
Citation: Chang, C.E.; Mustapha,

A.K.; Mohd-Yasin, F. FPGA

Prototyping of Web Service Using

REST and SOAP Packages. Chips

2022, 1, 210–217. https://doi.org/

10.3390/chips1030014

Academic Editor: Gaetano Palumbo

Received: 8 September 2022

Accepted: 30 November 2022

Published: 5 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Communication

FPGA Prototyping of Web Service Using REST and
SOAP Packages
Chee Er Chang 1, Azhar Kassim Mustapha 1 and Faisal Mohd-Yasin 2,*

1 Faculty of Engineering, Multimedia University, Cyberjaya 63000, Selangor, Malaysia
2 School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
* Correspondence: f.mohd-yasin@griffith.edu.au

Abstract: This Communication reports on FPGA prototyping of an embedded web service that sends
XML messages under two different packages, namely Simple Object Access Protocol (SOAP) and Rep-
resentational State Transfer (REST). The request and response messages are communicated through a
100 Mbps local area network between a Spartan-3E FPGA board and washing machine simulator.
The performances of REST-based and SOAP-based web services implemented on reconfigurable
hardware are then compared. In general, the former performs better than the latter in terms of FPGA
resource utilization (~12% less), message length (~57% shorter), and processing time (~4.5 µs faster).
This work confirms the superiority of REST over SOAP for data transmission using reconfigurable
computing, which paves the way for adoption of these low-cost systems for web services of consumer
electronics such as home appliances.

Keywords: web service; FPGA; REST; SOAP; IoT

1. Introduction

An embedded system is a microprocessor that performs specific tasks. It ranges from
a single processor with only a few electronic components to a complicated system with
multiple chips on electronic boards. An embedded system is the key element to create the
peer-to-peer network of smart devices across the Internet, commonly known as the Internet-
of-Things (IoT) [1]. Various web applications are being developed to perform different
operations such as information searching, data transferring, and device controlling [2]. A
web service is one example of a web application. It is the software system that enables
interactions between machines over a network [3]. The main data format used for web
services is called Extensible Markup Language (XML). The packaging mechanism specifies
how to arrange XML messages during information exchanges between machines. The
prevailing standard is the Simple Object Access Protocol (SOAP), which is commonly
implemented on computer servers. As web services are expanding to consumer electronics
appliances [4], embedded systems are the logical selection for these products to save cost [5].
The primary limitation of embedded systems is the resource constraints. Hence, a new
package called Representational State Transfer (REST) that was originally developed by
Fielding [6] is used to reduce the computation overhead.

SOAP and REST have their strengths and weaknesses. The comparison of both has
been discussed at length by several papers, and hence will not be repeated here. In short,
the SOAP-based web services are generally designed to provide more complex services,
while the less formal REST-based web services are useful for low-resource systems. Several
groups compared the performances of both packages on conventional web services for
different applications such as electronic payment [7], mashup technology [8], interaction
styles [9], multimedia conferencing [10], enterprise application integration [11], etc. The
real test, however, is when both packages are implemented and compared on resource-
constrained systems. While there are plentiful publications that report on the embedded

Chips 2022, 1, 210–217. https://doi.org/10.3390/chips1030014 https://www.mdpi.com/journal/chips

https://doi.org/10.3390/chips1030014
https://doi.org/10.3390/chips1030014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chips
https://www.mdpi.com
https://orcid.org/0000-0002-6030-7480
https://doi.org/10.3390/chips1030014
https://www.mdpi.com/journal/chips
https://www.mdpi.com/article/10.3390/chips1030014?type=check_update&version=1

Chips 2022, 1 211

web services utilizing either SOAP or REST, there are only a small number of studies
that attempted to implement both and compared their performances. Three groups made
this comparison for mobile web devices [12–14], while another group for controlling an
indoor actuator [15]. However, we have not seen any paper that provides the comparative
performance of web services on reconfigurable systems such as FPGA boards. Such
a comparison between SOAP and REST on these systems is important because of the
following reasons. First, we would like to check the prevailing assumption that the latter is
better than the former by performing apple-to-apple comparison. Such advantages have
been reported on other platforms such as computer servers and mobile computing, but not
on reconfigurable systems. Second, the comparison would be helpful for network engineers
to know the versatility and superiority of REST-based web services, to the point that it
should have its own standard. In order to answer this pertinent question, we report on the
FPGA prototyping of an embedded web service that sends XML messages via SOAP and
REST packages. The simple request and response messages are communicated through
a 100 Mbps local area network between a Spartan-3E FPGA board and washing machine
simulator. The latter is chosen because, due to IoT, future home appliances will be equipped
with embedded web services for ubiquitous communications [16]. Section 2 provides the
details of implementation, while Section 3 tabulates the comparative data. Finally, Section 4
offers concluding remarks on the pros and cons of REST- and SOAP-based web services.

2. Design and Implementation

This section details the implementation of the web services on the FPGA board. The
overall setup will be explained in Section 2.1. Then, Section 2.2 will explain the differences
between REST and SOAP server modules. Finally, the FPGA implementation of the web
services is covered in Section 2.3.

2.1. Overall Setup

In order to emulate data communications between home appliances using a TCP/IP
protocol suite, XML messages are sent between a server and client. A Spartan-3E board
from Xilinx (San Jose, CA, USA) is configured as the web server because it has an on-board
Media Independent Interface (MII) and Serial Peripheral Interface (SPI) [17]. A washing
machine simulator from Bytronic International Ltd. (Rugeley, UK) [18] is chosen as the
client (home appliance device). A Java program called Direct Socket Control is used to
open a TCP connection as a web service client to communicate with the web server. This
interface is used to control the home appliance. The FPGA board is operating at 50 MHz
clock rate, and the local network speed is 100 Mbps.

2.2. REST and SOAP Servers

The designs of REST and SOAP server modules are shown in Figure 1. In Figure 1a,
when a REST request is received at the HTTP level, the HTTP module will extract the
“method” and “parameters” or URI from the HTTP header. The extracted information
will be sent to the application program. The program will decide on how to respond to
the client. If service descriptions are requested by the client, the server will load the XML
formatted service description document. For other requests, the server wraps up the raw
data to send and issues the service response to the client in XML format. The HTTP module
will then attach HTTP response headers and send out the response or service descriptions
to the client. Similar steps are executed for the SOAP-based server as shown in Figure 1b.
The major difference is the existence of the “SOAP envelope”. In order to extract the raw
data from the HTTP module, a module called “Simple SAX parsing” is needed in the SOAP
server to unwrap the raw data for processing in the application program. The procedure
for sending the response message back to the client is the same as for the REST server.

Chips 2022, 1 212

Chips 2022, 2, FOR PEER REVIEW 3

procedure for sending the response message back to the client is the same as for the REST

server.

Figure 1. (a): REST server; (b): SOAP server.

2.3. FPGA Implementation of Embedded RESTful Web Services

The FPGA prototype is written and synthesized using Very High Speed Integrated

Circuit Hardware Design Language (VHDL). It covers communications from the data link

layer to application layer in the TCP/IP protocol suite. This embedded web server has

three external interfaces. The MII port connects the server to the physical layer (100 Mbps

fast Ethernet LAN). The device interface port controls the home appliance (washing ma-

chine simulator). Lastly, an SPI port is used to store the non-volatile information such as

the application information, service descriptions, and server configuration information.

The web server consists of two modules, the TCP/IP processor and the application.

The implementation for both had been detailed in [19], and hence will not be repeated

here. Nevertheless, the summary is provided herein. The TCP/IP processor resembles a

reduced network processor and covers all basic protocols including error checking. This

web server uses a static IC address and is able to send and receive a TCP segment. The

size of the segment is limited to only a single packet or 576 bytes of data. Upon receiving

the TCP segment, the application module checks for the data validity as a HTTP request.

It then extracts the REST web service information from the HTTP headers and verifies the

service request. The response will be sent back to the client in XML format through the

XML Writer module. Figure 2 shows the examples of request and response messages that

are produced by XML Writer for both packages.

Figure 1. (a): REST server; (b): SOAP server.

2.3. FPGA Implementation of Embedded RESTful Web Services

The FPGA prototype is written and synthesized using Very High Speed Integrated
Circuit Hardware Design Language (VHDL). It covers communications from the data link
layer to application layer in the TCP/IP protocol suite. This embedded web server has three
external interfaces. The MII port connects the server to the physical layer (100 Mbps fast
Ethernet LAN). The device interface port controls the home appliance (washing machine
simulator). Lastly, an SPI port is used to store the non-volatile information such as the
application information, service descriptions, and server configuration information.

The web server consists of two modules, the TCP/IP processor and the application.
The implementation for both had been detailed in [19], and hence will not be repeated
here. Nevertheless, the summary is provided herein. The TCP/IP processor resembles a
reduced network processor and covers all basic protocols including error checking. This
web server uses a static IC address and is able to send and receive a TCP segment. The size
of the segment is limited to only a single packet or 576 bytes of data. Upon receiving the
TCP segment, the application module checks for the data validity as a HTTP request. It
then extracts the REST web service information from the HTTP headers and verifies the
service request. The response will be sent back to the client in XML format through the
XML Writer module. Figure 2 shows the examples of request and response messages that
are produced by XML Writer for both packages.

Chips 2022, 2, FOR PEER REVIEW 4

Figure 2. Examples of SOAP and RESTful messages.

3. Results

The REST and SOAP web service implementations are designed with identical spec-

ifications except for the packaging mechanism. The comparisons of different parameters

are presented herein in terms of resource usage, message length, and processing time.

3.1. Resource Usage

Table 1 shows the overall resource usages of both packages on the application layer

of the FPGA board, while Table 2 lists the details of each module. The data indicate that

the REST-based web services utilize fewer resources than the SOAP counterpart. The dif-

ferences are caused by the additional stage used to parse the SOAP envelope. This addi-

tional module is the SAX parser to analyze the SOAP service requests, and then generate

a response to the SOAP envelope [20]. In total, an average reduction of 12% in resource

usage for Flip Flop (FF), Look-Up Table (LUT), and Slice is achieved by the SOAP server.

Table 1. Resource usage of application layer.

Packaging Mechanism FF 4-LUT Slice

REST 901 2987 1606

SOAP 951 3531 1901

Reduction using REST (in % with reference to SOAP) 5.3 15.4 15.5

Figure 2. Cont.

Chips 2022, 1 213

Chips 2022, 2, FOR PEER REVIEW 4

Figure 2. Examples of SOAP and RESTful messages.

3. Results

The REST and SOAP web service implementations are designed with identical spec-

ifications except for the packaging mechanism. The comparisons of different parameters

are presented herein in terms of resource usage, message length, and processing time.

3.1. Resource Usage

Table 1 shows the overall resource usages of both packages on the application layer

of the FPGA board, while Table 2 lists the details of each module. The data indicate that

the REST-based web services utilize fewer resources than the SOAP counterpart. The dif-

ferences are caused by the additional stage used to parse the SOAP envelope. This addi-

tional module is the SAX parser to analyze the SOAP service requests, and then generate

a response to the SOAP envelope [20]. In total, an average reduction of 12% in resource

usage for Flip Flop (FF), Look-Up Table (LUT), and Slice is achieved by the SOAP server.

Table 1. Resource usage of application layer.

Packaging Mechanism FF 4-LUT Slice

REST 901 2987 1606

SOAP 951 3531 1901

Reduction using REST (in % with reference to SOAP) 5.3 15.4 15.5

Figure 2. Examples of SOAP and RESTful messages.

3. Results

The REST and SOAP web service implementations are designed with identical specifi-
cations except for the packaging mechanism. The comparisons of different parameters are
presented herein in terms of resource usage, message length, and processing time.

3.1. Resource Usage

Table 1 shows the overall resource usages of both packages on the application layer
of the FPGA board, while Table 2 lists the details of each module. The data indicate that
the REST-based web services utilize fewer resources than the SOAP counterpart. The
differences are caused by the additional stage used to parse the SOAP envelope. This
additional module is the SAX parser to analyze the SOAP service requests, and then
generate a response to the SOAP envelope [20]. In total, an average reduction of 12%
in resource usage for Flip Flop (FF), Look-Up Table (LUT), and Slice is achieved by the
SOAP server.

Table 1. Resource usage of application layer.

Packaging Mechanism FF 4-LUT Slice

REST 901 2987 1606

SOAP 951 3531 1901

Reduction using REST (in % with reference to SOAP) 5.3 15.4 15.5

Table 2. Resource usage of each module.

Module
REST SOAP

FF MUX FF MUX

1. Application 330 25 343 25

2. SAX (n/a) (n/a) 21 -

3. XML Writer 79 - 79 -

4. HTTP 277 36 267 20

3.2. Message Length

Table 3 shows the message length of several operations for SOAP- and REST-based web
services. Four types of messages are sent, namely retrieve device name, retrieve available
function, perform a function, and erroneous request. The REST messages range from 46 to
202 characters, while SOAP messages are quite uniform, from 178 to 294 characters. Both
are well below a single TCP segment’s payload size of 576 bytes. The differences in the
REST and SOAP web service message sizes were primarily induced by overhead of the
SOAP envelope format. The bar chart in Figure 3 shows the comparison between different
types of messages. The message size reductions between REST and SOAP are about 60~75%

Chips 2022, 1 214

for service request messages, and 30~50% for service response messages. Furthermore, it is
noticeable that the differences between the REST and SOAP message length remain rather
static, that is, about 90–140 characters or bytes even when message size grows.

Table 3. Message length (characters) of different services.

Operation Request (Req.)/
Response (Resp.)

Message Length
(Character) Difference in

Character
Reduction Using REST (in

% with Reference to SOAP)
REST SOAP

Retrieve device name
Req. 46 189 143 75.7

Resp. 97 189 92 48.7

Retrieve available
functions

Req. 56 189 133 70.4

Resp. 202 294 92 31.3

Perform a function (spin)
Req. 68 183 115 62.8

Resp. 86 178 92 51.7

Erroneous request
(missing 1 char.)

Req. 67 182 115 63.2

Resp. 90 182 92 50.5

Chips 2022, 2, FOR PEER REVIEW 5

Table 2. Resource usage of each module.

Module
REST SOAP

FF MUX FF MUX

1. Application 330 25 343 25

2. SAX (n/a) (n/a) 21 -

3. XML Writer 79 - 79 -

4. HTTP 277 36 267 20

3.2. Message Length

Table 3 shows the message length of several operations for SOAP- and REST-based

web services. Four types of messages are sent, namely retrieve device name, retrieve avail-

able function, perform a function, and erroneous request. The REST messages range from

46 to 202 characters, while SOAP messages are quite uniform, from 178 to 294 characters.

Both are well below a single TCP segment’s payload size of 576 bytes. The differences in

the REST and SOAP web service message sizes were primarily induced by overhead of

the SOAP envelope format. The bar chart in Figure 3 shows the comparison between dif-

ferent types of messages. The message size reductions between REST and SOAP are about

60~75% for service request messages, and 30~50% for service response messages. Further-

more, it is noticeable that the differences between the REST and SOAP message length

remain rather static, that is, about 90–140 characters or bytes even when message size

grows.

Table 3. Message length (characters) of different services.

Operation

Request

(Req.)/

Response

(Resp.)

Message Length

(Character) Difference

in

Character

Reduction

Using REST

(in % with

Reference to

SOAP)

REST SOAP

Retrieve device name
Req. 46 189 143 75.7

Resp. 97 189 92 48.7

Retrieve available func-

tions

Req. 56 189 133 70.4

Resp. 202 294 92 31.3

Perform a function

(spin)

Req. 68 183 115 62.8

Resp. 86 178 92 51.7

Erroneous request

(missing 1 char.)

Req. 67 182 115 63.2

Resp. 90 182 92 50.5

Figure 3. Bar chart of message length comparisons. Figure 3. Bar chart of message length comparisons.

3.3. Processing Time

Table 4 and Figure 4 show the difference in processing time between SOAP and REST
web services. This parameter records the total time it takes to handle a service request
in the HTTP module. In particular, an internal timer is started when a request reaches
the HTTP module, and is stopped once a response is sent out by this module. It is clear
from the data that SOAP requests take 4 to 5 µs longer to process than REST requests.
Furthermore, the processing time reduction can be as large as 50% when the server handles
an erroneous request, i.e., when the service request was rejected without invoking the
top level application. The longer delay is caused by two factors, namely the SOAP parser
module and longer message length. On average, REST is faster than SOAP by 4.5 µs.

Chips 2022, 1 215

Table 4. Processing time.

Operation
Processing Time (µs)

Difference (µs) Reduction (% with Reference to SOAP)
REST SOAP

Retrieve device name 26 32 4 12.5

Retrieve available functions 34 39 5 12.8

Perform a function (spin) 33 38 5 13.2

Erroneous request (missing 1 char.) 4 8 4 50.0

Chips 2022, 2, FOR PEER REVIEW 6

3.3. Processing Time

Table 4 and Figure 4 show the difference in processing time between SOAP and REST

web services. This parameter records the total time it takes to handle a service request in

the HTTP module. In particular, an internal timer is started when a request reaches the

HTTP module, and is stopped once a response is sent out by this module. It is clear from

the data that SOAP requests take 4 to 5 μs longer to process than REST requests. Further-

more, the processing time reduction can be as large as 50% when the server handles an

erroneous request, i.e., when the service request was rejected without invoking the top

level application. The longer delay is caused by two factors, namely the SOAP parser

module and longer message length. On average, REST is faster than SOAP by 4.5 μs.

Table 4. Processing time.

Operation
Processing Time (µs) Difference

(µs)

Reduction (% with

Reference to SOAP) REST SOAP

Retrieve device name 26 32 4 12.5

Retrieve available functions 34 39 5 12.8

Perform a function (spin) 33 38 5 13.2

Erroneous request (missing

1 char.)
4 8 4 50.0

Figure 4. Bar chart of performance comparisons.

4. Conclusions

This study implements embedded web services on Xilinx’s Spartan-3E Starter Kit

FPGA board to communicate with a home appliance over a 100 Mbps home network. The

performances of REST-based and SOAP-based web services are then compared. To the

best of our knowledge, this is the first study that compares the performance of both serv-

ers that are implemented on an FPGA board. In general, the REST-based web server per-

forms better than the SOAP-based web server in terms of FPGA resource utilization (~12%

less), message length (~57% shorter), and processing time (4.5 μs faster). Table 5 summa-

rizes the qualitative comparisons. This study supports the findings of previously pub-

lished works that compare the performances of both packages on other embedded devices

such as mobile web services [12–14] and actuators [15].

Table 5. Overall comparisons between REST and SOAP.

 REST SOAP

Processing

complexity

Lower, due to low service abstrac-

tion and format verbosity.
Higher.

Memory

requirement

Lower, due to short message

length.
Higher.

Performance
Faster, due to low format and

message overhead.
Slower.

Figure 4. Bar chart of performance comparisons.

4. Conclusions

This study implements embedded web services on Xilinx’s Spartan-3E Starter Kit
FPGA board to communicate with a home appliance over a 100 Mbps home network. The
performances of REST-based and SOAP-based web services are then compared. To the best
of our knowledge, this is the first study that compares the performance of both servers
that are implemented on an FPGA board. In general, the REST-based web server performs
better than the SOAP-based web server in terms of FPGA resource utilization (~12% less),
message length (~57% shorter), and processing time (4.5 µs faster). Table 5 summarizes
the qualitative comparisons. This study supports the findings of previously published
works that compare the performances of both packages on other embedded devices such
as mobile web services [12–14] and actuators [15].

Table 5. Overall comparisons between REST and SOAP.

REST SOAP

Processing complexity Lower, due to low service abstraction and
format verbosity. Higher.

Memory
requirement Lower, due to short message length. Higher.

Performance Faster, due to low format and message overhead. Slower.

Service abstraction Lower. Higher, thus able to provide advanced services.

Standards None, thus more freedom but hard for
long-term management.

Yes, thus more systematic for
long-term management.

Resources and supports Less. A lot, thus easier to develop.

We are linking the superiority of REST over SOAP and their relationships with the use
of the FPGA board as follows. The data indicate that low abstraction services and simple
message format for REST reduce the FPGA processing power requirement. The short
message length reduces the FPGA memory requirement, and low processing complexity

Chips 2022, 1 216

and short message length contribute to faster FPGA performance. There is no surprise in
the results, which is good news for appliance manufacturers and network engineers that
consider reconfigurable computing as a low-cost solution for data transmission of multiple
devices in the IoT. It should be noted, however, that this is a simple comparative study,
where we only send two simple XML messages. Follow-up studies are necessary with
complex messages.

Author Contributions: Conceptualization, F.M.-Y.; methodology, C.E.C. and F.M.-Y.; validation,
C.E.C.; formal analysis, C.E.C. and F.M.-Y.; data curation, C.E.C. and F.M.-Y.; writing—original
draft preparation, C.E.C. and F.M.-Y.; writing—review and editing, F.M.-Y.; supervision, F.M.-Y. and
A.K.M.; project administration, F.M.-Y. and A.K.M.; funding acquisition, F.M.-Y. and A.K.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Panasonic Corporation (formerly Matsushita Electric Indus-
trial Co. Japan), grant number EP20070522001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
authors upon reasonable request.

Acknowledgments: The authors would like to express our gratitude to Multimedia University and
Panasonic Corporation for providing the postgraduate scholarships to Chang Chee Er and for funding
this research project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [CrossRef]
2. Ooi, C.P.; Tan, W.H.; Cheong, S.N.; Lee, Y.L.; Baskaran, V.M.; Low, Y.L. FPGA-based embedded architecture for IoT home

automation application. Indones. J. Electr. Eng. Comput. Sci. 2019, 14, 646–652. [CrossRef]
3. Gottschalk, K.; Graham, S.; Kreger, H.; Snell, J. Introduction to Web services architecture. IBM Syst. J. 2002, 41, 170–177. [CrossRef]
4. Brzoza-Woch, R.; Nawrocki, P. FPGA-Based Web Services—Infinite Potential or a Road to Nowhere? IEEE Internet Comput. 2016,

20, 44–51. [CrossRef]
5. Shelby, Z. Embedded web services. IEEE Wirel. Commun. 2010, 17, 52–57. [CrossRef]
6. Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures. Ph.D. Thesis, University of California,

Irvine, CA, USA, 2000.
7. Markonnen, J. Performance and Usage Comparison between REST and SOAP Web Services. Master’s Thesis, Aalto University,

Espoo, Finland, 2019.
8. Su, H.; Cheng, B.; Wu, T.; Li, X. Mashup service release based on SOAP and REST. In Proceedings of the 2011 International

Conference on Computer Science and Network Technology, Harbin, China, 24–26 December 2011; IEEE: Manhattan, NY, USA,
2012; Volume 2, pp. 1091–1095.

9. Potti, P.K.; Ahuja, S.; Umapathy, K.; Prodanoff, Z. Comparing performance of web service interaction styles: Soap vs. Rest. In
Proceedings of the Conference on Information Systems Applied Research, New Orleans, LA, USA, 1–18 November 2012; Volume
2167, p. 1508.

10. Belqasmi, F.; Singh, J.; Melhem, S.Y.B.; Glitho, R.H. SOAP-based vs. RESTful web services: A case study for multimedia
conferencing. IEEE Internet Comput. 2012, 16, 54–63. [CrossRef]

11. Kumari, S.; Rath, S.K. Performance comparison of soap and rest based web services for enterprise application integration. In
Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi,
India, 10–13 August 2015; IEEE: Manhattan, NY, USA, 2015; pp. 1656–1660.

12. AlShahwan, F.; Moessner, K. Providing soap web services and restful web services from mobile hosts. In Proceedings of the 2010
Fifth International Conference on Internet and Web Applications and Services, Barcelona, Spain, 9–15 May 2010; IEEE: Manhattan,
NY, USA, 2010; pp. 174–179.

13. Mohamed, K.; Wijesekera, D. Performance analysis of web services on mobile devices. Procedia Comput. Sci. 2012, 10, 744–751.
[CrossRef]

14. Ali, M.; Zolkipli, M.F.; Zain, J.M.; Anwar, S. Mobile cloud computing with SOAP and REST web services. J. Phys. Conf. Ser. 2018,
1018, 012005. [CrossRef]

http://doi.org/10.1007/s10796-014-9492-7
http://doi.org/10.11591/ijeecs.v14.i2.pp646-652
http://doi.org/10.1147/sj.412.0170
http://doi.org/10.1109/MIC.2015.23
http://doi.org/10.1109/MWC.2010.5675778
http://doi.org/10.1109/MIC.2012.62
http://doi.org/10.1016/j.procs.2012.06.095
http://doi.org/10.1088/1742-6596/1018/1/012005

Chips 2022, 1 217

15. Malik, S.; Kim, D.H. A comparison of RESTful vs. SOAP web services in actuator networks. In Proceedings of the 2017 Ninth
International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; IEEE: Manhattan, NY, USA,
2017; pp. 753–755.

16. Riihijarvi, J.; Mahonen, P.; Saaranen, M.J.; Roivainen, J.; Soininen, J.P. Providing network connectivity for small appliances: A
functionally minimized embedded web server. IEEE Commun. Mag. 2001, 39, 74–79. [CrossRef]

17. Xilinx. Spartan-3E FPGA Family Data Sheet; Xilinx: San Jose, CA, USA, 2018.
18. Bytronic. Washing Machine Simulator. Bromsgrove, UK. Available online: http://www.bytronic.net/product/washing-machine-

simulator (accessed on 3 September 2022).
19. Chang, C.E.; Mohd-Yasin, F.; Mustapha, A.K. An implementation of embedded restful web services. In Proceedings of the 2009

Innovative Technologies in Intelligent Systems and Industrial Applications, Kuala Lumpur, Malaysia, 25–26 July 2009; IEEE:
Manhattan, NY, USA, 2009; pp. 45–50.

20. Chang, C.E.; Mohd-Yasin, F.; Mustapha, A.K. RBStreX: Hardware XML parser for embedded system. In Proceedings of the 2009
International Conference for Internet Technology and Secured Transactions (ICITST), London, UK, 9–12 November 2009; IEEE:
Manhattan, NY, USA, 2010; pp. 1–6.

http://doi.org/10.1109/35.956116
http://www.bytronic.net/product/washing-machine-simulator
http://www.bytronic.net/product/washing-machine-simulator

	Introduction
	Design and Implementation
	Overall Setup
	REST and SOAP Servers
	FPGA Implementation of Embedded RESTful Web Services

	Results
	Resource Usage
	Message Length
	Processing Time

	Conclusions
	References

