND-type CAM along with parity
bits and a dedicated ML scheme to tolerate soft errors. These designs mainly target single
event upsets, use memory redundancy, and typically tolerate a limited Hamming distance
of 1–4 bits. This is at the expense of an increased area footprint.

3.1.2. Minimum Hamming Distance Search CAM

Minimum Hamming distance search CAM is a CAM design that is capable of searching
for patterns with a Hamming distance below a predetermined threshold. Mattausch et al. [36]
proposed a CAM-based architecture for minimum Hamming distance search. This CAM
design considers both digital and analog circuitry for bit and word comparison, followed
by winner-take-all (WTA) circuitry. There have also been several proposals for Hamming
distance approximation using emerging memory (memristor crossbar) designs. For example,

Chips 2023, 2 75

Zhu et al. [37] and Taha et al. [8] presented a hybrid CMOS/memristor-based CAM design
for Hamming network circuits. These architectures mainly exploit a crossbar array and
WTA circuitry, allowing the network to identify the pattern or patterns within the dataset
that are similar to the query pattern. Other examples of minimum Hamming distance search
CAM include NCAM [38] and PPAC [39]. NCAM utilizes near-memory logic to determine
the sum of the squares of the differences between data words, while PPAC calculates the
Hamming similarity through a population count, which involves tallying the number of
ones in the XNOR outputs of the bit cells of the CAM word.

3.1.3. Tunable Sample Time CAM

A tunable sample time CAM utilizes the timing of the score signal delay or the speed
of the match line discharge as a measure of the Hamming distance. In [40], whenever a bit
mismatch occurred between the bits of the search and query patterns, a delay was added.
Therefore, the Hamming distance between the two patterns can be determined by the
overall delay of the score signal. Rahimi et al. [41] proposed memristive-based approximate
CAM for energy-efficient GPUs. The architecture was experimentally evaluated for image
processing kernels, showing a Hamming distance tolerance of up to two bits. Although
this was shown to be a cost-effective solution, enabling approximate CAM is accomplished
through meticulous timing of the match line discharge. Imani et al. [42] exploited the delay
lines at the clock inputs of four sense amplifiers on each match line, allowing a Hamming
distance tolerance of up to four bits. These tunable sampling time methods demand precise
device and circuit sizing, require almost perfect skew balancing between all ML timing
circuits, are sensitive to jitter, and are prone to producing false negatives and false positives.
Therefore, the overall accuracy of the approximate search technique is limited.

3.1.4. Locality-Sensitive Hashing

This class of approximate search CAM utilizes near-neighbor algorithms, such as local-
sensitivity hashing (LSH) of query patterns and stored data. Ni et al. [43] demonstrated that
ferroelectric-based TCAMs can be used to compute the Hamming distance between query
and data patterns within the memory itself. Similarly, Riazi et al. [44] and Sheybani et al. [45]
exploited LSH-based CAM to enable approximate search in hardware security applications.
These designs provide a large Hamming distance tolerance as well as tolerance to edit
distances. However, before the storage and search operations, these schemes require local
data hashing, and a large Hamming distance does not always result in low similarity for the
hashed data sketches [46]. Therefore, LSH limits the precision in approximate search CAM.

3.1.5. Tunable Match Line Discharge Rate CAM

Another class of approximate search CAM utilizes the ML discharge rate. Garzón
et al. [47] exploited the conventional NOR-type CAM cell to construct a Hamming distance-
tolerant CAM (HD-CAM), which can achieve either exact or approximate matching. The
Hamming distance threshold is determined by the combination of the voltage that controls
the speed of the ML discharge and the sense amplifier reference voltage. Although HD-
CAM is able to tolerate large Hamming distances, it does not have a built-in capability to
tolerate the edit distance. To deal with this, Hanhan et al. [48] proposed a novel edit distance-
tolerant CAM (EDAM) for approximate search applications. Thanks to its dedicated
hardware, EDAM is highly efficient in applications such as text processing and genome
analysis. These beneficial features come at the cost of an increased area footprint due to the
additional circuitry included within their bit cells.

3.2. Approximate CAM Limitations

Several approximate CAM designs have been proposed in recent decades, as intro-
duced above. Despite their promising capabilities to accelerate comparison-intensive
applications, there is still the need for more affordable, cost-effective, and energy-efficient

Chips 2023, 2 76

similarity search-capable solutions. Some limitations (in terms of degree of similarity, speed,
complexity, and cost) to using approximate CAM are as follows:

• Degree of Similarity: Unlike exact match CAMs, approximate match CAMs aim
to retrieve data that are similar but not necessarily identical to the query pattern.
Therefore, the focus is on the relevance of the results rather than their exactness.
However, this can be a limitation in situations where the required degree of similarity
is critical, such as in certain text or image recognition applications. In such cases, it is
important to carefully choose the similarity metric and threshold to ensure that the
results are relevant enough for the target application.

• Speed: While approximate match CAM is generally slower than exact match CAM,
the degree of difference in speed can vary depending on several factors. For example,
determining the closest match in approximate match CAM requires comparing the
query pattern to multiple pieces of data, which can add to the search time. Additionally,
some approximate CAM designs, such as those based on a tunable sample time or
tunable ML discharge rate, may introduce an additional search delay that affects the
overall speed. This is because additional circuitry may be introduced in the match line
discharge path [47,48].

• Complexity and Cost: Implementation of approximate match CAM can be more
complex than exact match CAM, as it requires the use of algorithms or additional
circuitry to determine the similarity between the query and search pattern. In fact,
to enable approximate match, CAM cells often need to be tailored to a specific ap-
plication. For example, Garzón et al. [47] and Hanhan et al. [48] used an additional
transistor to control the match line discharge path. Therefore, the overall bit cell area
footprint increases.

3.3. Power Consumption

CAM and approximate CAM have been shown to have higher power densities than
traditional memory arrays, which can limit their usage for certain applications that require
low power consumption or have power constraints. For example, in mobile or Internet of
Things (IoT) devices that are powered by batteries, power consumption is a critical concern.
In fact, CAM is characterized by frequent and simultaneous power-hungry accessing of
all memory cells in the array. The power consumption of CAM can be affected by various
factors, such as the number of cells, the typology (NOR-type or NAND-type), the search
algorithm, the data pattern, and the adopted sensing circuitry. Moreover, the increase in
the number of cells (used for larger CAM) can result in significant power dissipation. This
issue may limit the use of CAM in power-limited or battery-operated systems.

In terms of its footprint, CAM can be more area-hungry than other memory arrays
because it usually requires more transistors per cell than traditional memory types. This
makes it a less attractive option for applications where the memory density is constrained,
such as in portable devices.

Speed is another important consideration when it comes to CAM. In general, the larger
the CAM memory word, the higher the power consumption can be per operation.

Scalability is also an important consideration when it comes to CAM. As the number
of cells in a CAM increases, the overall power consumption can increase. This can limit
the scalability of CAM for applications that require large databases or energy-efficient
search operations.

Overall, advancements in hardware (e.g., energy-efficient match line schemes) and the
use of emerging non-volatile memory technologies can make CAM more feasible for
power-constrained applications by also improving the scalability of CAM [49].

4. Approximate Search Applications

During the last decade, due to the increasing interest in emerging memory tech-
nologies, emerging applications, and the need to accelerate comparison-intensive tasks,
approximate search CAM has shown its potential for applications that benefit from approx-

Chips 2023, 2 77

imate match rather than exact match. Some approximate CAM applications are shown in
Figure 4, including machine learning, deep learning, data analytics, and computational
biology [6–10,50]. From the computational biology realm, genomics has been a subject of
great interest, mainly due to the exponential growth of the ever-increasing sequenced data
volume [51]. Genome analysis has experienced astonishing growth over the last decade [52],
and it is the basis for different kinds of applications, such as monitoring environmental
ecosystems and genomics surveillance (e.g., as a tool to fight the COVID-19 pandemic), sus-
tainable agriculture, environment monitoring of Earth, and personalized healthcare [53–56].

Deep Learning

Data Analytics

Machine
Learning

Computational
Biology

Approximate CAM

Applications

Figure 4. Approximate CAM applications: machine learning, deep learning, data analytics, and
computational biology.

4.1. Future Prospects and Challenges for Approximate CAM

Despite the growing interest in approximate CAM, it still faces several challenges that
need to be addressed in order to fully implement its potential. One challenge, if needed
by the target application, is improving the degree of similarity between the query pattern
and the stored data, as this can greatly affect the accuracy of the search results. Another
challenge is reducing power consumption, as approximate CAM tends to have a higher
power density compared with traditional memory arrays.

Furthermore, approximate CAM needs to be designed and optimized based on the
specific requirements and characteristics of the application. For example, in bioinformatics,
approximate CAM needs to consider the variability of DNA sequences and account for
various types of mutations. Hanhan et al. proposed EDAM, a CMOS edit distance-tolerant
content-addressable memory for approximate search [48]. (This is presented as a case study
in the next subsection.) The EDAM design presents challenges in scaling to support large
genome databases due to its large size (42 transistors) and the required cross-connectivity
among neighboring memory columns, which may adversely affect the density and timing.

In summary, while approximate CAM holds promise in enabling error-tolerant search
operation in various applications, it still faces challenges related to degree of similarity,
power consumption, and design optimization. Future research in this area should focus on
addressing these challenges and exploring new energy-efficient approaches for approximate
search using CAM.

4.2. Case Study: Genomics and DNA Pattern Detection Using Approximate CAM

Recent advancements in DNA sequencing technology, in conjunction with PCR molec-
ular techniques, have been exploited to detect and characterize the viral DNA strands
associated with the current COVID-19 outbreak [57,58]. The procedure entails the process
of sequencing a genome, specifically the DNA, which is subsequently utilized in detection

Chips 2023, 2 78

methodologies, such as the polymerase chain reaction (PCR). The DNA of organisms is
composed of four nucleotides: adenine (A), guanine (G), cytosine (C), and thymine (T),
which are commonly referred to as DNA bases. DNA sequencing is a process of deter-
mining the bases of a DNA chain. Current high-throughput DNA sequencing devices
possess the capability to simultaneously sequence multiple DNA samples in parallel [59].
The DNA sequencing process and genomic analysis are executed through a series of steps,
including [60] (1) preparation of the DNA samples, (2) DNA sequencing, which results in
the production of multiple DNA fragments also known as DNA reads, and (3) classification
of DNA reads, alignment of DNA reads, genome assembly, and analysis of genetic variants,
among others. State-of-the-art tools, such as Kraken and Kraken2 [61,62], are used to
classify unknown DNA. However, Kraken operation is based on exact matching of the
k-mers in the sequenced DNA patterns (reads) against a DNA database it creates. Thus,
to operate with sufficient sensitivity, it requires relatively high coverage (high percentage of
the target DNA in a sample), which is not always available in specific reads. For example,
DNA reads of viruses tend to include the host’s DNA, which significantly impedes the
ability to identify the virus’s DNA in the sample.

A fast and highly sensitive approximate matching-based DNA classification scheme,
known as EDAM, was proposed in [48], and its high-level architecture is shown in Figure 5.
The EDAM memory scheme was built with commercial process and based on 6T-SRAM
bit cells with additional comparison logic that enables the edit distance tolerance and
approximate search capabilities. A comprehensive design space evaluation showed that
EDAM is capable of tolerating a range of edit distances, and it was shown to classify more
reads than Kraken2 during several experiments on raw reads while also retaining high
precision. The EDAM architecture allows for efficient genomic surveillance through its
ability to rapidly identify and categorize viral and other pathogen DNA.

Set of DNA reads SampleSequencer

ACGT
CCTT
ATGC

ACGT
CCTT
ATGC

ACGT
CCTT
ATGC

ACGT
CCTT
ATGC

ACGT
CCTT
ATGC

ACGT
CCTT
ATGC

SLn
SL1SL0 SL1BLSL0BL SLnBL

Search data registers/drivers

n×m

ML sense

amplifiers

(MLSAs)

WL0

WL1

WLm

Hit

64 basepairs

ATTA ···

TTAG ···

TAGA ···

AGAA ···

··· TCTA

··· CTAA

··· TAAA

 ····

N-63

EDAM

Reference

DNA stored

in EDAM

ATTAGAAACCAACGTTCA··· TCCAGATCTGTTCTCTAAA

1
st
 64-merATTA ···

TTAG ···

··· TAAA

2
nd

 64-mer

3
rd

 64-mer ···

N-63
rd

 64-mer

TAGA ···

Reference

DNA

64-mer

from shift register

64-mer

from shift register

N

If (Σ Hits >

Hit threshold)

 Cov-SARS-2

else

 it is not

EDAM

cell

EDAM

cell

EDAM

cell

EDAM

cell

EDAM

cell

EDAM

cell

EDAM

cell

EDAM

cell

EDAM

cell

ML0

ML1

MLm

M
em

o
ry

 C
o
n

tr
o
ll

er

Host

DNA read
Shift

register

μController

(FSM)

μController

(FSM)

M
em

o
ry

64-merRead BufferRead Buffer

(b)

N ̶ 63
inputs
N ̶ 63
inputs

Online

Offline

SA

SA

SA

(a)

CAM-based Architecture for Virus Detection

Figure 5. Approximate CAM-based architecture for virus detection and classification [48]. (a) EDAM
platform. (b) The offline construction of the reference DNA database along with the online virus
detection operation.

5. Conclusions

This paper presented an overview of approximate content-addressable memory, start-
ing with the background of conventional CAM and then introducing the current approx-
imate CAM classes. Several state-of-the-art alternatives that enable approximate search
were also introduced, followed by an overview of the limitations of such approximate
CAM methods. We further introduced approximate search as an alternative to accelerate
the processing of large data workloads in the realm of big data analytics, computational
biology, machine learning, and deep learning applications. Finally, approximate search

Chips 2023, 2 79

CAM was presented through a case study in the genomics application domain, showing its
potential for hardware acceleration of genomic surveillance.

Author Contributions: Conceptualization, E.G., L.Y., A.T. and M.L.; investigation, E.G., L.Y., A.T.
and M.L.; writing—review and editing, E.G., L.Y., A.T. and M.L. All authors have read and agreed to
the published version of the manuscript.

Funding: European Union’s Horizon Europe programme for research and innovation under grant
agreement No. 101047160; Israeli Ministry of Science and Technology under Lise Meitner grant for
Israeli-Swedish research collaboration; Italian Ministry of University and Research (MUR): PRIN
2020LWPKH7.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CAM Content-addressable memory
SRAM Static random-access memory
DRAM Dynamic random-access memory
BC Bit cell
SDR Serach data register
ML Match line
MLSA Match line sense amplifier
WL Word line
SL Search line
D Data
MPC Pre-charge transistor
TCAM Ternary content-addressable memory
WTA Winner-take-all
LSH Local sensitivity hashing
HD-CAM Hamming distance-tolerant CAM
EDAM Edit distance-tolerant CAM
PCR Polymerase chain reaction
A Adenine
G Guanine
C Cytosine
T Thymine

References
1. Pagiamtzis, K.; Sheikholeslami, A. Content-addressable memory (CAM) circuits and architectures: A tutorial and survey. IEEE J.

Solid-State Circuits 2006, 41, 712–727. [CrossRef]
2. Ge, Q.; Yarom, Y.; Cock, D.; Heiser, G. A survey of microarchitectural timing attacks and countermeasures on contemporary

hardware. J. Cryptogr. Eng. 2018, 8, 1–27. [CrossRef]
3. Basu, A.; Gandhi, J.; Chang, J.; Hill, M.D.; Swift, M.M. Efficient virtual memory for big memory servers. ACM SIGARCH Comput.

Archit. News 2013, 41, 237–248. [CrossRef]
4. Gracioli, G.; Alhammad, A.; Mancuso, R.; Fröhlich, A.A.; Pellizzoni, R. A survey on cache management mechanisms for real-time

embedded systems. ACM Comput. Surv. (CSUR) 2015, 48, 1–36. [CrossRef]
5. Karam, R.; Puri, R.; Ghosh, S.; Bhunia, S. Emerging Trends in Design and Applications of Memory-Based Computing and

Content-Addressable Memories. Proc. IEEE 2015, 103, 1311–1330. [CrossRef]
6. Imani, M.; Kim, Y.; Rahimi, A.; Rosing, T. ACAM: Approximate Computing Based on Adaptive Associative Memory with

Online Learning. In Proceedings of the 2016 International Symposium on Low Power Electronics and Design, ISLPED’16,
New York, NY, USA, 8–10 August 2016; pp. 162–167. [CrossRef]

http://doi.org/10.1109/JSSC.2005.864128
http://dx.doi.org/10.1007/s13389-016-0141-6
http://dx.doi.org/10.1145/2508148.2485943
http://dx.doi.org/10.1145/2830555
http://dx.doi.org/10.1109/JPROC.2015.2434888
http://dx.doi.org/10.1145/2934583.2934595

Chips 2023, 2 80

7. Ali, M.; Agrawal, A.; Roy, K. RAMANN: In-SRAM Differentiable Memory Computations for Memory-Augmented Neural
Networks. In Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED’20,
New York, NY, USA, 10–12 August 2020; pp. 61–66. [CrossRef]

8. Taha, M.M.; Teuscher, C. Approximate memristive in-memory Hamming distance circuit. ACM J. Emerg. Technol. Comput. Syst.
(JETC) 2020, 16, 1–14. [CrossRef]

9. Kaplan, R.; Yavits, L.; Ginosasr, R. BioSEAL: In-Memory Biological Sequence Alignment Accelerator for Large-Scale Genomic
Data. In Proceedings of the 13th ACM International Systems and Storage Conference, Haifa, Israel, 2–4 June 2020; pp. 36–48.
[CrossRef]

10. Kaplan, R.; Yavits, L.; Ginosar, R.; Weiser, U. A Resistive CAM Processing-in-Storage Architecture for DNA Sequence Alignment.
IEEE Micro 2017, 37, 20–28. [CrossRef]

11. Do, A.T.; Chen, S.; Kong, Z.H.; Yeo, K.S. A High Speed Low Power CAM With a Parity Bit and Power-Gated ML Sensing. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 2013, 21, 151–156. [CrossRef]

12. Mishra, S.; Mahendra, T.V.; Dandapat, A. A 9-T 833-MHz 1.72-fJ/Bit/Search Quasi-Static Ternary Fully Associative Cache Tag
With Selective Matchline Evaluation for Wire Speed Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 1910–1920.
[CrossRef]

13. Arsovski, I.; Patil, A.; Houle, R.M.; Fragano, M.T.; Rodriguez, R.; Kim, R.; Butler, V. 1.4Gsearch/s 2-Mb/mm2 TCAM Using
Two-Phase-Pre-Charge ML Sensing and Power-Grid Pre-Conditioning to Reduce Ldi/dt Power-Supply Noise by 50%. IEEE J.
Solid-State Circuits 2018, 53, 155–163. [CrossRef]

14. Yavits, L.; Morad, A.; Ginosar, R. Computer Architecture with Associative Processor Replacing Last-Level Cache and SIMD
Accelerator. IEEE Trans. Comput. 2015, 64, 368–381. [CrossRef]

15. Dong, Q.; Jeloka, S.; Saligane, M.; Kim, Y.; Kawaminami, M.; Harada, A.; Miyoshi, S.; Yasuda, M.; Blaauw, D.; Sylvester, D.
A 4 + 2T SRAM for Searching and In-Memory Computing with 0.3-V VDDmin. IEEE J. Solid-State Circuits 2018, 53, 1006–1015.
[CrossRef]

16. Chan, Y.S.; Huang, P.T.; Wu, S.L.; Lung, S.C.; Wang, W.C.; Hwang, W.; Chuang, C.T. 0.4 V Reconfigurable Near-Threshold TCAM
in 28 nm High-k Metal-Gate CMOS Process. In Proceedings of the 2018 31st IEEE International System-on-Chip Conference
(SOCC), Arlington, VA, USA, 4–7 September 2018; pp. 272–277. [CrossRef]

17. Chang, Y.J.; Liao, Y.H. Hybrid-Type CAM Design for Both Power and Performance Efficiency. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2008, 16, 965–974. [CrossRef]

18. Sethi, D.; Kaur, M.; Singh, G. Design and performance analysis of a CNFET-based TCAM cell with dual-chirality selection. J.
Comput. Electron. 2017, 16, 106–114. [CrossRef]

19. Cheng, K.H.; Wei, C.H.; Chen, Y.W. Design of low-power content-addressable memory cell. In Proceedings of the 2003 46th
Midwest Symposium on Circuits and Systems, Cairo, Egypt, 27–30 December 2003; Volume 3, pp. 1447–1450. [CrossRef]

20. Do, A.T.; Yin, C.; Yeo, K.S.; Kim, T.T.H. Design of a power-efficient CAM using automated background checking scheme for small
match line swing. In Proceedings of the 2013 Proceedings of the ESSCIRC (ESSCIRC), Bucharest, Romania, 16–20 September 2013;
pp. 209–212. [CrossRef]

21. Agarwal, A.; Hsu, S.; Mathew, S.; Anders, M.; Kaul, H.; Sheikh, F.; Krishnamurthy, R. A 128 × 128 b high-speed wide-and
match-line content addressable memory in 32 nm CMOS. In Proceedings of the 2011 Proceedings of the ESSCIRC (ESSCIRC),
Helsinki, Finland, 12–16 September 2011; pp. 83–86. [CrossRef]

22. Jothi, D.; Sivakumar, R. Design and analysis of power efficient binary content addressable memory (PEBCAM) core cells. Circuits,
Syst. Signal Process. 2018, 37, 1422–1451. [CrossRef]

23. Garzón, E.; Yavits, L.; Finocchio, G.; Carpentieri, M.; Teman, A.; Lanuzza, M. A Low-Energy DMTJ-based Ternary Content-
Addressable Memory with Reliable Sub-Nanosecond Search Operation. IEEE Access 2023, 11, 16812–16819. [CrossRef]

24. Hussain, S.W.; Mahendra, T.V.; Mishra, S.; Dandapat, A. Match-Line Division and Control to Reduce Power Dissipation in
Content Addressable Memory. IEEE Trans. Consum. Electron. 2018, 64, 301–309. [CrossRef]

25. Prasanth, K.; Ramireddy, M.; Ravindrakumar, S. High speed, low matchline voltage swing and search line activity TCAM cell
array design in 14 nm FinFET technology. In Emerging Trends in Electrical, Communications, and Information Technologies; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 465–473. ._38. [CrossRef]

26. Zackriya, V.M.; Kittur, H.M. Precharge-Free, Low-Power Content-Addressable Memory. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2016, 24, 2614–2621. [CrossRef]

27. Ramanathan, A.K.; Rangachar, S.S.; Hung, J.M.; Lee, C.Y.; Xue, C.X.; Huang, S.P.; Hsueh, F.K.; Shen, C.H.; Shieh, J.M.; Yeh,
W.K.; et al. Monolithic 3D+-IC Based Massively Parallel Compute-in-Memory Macro for Accelerating Database and Machine
Learning Primitives. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA,
12–18 December 2020; pp. 28.5.1–28.5.4. [CrossRef]

28. Yavits, L.; Kaplan, R.; Ginosar, R. GIRAF: General Purpose In-Storage Resistive Associative Framework. IEEE Trans. Parallel
Distrib. Syst. 2021, 33, 276–287. [CrossRef]

29. Kaplan, R.; Yavits, L.; Ginosar, R. PRINS: Processing-in-Storage Acceleration of Machine Learning. IEEE Trans. Nanotechnol. 2018,
17, 889–896. [CrossRef]

30. Yavits, L.; Kvatinsky, S.; Morad, A.; Ginosar, R. Resistive Associative Processor. IEEE Comput. Archit. Lett. 2015, 14, 148–151.
[CrossRef]

http://dx.doi.org/10.1145/3370748.3406574
http://dx.doi.org/10.1145/3371391
http://dx.doi.org/10.1145/3383669.3398279
http://dx.doi.org/10.1109/MM.2017.3211121
http://dx.doi.org/10.1109/TVLSI.2011.2178276
http://dx.doi.org/10.1109/TCSI.2016.2592182
http://dx.doi.org/10.1109/JSSC.2017.2739178
http://dx.doi.org/10.1109/TC.2013.220
http://dx.doi.org/10.1109/JSSC.2017.2776309
http://dx.doi.org/10.1109/SOCC.2018.8618562
http://dx.doi.org/10.1109/TVLSI.2008.2000595
http://dx.doi.org/10.1007/s10825-017-0952-4
http://dx.doi.org/10.1109/MWSCAS.2003.1562568
http://dx.doi.org/10.1109/ESSCIRC.2013.6649109
http://dx.doi.org/10.1109/ESSCIRC.2011.6044920
http://dx.doi.org/10.1007/s00034-017-0628-0
http://dx.doi.org/10.1109/ACCESS.2023.3245981
http://dx.doi.org/10.1109/TCE.2018.2859623
http://dx.doi.org/10.1007/978-981-13-8942-9_38
http://dx.doi.org/10.1109/TVLSI.2016.2518219
http://dx.doi.org/10.1109/IEDM13553.2020.9372111
http://dx.doi.org/10.1109/TPDS.2021.3065448
http://dx.doi.org/10.1109/TNANO.2018.2799872
http://dx.doi.org/10.1109/LCA.2014.2374597

Chips 2023, 2 81

31. Yavits, L.; Morad, A.; Ginosar, R. Sparse matrix multiplication on an associative processor. IEEE Trans. Parallel Distrib. Syst. 2014,
26, 3175–3183. [CrossRef]

32. Garzón, E.; Teman, A.; Lanuzza, M.; Yavits, L. AIDA: Associative In-Memory Deep Learning Accelerator. IEEE Micro 2022,
42, 67–75. [CrossRef]

33. Pagiamtzis, K.; Azizi, N.; Najm, F.N. A Soft-Error Tolerant Content-Addressable Memory (CAM) Using An Error-Correcting-
Match Scheme. In Proceedings of the IEEE Custom Integrated Circuits Conference 2006, San Jose, CA, USA, 10–13 September
2006; pp. 301–304. [CrossRef]

34. Krishnan, S.C.; Panigrahy, R.; Parthasarathy, S. Error-Correcting Codes for Ternary Content Addressable Memories. IEEE Trans.
Comput. 2009, 58, 275–279. [CrossRef]

35. Efthymiou, A. An error tolerant CAM with nand match-line organization. In Proceedings of the 23rd ACM International
Conference on Great Lakes Symposium on VLSI, Paris, France, 2–3 May 2013; pp. 257–262. [CrossRef]

36. Mattausch, H.; Gyohten, T.; Soda, Y.; Koide, T. Compact associative-memory architecture with fully parallel search capability for
the minimum Hamming distance. IEEE J. Solid-State Circuits 2002, 37, 218–227. [CrossRef]

37. Zhu, X.; Yang, X.; Wu, C.; Wu, J.; Yi, X. Hamming network circuits based on CMOS/memristor hybrid design. IEICE Electron.
Express 2013, 10, 20130404. [CrossRef]

38. Del Mundo, C.C.; Lee, V.T.; Ceze, L.; Oskin, M. Ncam: Near-data processing for nearest neighbor search. In Proceedings of the
2015 International Symposium on Memory Systems, Washington, DC, USA, 5–8 October 2015; pp. 274–275. [CrossRef]

39. Castañeda, O.; Bobbett, M.; Gallyas-Sanhueza, A.; Studer, C. PPAC: A versatile in-memory accelerator for matrix-vector-product-
like operations. In Proceedings of the 2019 IEEE 30th International Conference on Application-specific Systems, Architectures
and Processors (ASAP), New York, NY, USA, 15–17 July 2019; Volume 2160, pp. 149–156. [CrossRef]

40. Bui, T.T.; Shibata, T. A Low-Power Associative Processor with the R-th Nearest-Match Hamming-Distance Search Engine
Employing Time-Domain Techniques. In Proceedings of the 2010 Fifth IEEE International Symposium on Electronic Design, Test
Applications, Ho Chi Minh City, Vietnam, 13–15 January 2010; pp. 54–57. [CrossRef]

41. Rahimi, A.; Ghofrani, A.; Cheng, K.T.; Benini, L.; Gupta, R.K. Approximate associative memristive memory for energy-efficient
GPUs. In Proceedings of the 2015 Design, Automation Test in Europe Conference Exhibition (DATE), Grenoble, France, 9–13
March 2015; pp. 1497–1502. [CrossRef]

42. Imani, M.; Rahimi, A.; Kong, D.; Rosing, T.; Rabaey, J.M. Exploring hyperdimensional associative memory. In Proceedings of the
2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX, USA, 4–8 February 2017;
pp. 445–456. [CrossRef]

43. Ni, K.; Yin, X.; Laguna, A.F.; Joshi, S.; Dünkel, S.; Trentzsch, M.; Müller, J.; Beyer, S.; Niemier, M.; Hu, X.S.; et al. Ferroelectric
ternary content-addressable memory for one-shot learning. Nat. Electron. 2019, 2, 521–529. [CrossRef]

44. Riazi, M.S.; Samragh, M.; Koushanfar, F. Camsure: Secure content-addressable memory for approximate search. ACM Trans.
Embed. Comput. Syst. (TECS) 2017, 16, 1–20. [CrossRef]

45. Sheybani, N.; Zhang, X.; Hussain, S.U.; Koushanfar, F. SenseHash: Computing on Sensor Values Mystified at the Origin. IEEE
Trans. Emerg. Top. Comput. 2022. . [CrossRef]

46. Marçais, G.; DeBlasio, D.; Pandey, P.; Kingsford, C. Locality-sensitive hashing for the edit distance. Bioinformatics 2019,
35, i127–i135. [CrossRef]

47. Garzón, E.; Golman, R.; Jahshan, Z.; Hanhan, R.; Vinshtok-Melnik, N.; Lanuzza, M.; Teman, A.; Yavits, L. Hamming Distance
Tolerant Content-Addressable Memory (HD-CAM) for DNA Classification. IEEE Access 2022, 10, 28080–28093. [CrossRef]

48. Hanhan, R.; Garzón, E.; Jahshan, Z.; Teman, A.; Lanuzza, M.; Yavits, L. EDAM: Edit distance tolerant approximate matching
content addressable memory. In Proceedings of the 49th Annual International Symposium on Computer Architecture, New York,
NY, USA, 18–22 June 2022; pp. 495–507. [CrossRef]

49. Garzón, E.; Lanuzza, M.; Teman, A.; Yavits, L. AM4: MRAM Crossbar Based CAM/TCAM/ACAM/AP for In-Memory
Computing. IEEE J. Emerg. Sel. Top. Circuits Syst. 2023, 13, 408–421. [CrossRef]

50. Li, W.; Ye, X.; Wang, D.; Zhang, H.; Tang, Z.; Fan, D.; Sun, N. PIM-WEAVER: A High Energy-efficient, General-purpose
Acceleration Architecture for String Operations in Big Data Processing. Sustain. Comput. Inform. Syst. 2019, 21, 129–142.
[CrossRef]

51. Stephens, Z.D.; Lee, S.Y.; Faghri, F.; Campbell, R.H.; Zhai, C.; Efron, M.J.; Iyer, R.; Schatz, M.C.; Sinha, S.; Robinson, G.E. Big data:
Astronomical or genomical? PLoS Biol. 2015, 13, e1002195. [CrossRef]

52. Khatamifard, S.K.; Chowdhury, Z.; Pande, N.; Razaviyayn, M.; Kim, C.; Karpuzcu, U.R. Read Mapping Near Non-Volatile
Memory. arXiv 2017. [CrossRef]

53. Glasl, B.; Bourne, D.G.; Frade, P.R.; Thomas, T.; Schaffelke, B.; Webster, N.S. Microbial indicators of environmental perturbations
in coral reef ecosystems. Microbiome 2019, 7, 94. [CrossRef]

54. Singh, B.K.; Trivedi, P.; Egidi, E.; Macdonald, C.A.; Delgado-Baquerizo, M. Crop microbiome and sustainable agriculture. Nat.
Rev. Microbiol. 2020, 18, 601–602. [CrossRef]

55. Zhang, Q.; Difford, G.; Sahana, G.; Løvendahl, P.; Lassen, J.; Lund, M.S.; Guldbrandtsen, B.; Janss, L. Bayesian modeling reveals
host genetics associated with rumen microbiota jointly influence methane emission in dairy cows. ISME J. 2020, 14, 2019–2033.
[CrossRef]

http://dx.doi.org/10.1109/TPDS.2014.2370055
http://dx.doi.org/10.1109/MM.2022.3190924
http://dx.doi.org/10.1109/CICC.2006.320887
http://dx.doi.org/10.1109/TC.2008.179
http://dx.doi.org/10.1145/2483028.2483105
http://dx.doi.org/10.1109/4.982428
http://dx.doi.org/10.1587/elex.10.20130404
http://dx.doi.org/10.1145/2818950.2818984
http://dx.doi.org/10.1109/ASAP.2019.000-9
http://dx.doi.org/10.1109/DELTA.2010.37
http://dx.doi.org/10.7873/DATE.2015.0579
http://dx.doi.org/10.1109/HPCA.2017.28
http://dx.doi.org/10.1038/s41928-019-0321-3
http://dx.doi.org/10.1145/3126547
http://dx.doi.org/10.1109/TETC.2022.3217488
http://dx.doi.org/10.1093/bioinformatics/btz354
http://dx.doi.org/10.1109/ACCESS.2022.3158305
http://dx.doi.org/10.1145/3470496.3527424
http://dx.doi.org/10.1109/JETCAS.2023.3243222
http://dx.doi.org/10.1016/j.suscom.2019.01.006
http://dx.doi.org/10.1371/journal.pbio.1002195
http://dx.doi.org/10.1109/TCBB.2021.3118018
http://dx.doi.org/10.1186/s40168-019-0705-7
http://dx.doi.org/10.1038/s41579-020-00446-y
http://dx.doi.org/10.1038/s41396-020-0663-x

Chips 2023, 2 82

56. Alser, M.; Bingöl, Z.; Cali, D.S.; Kim, J.; Ghose, S.; Alkan, C.; Mutlu, O. Accelerating genome analysis: A primer on an ongoing
journey. IEEE Micro 2020, 40, 65–75. [CrossRef]

57. Bloom, J.S.; Sathe, L.; Munugala, C.; Jones, E.M.; Gasperini, M.; Lubock, N.B.; Yarza, F.; Thompson, E.M.; Kovary, K.M.; Park, J.;
et al. Swab-Seq: A high-throughput platform for massively scaled up SARS-CoV-2 testing. medRxiv 2020.

58. Artika, I.M.; Wiyatno, A.; Ma’roef, C.N. Pathogenic viruses: Molecular detection and characterization. Infect. Genet. Evol. 2020,
81, 104215. [CrossRef] [PubMed]

59. Illumina. Illumina—DNA Sequencing. 2021. Available online: https://www.illumina.com/ (accessed on 15 December 2022)
60. Kim, J.S.; Cali, D.S.; Xin, H.; Lee, D.; Ghose, S.; Alser, M.; Hassan, H.; Ergin, O.; Alkan, C.; Mutlu, O. GRIM-Filter: Fast seed

location filtering in DNA read mapping using processing-in-memory technologies. BMC Genom. 2018, 19, 89. [CrossRef]
61. Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014,

15, R46. [CrossRef] [PubMed]
62. Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MM.2020.3013728
http://dx.doi.org/10.1016/j.meegid.2020.104215
http://www.ncbi.nlm.nih.gov/pubmed/32006706
https://www.illumina.com/
http://dx.doi.org/10.1186/s12864-018-4460-0
http://dx.doi.org/10.1186/gb-2014-15-3-r46
http://www.ncbi.nlm.nih.gov/pubmed/24580807
http://dx.doi.org/10.1186/s13059-019-1891-0
http://www.ncbi.nlm.nih.gov/pubmed/31779668

	Introduction
	Background
	CAM Hardware Implementation
	CAM Operation Principle
	CAM Limitations for Approximate Search

	Approximate Content-Addressable Memory
	Classes of Approximate CAM
	Error-Tolerant CAM
	Minimum Hamming Distance Search CAM
	Tunable Sample Time CAM
	Locality-Sensitive Hashing
	Tunable Match Line Discharge Rate CAM

	Approximate CAM Limitations
	Power Consumption

	Approximate Search Applications
	Future Prospects and Challenges for Approximate CAM
	Case Study: Genomics and DNA Pattern Detection Using Approximate CAM

	Conclusions
	References

