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Abstract: Due to the increasing complexity of analog circuits and their integration into System-on-
Chips (SoC), the analog design and verification industry would greatly benefit from an expansion
of system-level methodologies using SystemC AMS. These can provide a speed increase of over
100,000× in comparison to SPICE-level simulations and allow interoperability with digital tools at
the system-level. However, a key barrier to the expansion of system-level tools for analog circuits is
the lack of confidence in system-level models implemented in SystemC AMS. Functional equivalence
of single Laplace Transfer Function (LTF) system-level models to respective SPICE-level models was
successfully demonstrated recently. However, this is clearly not sufficient, as the complex systems
comprise multiple LTF modules. In this article, we go beyond single LTF models, i.e., we develop
a novel graph-based methodology to formally check equivalence between complex system-level
and SPICE-level representations of Single-Input Single-Output (SISO) linear analog circuits, such as
High-Pass Filters (HPF). To achieve this, first, we introduce a canonical representation in the form of
a Signal-Flow Graph (SFG), which is used to functionally map the two representations from separate
modeling levels. This canonical representation consists of the input and output nodes and a single
edge between them with an LTF as its weight. Second, we create an SFG representation with linear
graph modeling for SPICE-level models, whereas for system-level models we extract an SFG from the
behavioral description. We then transform the SFG representations into the canonical representation
by utilizing three graph manipulation techniques, namely node removal, parallel edge unification,
and reflexive edge elimination. This allows us to establish functional equivalence between complex
system-level models and SPICE-level models. We demonstrate the applicability of the proposed
methodology by successfully applying it to complex circuits.

Keywords: equivalence checking; formal verification; linear circuits; filters; analog computers; circuit
analysis; transfer functions

1. Introduction

The rising complexity of analog circuits and the ever-increasing system integration
of analog and digital components have created a bottleneck for analog design verification.
A major challenge in this regard is the simulation speed of SPICE-level models [1]. They
often fail for large systems due to convergence related problems or are prohibitive in terms
of computational time required. Traditionally, SPICE-level simulations [2] are used often
with manual inspection of the results. These simulations, while slow, are still considered a
golden standard and cannot be ignored. However, different levels of design abstractions
and alternate representations (e.g., a behavioral model) of the circuit can be used to achieve
significantly better simulation performance and earlier design verification of the Design
Under Verification (DUV).
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As a consequence, analog designs are moving towards a top-down approach. In this
regard, Virtual Prototyping (VP) at the abstraction of Electronic System Level (ESL) is nowa-
days an established industrial practice [1,3–6]. The Timed Data Flow (TDF) Model of Com-
putation (MoC) available in SystemC AMS offers a good trade-off between accuracy and
simulation speed at the system level, and can provide a speed increase of over 100,000× [1]
in comparison to SPICE-level simulations. TDF defines time domain processing, and is
used to model the pure algorithmic or procedural description of the underlying design. In
particular, TDF provides utilities to implement Laplace Transfer Functions (LTF) of linear
systems. A transfer function model captures the frequency response of an analog circuit
and provides a suitable platform for applying non-simulation/formal techniques to verify
the circuit against its specification. Due to earlier availability and significantly faster simu-
lation speed as opposed to SPICE-level simulations [1], the TDF models provide a design
refinement methodology and enable early verification for analog/mixed-signal systems.

However, one of the main challenges in adopting SystemC AMS system-level models is
the lack of equivalence checking methodologies for SystemC AMS and SPICE-level models.
Equivalence checking proves the general functional equality of two implementations of a
design. The implementations can be of different abstraction levels and different description
methods such as transistor netlists and system-level languages. While equivalence checking
methods are well established in the digital domain [7–9], analog circuit design flows are
lacking formal or at least formalized verification methodologies [10–18]. When speaking
about equivalence checking methodologies, we broadly consider approaches such as state-
space coverage, model-checking, and reachability. Regardless of the specific approach,
confidence in adopting SystemC AMS system-level analog models is low. As a consequence,
completely relying on SystemC AMS system-level models becomes difficult. Due to the
rising complexity of analog designs, this becomes a serious problem.

Contribution: In this article, we significantly extend the methods and applicability
of our novel equivalence checking methodology from [19], which is, to the best of our
knowledge, the first of its kind. Essentially, our approach operates directly on the system-
level and SPICE-level models by combining the linear graph modeling technique with
several graph operations to transform these complex models into a canonical representation.
It is therefore a static method and not simulation-based. The canonical representation
is used to overcome the main challenge, which is to show that the SPICE-level model
is equivalent to the behavioral system-level model implemented in SystemC AMS. We
leverage Signal-Flow Graphs (SFG) as an intermediate representation between the SPICE-
level and the system-level model, which the canonical representation also relies on. In
particular, the developed method extends the applicability of the method in [19] to the
class of complex single-input single-output (SISO) linear analog circuits with passive and
active components. Many analog circuits fall into the linear category, such as various classic
electronic circuits and many analog filters. Some examples of supported circuits are analog
High-Pass Filters (HPF), averager circuits, amplifiers operated in their linear region, linear
computation circuits, etc., and their combinations. Additionally, the method is extended
to handle more complex behavioral models with respect to the simple LTF models used
in [19]. We demonstrate the applicability of the developed methodology by successfully
applying it to complex linear analog circuits.

In summary, the main contributions of this paper are:

• A novel equivalence checking methodology for SPICE-level models and behavioral
system-level models that go beyond single LTFs.

• Leverage SFGs, canonical representations, and linear graph modeling techniques.
• Extension of applicability to the complete class of complex SISO linear analog circuits.
• Demonstration of equivalence checking on complex filter models, Small-Signal Models

(SSM), series connections, and linear analog computers.
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2. Related Work

In their survey of equivalence checking, Zaki et al. [10] summarized the literature
until 2007 and pointed out that all the presented methods employ a priori knowledge of
the DUV in the development process. A further comparison of some equivalence checking
methods was presented in [11] by Tarraf et al. along with the proposal of a new equivalence
checking method based on reachability. It is observed in this work that the definition of
the coverage measures is a difficult task and that many methods balance completeness
against pessimism.

In their study of equivalence checking on the state-space, Hedrich and Barke [12]
compared the vector fields of the systems on a point grid to check the equivalency of
two different representations of circuits. The method is applicable to SISO circuits that
can be described by a set of nonlinear time-invariant first-order differential equations.
Ref. [13] extended the method in [12] to circuits that are defined by differential-algebraic
equations, [14] applied the method to new examples, and [15] generalized it to multi-input
multi-output circuits. The equivalence checking method proposed in [12] is applicable to
many circuits, but some important dynamics might be missed as the points on the grid are
fixed distances apart on the canonical state space.

In an investigation into simulation-based equivalency checking, Singh and Li [16]
developed mapping techniques for comparing signals in different domains and decreased
the high computational burden of simulation-based approaches by developing techniques
that reduce the input space. However, the method relies on typical system-level simulation
stimuli, which cannot completely cover all behavior, and the authors highlight this point
by calling their method semi-formal. Ain et al. [17] also worked on simulation-based
equivalency and developed a systematic methodology with a focus on circuit features.
However, no attempt was made to mitigate the possible incompleteness of the externally
given test bench. The coverage issue of simulation-based verification was addressed by
Saglamdemir et al. [18] through an optimization-based method for automatic generation of
inputs. Unfortunately, a discussion on whether all essential input shapes can be represented
with the given set of input parameters is missing. Another problem that was not addressed
is the possibility of the optimization to return a local minimum.

A summary of the differences between these various works is given in Table 1. As seen
in the table, a common deficiency of many methods in the existing literature is that they do
not check equivalence with complete coverage of behavior. Therefore, even if these methods
claim equivalence, the models might still behave differently in an overlooked gap. Our
proposed equivalence checking methodology, which we introduced in [19], does not have
this issue as the analysis and modification methods used, such as linear graph modeling
and graph reduction, statically analyze the structure of the models. On the other hand,
the applicability of the method was limited to linear analog filter circuits. Additionally,
only behavioral models consisting of a single LTF were supported on the system-level
side. The current paper extends this methodology such that it supports complex linear
behavioral models on the system-level side and extends its applicability to linear analog
circuits in general.

Table 1. A comparison of the related works.

Source Approach Verification Coverage Applicable Circuits

[12–15] State-space-based
Only at finite number of

locations in the
state-space

All

[16–18] Simulation-based Only for finite number of
input signals All

Proposed work Structural analysis Complete coverage Only linear
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3. Preliminaries

In this section, we present a brief summary of SFGs followed by an introduction to
a set of simplification operations for SFGs. Afterwards, we provide a quick overview of
SystemC AMS, and finally a motivating example is introduced. The motivating example
will be used to illustrate the proposed methodology.

3.1. Signal-Flow Graphs

Consider the system of explicit algebraic equations shown in Equation (1):

x̄ = f (x̄, ū) (1)

where x̄ is an array of variables and ū is an array of inputs. An SFG as introduced in [20] is a
representation of Equation (1) in the form of a graph. However, to simplify the algebra [21],
it is common to restrict the SFG to a linear form that represents a system of linear explicit
algebraic equations written as x̄ = Ax̄ + Bū when arranged in matrix form. However, it is
easier to construct the SFG from the open form (Equation (2)) with every variable (xi) given
as the sum of all variables including itself (xj) scaled by some constant aji plus the sum of
all inputs (uk) scaled by some constant bki.

xi = ∑
j

ajixj + ∑
k

bkiuk (2)

As we consider the class of linear analog circuits in this work, the linear SFG is
sufficient for our purposes. Therefore, we restrict our SFGs to represent equations in the
form Equation (2), where xi, xj, aji, and bki depend on the Laplace variable s.

Figure 1 shows an example SFG with its equivalent system of linear explicit algebraic
equations given in Equation (3). The edges of the SFG represent the summation terms in
the equations and the values of the nodes in the SFG are equal to the sum of the incoming
edges. For example, the edge going from x2 to x1 with weight a21 represents the summation
term a21x2 in the explicit equation of x1 in Equation (3).

x1 = a21x2 + b11u1 , x2 = a12x1 + b12u1 (3)

x2x1u1 a21

a12
b12

b11

Figure 1. The Signal-Flow Graph (SFG) corresponding to Equation (3).

3.2. Simplification Operations for Signal-Flow Graphs

Below, we introduce three simplification rules [22] that can be applied to linear SFGs.
These simplification rules are later used by our “SFG simplifier” as explained in Section 4.4
to simplify SFGs to the canonical form.

Removal of a non-input node

Input nodes in an SFG are nodes whose values can be set arbitrarily. Due to this, input
nodes have no incoming edges. The voltages of voltage sources and currents of current
sources are examples of input nodes. A non-input node nx may be removed after creating
edges from every ancestor of nx to every descendant of nx. The weights of these new edges
are such that, for a new edge (ax, dx), its weight is

w((ax, dx)) = w((ax, nx)) · w((nx, dx))

where ax is an ancestor node of nx and dx is a descendant node of nx.
As an example, the removal of node x1 from the SFG shown in Figure 1 results in the

SFG shown in Figure 2a.
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x2u1 a12a21
b12

a12b11

(a)

x2u1 a12a21a12b11 + b12

(b)

x2u1
−a12b11−b12
a12a21−1

(c)

Figure 2. The SFG corresponding to Equation (3) (a) after removal of node x1, (b) after parallel edge
unification, and (c) after removal of the reflexive edge at node x2.

Parallel edge unification

Parallel edges are edges whose source and destination nodes are equal. According to
the distributive law for parallel edges, these can be merged into a single edge by summing
their weights. An example of this is shown in the transition from the SFG in Figure 2a to
the SFG in Figure 2b.

Reflexive edge elimination

Reflexive edges are edges of a node that point to itself. A reflexive edge with weight w
can be removed by dividing the weight of every incoming edge to its node by 1 − w. As an
example, removal of the reflexive edge at node x2 in the SFG shown in Figure 2b results in
the SFG shown in Figure 2c.

3.3. SystemC and SystemC AMS

SystemC is a C++ library for system-level modeling and simulation of digital systems.
An Analog/Mixed-Signal (AMS) extension for the efficient modeling and simulation of
analog systems is available as SystemC AMS [4], which can provide simulations that
are over 100,000× faster compared to SPICE-level simulations. It supports three Models
of Computation (MoC): (1) TDF, (2) Linear Signal Flow (LSF), and (3) Electrical Linear
Networks (ELN). We use the TDF MoC, which is the recommendation for creating SystemC
AMS models.

The TDF MoC can be used to describe the system algorithmically or procedurally.
Furthermore, the design can be made hierarchical by interconnecting modules with ports
and signals. A module is described with three predefined functions: (1) set_attributes,
(2) initialize, and (3) processing. In set_attributes, timing information is defined; in initialize,
the module is initialized at the beginning of the simulation, and in processing, the functional
behavior of the module is described.

As an example, consider the system given in Figure 3. It is implemented in SystemC
AMS with the TDF MoC as given in Figure 4. To implement continuous-time linear transfer
functions in the Laplace domain, a dedicated solver object sca_tdf::sca_ltf_nd is provided
by the TDF MoC. The 1

s+1 block is implemented with this object and is defined at lines 5 to
7 in Figure 4a, initialized at lines 4 and 5 in Figure 4b, and processed at line 7 in Figure 4b.
The gain is defined at line 8 in Figure 4a, initialized in the constructor, and processed at line
7 in Figure 4b.

gainin out

Figure 3. Introductory example: Series-connected gain and integrator.
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1 . . .
2 s t r u c t example : public s c a _ t d f : : sca_module {
3 s c a _ t d f : : sca_in <double> in ; / / Input Por t
4 s c a _ t d f : : sca_out <double> out ; / / Output Por t
5 s c a _ t d f : : s c a _ l t f _ n d l t f ; / / LTF o b j e c t
6 s c a _ u t i l : : sca_vector <double> s ; / / LTF memory v e c t o r
7 s c a _ u t i l : : sca_vector <double> num, den ; / / LTF c o e f f i c i e n t s
8 double gain ;
9 . . .

(a)

1 . . .
2 void example : : s e t _ a t t r i b u t e s ( ) { out . se t_de lay ( 1 ) ; } / / Delay o f ou tp ut p o r t
3 void example : : i n i t i a l i z e ( ) {
4 num( 0 ) = 1 . 0 ; / / C o e f f i c i e n t o f s ^0
5 den ( 1 ) = 1 . 0 ; den ( 0 ) = 1 . 0 ; / / C o e f f i c i e n t s o f s ^1 and s ^0
6 }
7 void example : : process ing ( ) { out . wri te ( l t f (num, den , s , in . read ( ) * gain ) ) ; }

(b)

Figure 4. System-level behavioral model of the example in Figure 3 implemented in SystemC AMS
with (a) example.h and (b) example.cpp.

3.4. Motivating Example: Series-Connected HPF and SSM of Common-Source (CS) Amplifier

As our motivating example for equivalence checking, we consider a single-input (voltage
of VS) single-output (voltage of out) system, consisting of a series-connected analog third-order
passive HPF and an SSM of a CS amplifier with a capacitive load (Figure 5). The resistors
RS, RM, and RD in the figure stand for source resistance, matching resistance, and drain
resistance, respectively. The resistance ro models the channel-length modulation behavior of
the MOSFET, whereas CL represents the load capacitance. The numbers of the nodes, N1,
N2, and N3, are arbitrary. HPFs and amplifiers are typically used in audio crossovers. The
HPF is designed to allow signals with a frequency higher than a certain cutoff frequency, and
attenuate the signals with a frequency lower than that cutoff frequency.

C1

50nL1

0.1

L2

0.1

RS

1k RM
1k

VS

G1

51.8m
ro
10k

RD
2k

CL

10n

out
N1 N2 N3

Figure 5. Motivating example: Series-connected High-Pass Filter (HPF) and small-signal model
(SSM) of common-source (CS) amplifier with components Resistor (R), Capacitor (C), Inductor (L),
and Voltage-Dependent Current Source (G1).

The applicability of the methodology is indifferent to the specific values of the com-
ponents, but for demonstration purposes, specific values were chosen for these circuits.
The components of the HPF circuit are chosen such that it is of type Butterworth, which
has a maximally flat response on the passband. The values of the design specifications are
10 × 103 rad/s (1.592 kHz) for the cutoff frequency and 0.5 for the gain at the passband.
The SSM represents the linear region of behavior of a CS amplifier with a gain of −86.35. A
capacitive load of 10 nF is assumed at the output. The circuit is implemented in LTSpice [23]
and exported as a netlist.
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The behavioral block diagram of the circuit is given in Figure 6. The two blocks are
represented by the LTFs of the HPF and of the CS amplifier’s SSM, which are given in
Equation (4) and Equation (5), respectively.

HHPF(s) =
0.5s3

s3 + 2 × 104s2 + 2 × 108s + 1012 (4)

HCS(s) =
−5.18 × 106

s + 6 × 104 (5)

High-Pass
Filter

Common-Souce
Amplifier

Figure 6. System-level block diagram of the series connection of an HPF and the SSM model of a
CS amplifier.

The coefficients of the HPF’s transfer function were calculated by transforming the
prototype third-order low-pass Butterworth filter

HLPF(s) =
1

s3 + 2s2 + 2s + 1
(6)

to the high-pass form at the relevant cutoff frequency and by adjusting its passband gain.
The transformation is achieved by replacing s in Equation (6) with 10 × 103

s , and the gain is
simply adjusted by multiplying the LTF by 0.5. The coefficients of the CS amplifier’s LTF
are determined from its SSM using modified nodal analysis [24].

The system-level model of the circuit is based on this block diagram and is imple-
mented in SystemC AMS. Two TDF MoC modules are used to model the two blocks. The
implementation of the HPF and the CS amplifier is given in Figure 7 and Figure 8, respec-
tively. As both blocks are represented by single LTFs, they are implemented by a single LTF
object sca_tdf::sca_ltf_nd. The modules are then connected in the parent module hpcs given
in Figure 9. The declarations of the modules are at lines 5 and 6, and they are connected
with the signal V_R_M at lines 10 and 11.

1 . . .
2 s t r u c t hpf : public s c a _ t d f : : sca_module {
3 s c a _ t d f : : sca_in <double> V_V_s ; / / Input Por t
4 s c a _ t d f : : sca_out <double> V_R_M; / / Output Por t
5 s c a _ t d f : : s c a _ l t f _ n d l t f ; / / LTF o b j e c t
6 s c a _ u t i l : : sca_vector <double> s ; / / LTF memory v e c t o r
7 s c a _ u t i l : : sca_vector <double> num, den ; / / LTF c o e f f i c i e n t s
8 . . .

(a)

1 . . .
2 void hpf : : i n i t i a l i z e ( ) {
3 num( 3 ) = 0 . 5 ; num( 2 ) = 0 ; num( 1 ) = 0 ; num( 0 ) = 0 ;
4 den ( 3 ) = 1 . 0 ; den ( 2 ) = 2e4 ; den ( 1 ) = 2e8 ; den ( 0 ) = 1 e12 ;
5 }
6 void hpf : : process ing ( ) { V_R_M. wri te ( l t f (num, den , s , V_V_s ) ) ; }

(b)

Figure 7. System-level behavioral model of the HPF implemented in SystemC AMS with (a) hpf.h
and (b) hpf.cpp.
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1 . . .
2 s t r u c t cs : public s c a _ t d f : : sca_module {
3 s c a _ t d f : : sca_in <double> V_R_M; / / Input Por t
4 s c a _ t d f : : sca_out <double> V_C_L ; / / Output Por t
5 s c a _ t d f : : s c a _ l t f _ n d l t f ; / / LTF o b j e c t
6 s c a _ u t i l : : sca_vector <double> s ; / / LTF memory v e c t o r
7 s c a _ u t i l : : sca_vector <double> num, den ; / / LTF c o e f f i c i e n t s
8 . . .

(a)

1 . . .
2 void cs : : i n i t i a l i z e ( ) {
3 num( 0 ) = 5 . 1 8 e6 ; / / C o e f f i c i e n t o f s ^0
4 den ( 1 ) = 1 . 0 ; den ( 0 ) = 6e4 ; / / C o e f f i c i e n t s o f s ^1 and s ^0
5 }
6 void cs : : process ing ( ) { V_C_L . wri te ( l t f (num, den , s , V_R_M) ) ; }

(b)

Figure 8. System-level behavioral model of the CS amplifier’s SSM implemented in SystemC AMS
with (a) cs.h and (b) cs.cpp.

To increase our confidence in the system-level and SPICE-level implementations shown
above, we introduce our graph-based equivalence checking procedure in the next section.

1 . . .
2 s t r u c t hpcs : public sc_core : : sc_module {
3 s c a _ t d f : : sca_in <double> V_V_s ; / / Input p o r t
4 s c a _ t d f : : sca_out <double> V_C_L ; / / Output p o r t
5 hpf hpf1 ; / / Module d e c l a r a t i o n s f o r HPF
6 cs cs1 ; / / and f o r SSM o f t h e CS a m p l i f i e r
7

8 hpcs ( sc_core : : sc_module_name ) / / C o n s t r u c t o r
9 : V_V_s ( " V_V_s " ) , V_C_L ( "V_C_L" ) , hpf1 ( " hpf1 " ) , cs1 ( " cs1 " ) {

10 hpf1 . V_V_s ( V_V_s ) ; hpf1 .V_R_M(V_R_M) ; / / Bind s i g n a l s
11 cs1 .V_R_M(V_R_M) ; cs1 . V_C_L ( V_C_L ) ; / / t o modules
12 }
13 private :
14 s c a _ t d f : : s ca_s igna l <double> V_R_M;
15 . . .

Figure 9. System-level series connection of the HPF and the CS amplifier’s SSM implemented in
SystemC AMS.

4. Signal-Flow Driven Equivalence Checking Methodology

In this section, we propose an SFG-based equivalence checking methodology for system-
level and SPICE-level SISO linear analog circuit models. First, we describe the overview of
our proposed methodology, followed by techniques to create and optimize an SFG. In the end,
we illustrate our methodology using our motivating example from Section 3.4.

4.1. Methodology Overview

A block-diagram overview of our methodology for equivalence checking between
system-level and SPICE-level models is seen in Figure 10. To generate a complete set of
equations from the netlist, we use the linear graph modeling method [25], which consists
of a normal tree generator and an equation generator. We chose this method of analysis as
it preserves the structure of the circuit the best and loses the least amount of information.
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We then create an SFG of the circuit with our SPICE-level SFG creator and an SFG of the
SystemC AMS description with our system-level SFG creator. We then reduce these SFGs to
a minimal canonical form with our SFG simplifier. The simplification methods of the SFG
simplifier are detailed in Section 4.4 and consist of the removal of a non-input node, parallel
edge elimination, and reflexive edge elimination. Our equivalence checker compares the
two canonical SFGs. All these manipulations and transformations are statically performed
and are not simulation-based.

Linear Graph Modeling
Normal tree

generator

SPICE-level 
SFG creator

Equation
generator

SPICE-level
model

Equivalence
checker

SFG 
simplifier

System-level
model

Simplification
methods Result

System-level 
SFG creator

Canonical
Representation

Figure 10. Overview of the proposed equivalence checking methodology.

4.2. Creating the Signal-Flow Graph from System-Level Descriptions

The proposed methodology supports complex system-level behavioral descriptions as
long as these use linear operations only. Linear operations include addition, multiplication
by a constant, and LTF operators, which are enough to represent any linear SISO system.
As programming code is already written in explicit form, SystemC AMS descriptions for
system-level implementations are already in the form of Equation (2). Only the LTF objects
have a slightly different form. As explained in Section 3.3, the line given as “y = ltf(num, den,
s, x)” is used to process the LTF object defined as “sca_tdf::sca_ltf_nd ltf” and represents
the equation

y =
num(s)
den(s)

x

which is also in the form of Equation (2).
Equations in this form can be directly transformed into an SFG as explained in Section 3.1.

4.3. Creating the Signal-Flow Graph from SPICE-Level Descriptions

For the creation of the SPICE-level SFG, a set of linear explicit algebraic equations in
the form of Equation (2) must be obtained from the SPICE-level model. There are various
circuit analysis methods that can be used for this purpose, which use different methods
and different sets of representative variables. In principle, various possible SFGs exist for
a single circuit, as SFGs are created from sets of equations that were generated by one of
these circuit analysis methods.

The linear graph modeling method that we use in our methodology uses the voltages
on and currents through the circuit components as representative variables of the circuit.
This is in contrast to nodal-analysis and loop-analysis, where the circuit equations are in
terms of node voltages and loop currents, respectively.

The linear graph model determines how the circuit variables relate to each other
by informing whether to focus on the explicit equations of a variable through elemental,
compatibility (Kirchhoff’s voltage law), or continuity (Kirchhoff’s current law) equations.
The first step of the linear graph modeling method is to create a normal tree, which is a
special type of minimum spanning tree of the circuit graph. This is achieved by the normal
tree generator by repetitively adding the edges of the circuit graph in the following order:
Voltage sources, capacitors, resistors, inductors, and current sources.

Edges of the circuit graph that are not included in the normal tree are called the
tree links of the normal tree. The normal tree must include voltage sources and may not
include current sources. Inductors in the normal tree and capacitors in the tree links are
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dependent energy storage elements. Dependent energy storage elements are supported by
the methodology and might be unavoidable due to the modeling approach, but could also
point to a problem with the model.

For all unknown variables, an explicit expression is generated by the equation genera-
tor according to the following rules:

• Voltages of components on the normal tree, from elemental equations.
• Currents of components on the normal tree, from continuity equations.
• Voltages of components on the tree links, from compatibility equations.
• Currents of components on the tree links, from elemental equations.

When generating an explicit expression for the current of a component on the normal
tree, the other currents in the continuity equation need to be from components on the tree
links. These components can be found by temporarily removing the component on the
normal tree from the normal tree, thereby splitting the normal tree into two connected com-
ponents. Then, the continuity equation is generated with the currents of the components in
the tree links that go from one connected component to the other.

Similarly, when generating an explicit expression for the voltage of a component on
the tree links, the other voltages in the compatibility equation need to be from components
on the normal tree. These components can be found by temporarily adding the component
on the tree link to the normal tree and searching for a cycle. This cycle is then used for the
compatibility equation.

This method generates equations in the form of Equation (2), which are used to
construct an SFG as explained in Section 3.1.

4.4. Reducing the Signal-Flow Graph

The created SFGs from the system-level and SPICE-level implementations are reduced
to their canonical form by the block called “SFG simplifier”. The flowchart of the SFG
simplification process is given in Figure 11 and consists of the simplification rules given in
Section 3.2. These are applied by the SFG simplifier repeatedly in the given order until a
minimal graph with only a single edge between its input and output nodes is obtained.

Removal of a 
non-input node

Reflexive edge
elimination

Yes
No

Number of 
nodes = 2?

Simplified
SFG

SFG

Parallel edge
unification

Figure 11. Overview of SFG simplification process.

As SISO systems only have one input and one output node, and the process removes one
node at every loop, the process is guaranteed to reduce the SFG to two nodes and terminate.
Similarly, we can guarantee that only one edge will be left in the final SFG. After the final
node removal, the only edges left in the SFG will be ones that go from the input node to the
output node and reflexive edges at the output node. The edges from the input node to the
output node are reduced to a single edge by unification. The reflexive edges are eliminated at
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the next step, which does not create any new edges. Therefore the returned SFG will have
only a single edge.

4.5. Illustration

In this section, we illustrate our methodology on the series-connected circuit from
Figure 5. As the first step of linear graph modeling, we obtain the circuit’s normal tree,
shown with bold edges in Figure 12. Comparing this with the circuit in Figure 5, it is seen
that it is indeed a minimum spanning tree by observing that all nodes of the circuit are
present in the tree without forming any loops. It can also be seen that the priority order
as explained in Section 4.3 was followed, as all voltages and capacitors of the circuit are
present on the tree. The inclusion of RM in the normal tree instead of RS is arbitrary.

0

N1

VS

N2 L1

N3

L2

RM

out

G1

ro

RD

CL

RS

C1

Figure 12. Graph of the series-connected HPF and CS amplifier circuit. The normal tree is emphasized
with bold edges.

In the second step, we use this normal tree and the rules given in Section 4.3 to find
the explicit Equations (7) and (8), which are required for building the SFG. In Equation (7),
the equations for the components on the normal tree are given.

VC1 =
1

50 × 10−9s
IC1 , IC1 = IRS + IL1 ,

VRM = 103 IRM , IRM = −IL1 − IL2 − IRS ,

VCL =
1

10 × 10−9s
ICL , ICL = −IG1 − IRD − Iro ,

IVS = −IRS .

(7)

whereas the equations for the components on the tree links are given in Equation (8).

VRS = −VVS − VC1 + VRM , IRS =
1

103 VRS ,

VL1 = −VC1 + VRM , IL1 =
1

0.1s
VL1 ,

VL2 = VRM , IL2 =
1

0.1s
VL2 ,

VRD = VCL , IRD =
1

2 × 103 VRD ,

Vro = VCL , Iro =
1

10 × 103 Vro ,

VG1 = VCL .

(8)

While the linear graph modeling approach uses substitution from this point on, we
leave the equations as they are, and construct an SFG right away to preserve the structure
of the circuit. Equations (7) and (8) are in the form of Equation (2), from which the SFG
given in Figure 13 can be created.

This SFG is then transformed according to the rules given in Section 4.4. An example
of parallel edge unification is seen in the ninth step of the simplification process, where the
parallel edges from VCL to ICL in Figure 14a are merged to find the single edge in Figure 14b.
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The next two steps are examples of non-input node removal, where the nodes VL1 and
ICL were removed to obtain the graphs in Figure 14c and Figure 14d, respectively. The
simplification step from Figure 14d to Figure 14e is an example of reflexive edge elimination,
where the reflexive edge at ICL was removed. After the successive removal of 17 nodes
according to these rules, the minimal SFG in Figure 15 is obtained. The numbers in these
figures were printed with reduced floating-point precision due to space considerations.

VL1

IL1
IRM

IC1

VL2

IL2

VRM V(ctrl)
G1
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IG1ICL

Vro IroVRD

IRD

VCL

IRS

VC1

VVS

10
s

−1
1

10
s

−1
1000

1 1 1
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Figure 13. Initial SFG of the series-connected HPF and CS amplifier circuit.
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Figure 14. Some results from the simplification process: (a) The SFG after eight simplification steps.
(b) The SFG after parallel edges in the previous SFG are merged. (c) The SFG after removal of VL1 .
(d) The SFG after removal of ICL . (e) The SFG after the reflexive edge in the previous SFG is removed.
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VCL
VVS − 2.59·106s3

1.0s4+8.0·104s3+1.4·109s2+1.3·1013s+6.0·1016

Figure 15. Reduced SFG of the series-connected HPF and CS amplifier circuit.

Finding the system-level SFG given in Figure 16a from the system-level description
given in Figures 7–9 is trivial, as the system-level models were already described as LTFs.
The simplification of this SFG only involves the removal of the node VRM , after which the
canonical form in Figure 16b is obtained. For equivalence checking, it is observed that the
SFG in Figure 16b is equal to the SFG in Figure 15.

VVS
VRM

VCL
0.5s3

1.0s3+2.0·104s2+2.0·108s+1.0·1012 − 5.18·106
1.0s+6.0·104

(a)

VVS
VCL− 2.59·106s3

1.0s4+8.0·104s3+1.4·109s2+1.3·1013s+6.0·1016

(b)

Figure 16. (a) Initial SFG and (b) reduced SFG of the system-level model of the HPF and CS
amplifier circuit.

The successful application of our methodology to our motivating example shows that
it works. In the next section, we apply our methodology to a more complex example to
illustrate its general applicability.

5. Experimental Evaluation

In this section, we demonstrate the general applicability of our proposed system-level
and SPICE-level equivalence checking methodology by applying it to an example circuit
from a different domain, namely analog computing. First, the experimental setup is briefly
discussed. Later, we demonstrate our methodology described in Section 4 by creating and
simplifying SFGs for the system-level and SPICE-level implementations of the circuit. We
then compare the simplified canonical SFGs to check equivalence.

5.1. Experimental Setup

For this demonstration, we use an analog computing circuit, slightly changed from
its original in [26], which simulates the behavior of a charged particle under a magnetic
field. The slight change was the addition of an external force (Fext), which was included
as the original circuit had no input. The charged particle in this system is constrained to a
two-dimensional plane, and the magnetic field is perpendicular to this plane. The force
Fext that is acting on the particle has a fixed direction and is applied parallel to the plane.
If we consider a Cartesian coordinate system on the plane, with its x-axis parallel to Fext,
we denote the position of the particle on the x-axis as x and on the y-axis as y. As our
methodology is constrained to SISO systems, we only use y as our output.

The equations describing the dynamics of the system are

mẍ = qẏBz − µẋ + Fext

mÿ = −qẋBz − µẏ
(9)

from which the system-level block diagram of the circuit seen in Figure 17a is generated.
The numerical values for the parameters are chosen as 10−9 g for m, 10−18 g s−1 for µ,
10−15 C for q, and 10−3 T for Bz.

The system is implemented in SystemC AMS in a hierarchical manner. The top-level
module which instantiates and connects all the sub-modules is given in Figure 18. All summer,
gain, and integrator blocks are implemented as TDF MoC modules. The integral operations
in the block diagram can be represented by LTFs with the value 1

s . These are implemented
with sca_tdf::sca_ltf_nd objects in a similar fashion to the previous examples. The gains and
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summers are implemented with multiplication and addition operators. The gain values of the
gain blocks are specified in the constructor of the top-level module at lines 15 and 16.

∫∑

∫∑

-

∫

-

-

(a)

-∫--∑

-∫--∑
-

-

-

-∫
-

-1 -

-1 -

(b)

Figure 17. (a) System-level block diagram of the analog simulator for a particle in a magnetic field.
(b) System-level block diagram, adjusted for SPICE-level implementation. The parameters of the
simulator are: charge (q) and mass (m) of the particle, magnitude of the field (Bz), and coefficient of
the viscous friction (µ).

1 . . .
2 s c a _ t d f : : sca_in <double> F_ext ; / / Input p o r t
3 s c a _ t d f : : sca_out <double> y ; / / Output p o r t
4 i n t e g intdx , intdy , i n t y ; / / I n t e g r a t o r module i n s t a n t i a t i o n s
5 gain gmx, gmy, gmux, gmuy, gqBzx , gqBzy ; / / Gain module i n s t a n t i a t i o n s
6 sum3 sumx ; sum2 sumy ; / / Summer modules
7 s t a t i c constexpr double m = 1e −9; / / P a r a m e t e r s
8 s t a t i c constexpr double mu = 1e −18;
9 s t a t i c constexpr double q = 1e −15;

10 s t a t i c constexpr double Bz = 1e −3;
11

12 p i f ( sc_core : : sc_module_name ) / / C o n s t r u c t o r
13 : F_ext ( " F_ext " ) , y ( " y " ) , intdx ( " intdx " ) , intdy ( " intdy " ) , i n t y ( " i n t y " ) ,
14 sumx ( "sumx" ) , sumy( "sumy" ) ,
15 gmx( "gmx" , 1 . 0 / m) , gmy( "gmy" , 1 . 0 / m) , gmux( "gmux" , −mu) ,
16 gmuy( "gmuy" , −mu) , gqBzx ( " gqBzx " , −q * Bz ) , gqBzy ( " gqBzy " , q * Bz ) {
17 sumx . in1 (mudx) ; sumx . in2 ( F_ext ) ; sumx . in3 ( qBzdy ) ; sumx . out (mddx) ; / / Bind
18 gmx . in (mddx) ; gmx . out ( ddx ) ; intdx . in ( ddx ) ; intdx . out ( dx ) ; / / s i g n a l s
19 gmux . in ( dx ) ; gmux . out (mudx) ; gqBzx . in ( dx ) ; gqBzx . out ( qBzdx ) ; / / t o
20 sumy . in1 (mudy) ; sumy . in2 ( qBzdx ) ; sumy . out (mddy) ; / / modules
21 gmy . in (mddy) ; gmy . out ( ddy ) ; intdy . in ( ddy ) ; intdy . out ( dy ) ;
22 gmuy . in ( dy ) ; gmuy . out (mudy) ; gqBzy . in ( dy ) ; gqBzy . out ( qBzdy ) ;
23 i n t y . in ( dy ) ; i n t y . out ( y ) ;
24 }
25 private :
26 s c a _ t d f : : s ca_s igna l <double> mddx, ddx , dx , mudx, qBzdx , mddy, ddy , dy , mudy, qBzdy ;
27 . . .

Figure 18. System-level behavioral model of the analog simulator for a particle in a magnetic field
implemented in SystemC AMS.

The SPICE-level model of the circuit is implemented by using template circuits that
act as inverting summers, inverting integrators, and inverting gains. The template circuits
are given in Figure 19. The op-amps are assumed ideal and non-saturating. The parameter
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k in the template circuits can be chosen freely and does not affect the circuit behavior as
the output resistances of the op-amps are assumed zero. The inverting summer circuit
implements the system-level behavior of −∑ and can be extended with more inputs. The
gain of the inverting gain circuit is −G and can be adjusted by changing the parameter G.
The system-level blocks of − 1

m , −qBz, −µ, and −1 can be realized with this inverting gain
circuit by setting G to 1

m , qBz, µ, and 1, respectively. Finally, the inverting integrator circuit
implements the system-level behavior of −

∫
. As these template circuits are inverting

the input, the system-level model was readjusted to the model given in Figure 17b. The
SPICE-level implementation could then be realized by plugging the template circuits into
respective blocks in the block diagram. This is allowed, as the output resistances of all
the template circuits in Figure 19 are equal to the output resistances of the op-amps, and
therefore zero. The final SPICE-level implementation consists of 26 resistors, 3 capacitors,
and 13 op-amps.

Vin
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Rin

k

RF

G*k

out

 ---  C:\programming\PhD\publicationMaterial\circuitTemplates\invertingAmplifier.asc  --- 

(a)

Vin
OP1

Rin

1/k

CF

k

out

 ---  C:\programming\PhD\publicationMaterial\circuitTemplates\integrator.asc  --- 

(b)

V1
OP1

RF

k
V2

R2

k

R1

k

out

 ---  C:\programming\PhD\publicationMaterial\circuitTemplates\doubleSummer.asc  --- 

(c)

Figure 19. Template circuits for (a) inverting gain, (b) inverting integrator, and (c) inverting summer.

5.2. Equivalence Checking

The process used to create the SFG from the SPICE-level circuit once again consists of
obtaining the normal tree, finding the explicit equations for the variables of the circuit, and
putting these equations together to create the SFG. The obtained SFG initially had 85 nodes
and 132 edges.

The graph reduction rules given in Section 4.4 are then applied to this SFG for sim-
plification. An intermediate graph with nine nodes, which has two sets of parallel edges
and one reflexive edge, is seen in Figure 20. The symbol AOP1 stands for the op-amp gain,
which is assumed infinite. The final canonical SFG from the simplification process is given
in Figure 21.

The SystemC AMS code of the system-level implementation can be transformed into
the system-level SFG in Figure 22a as explained in Section 3.1. The names of the nodes
are the names of the signals in the SystemC AMS code. Although the names of the signals
do not matter for the methodology to work, they were chosen to aid comprehension. The
character m stands for the mass m, d stands for derivative, mu stands for µ, and Bz stands
for Bz. After the simplification process and after substituting numeric values, the canonical
form in Figure 22b is obtained. For equivalence checking, the LTFs at the only edges of the
SFGs in Figure 22b and Figure 21 are compared. It is seen that these are equivalent, which
implies the behavioral equivalency between the system-level model and the SPICE-level
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model. Therefore, any result generated with the system-level model can be analyzed
more confidently.
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Figure 20. An intermediate result from the simplification process of the analog simulator for a particle
in a magnetic field.
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Figure 21. Reduced SFG of the analog simulator for a particle in a magnetic field.

Fext mddx

ddx

dxmudx qBzdx mddy

ddydy

y
mudyqBzdy

1
1
m

1
s

−µ −Bzq

1

1
1
m

1
s

1
s

−µBzq
1

1

(a)

Fext y− 1
s3+2.0·109s2+2.0·1018s

(b)

Figure 22. (a) Initial symbolic SFG and (b) reduced SFG with numerical substitutions of the system-
level model of the analog simulator for a particle in a magnetic field.

The total application time it took to apply the methodology to the analog simulator for
a particle in a magnetic field was 4.9 s, whereas when applied to the series-connected HPF
and CS amplifier circuit it was 1.3 s. The computations were conducted on an octa-core
AMD Ryzen 7 PRO 4750U with 32 GB RAM.

By successfully applying our methodology to an analog computer with complex
system-level and SPICE-level implementations, we have demonstrated the general applica-
bility and scalability of our approach. Next, we will summarize the main conclusions and
discuss possible research directions for the future.

6. Conclusions

In this work, we combined various analysis and modification techniques in a novel
way to create a graph-based, formal equivalence checking method. We extended our novel
equivalence methodology to behavioral system-level models that go beyond single LTFs.
We have also extended the applicability of our methodology to the general class of SISO
linear analog circuits. To achieve this, we create system-level SFGs from SystemC AMS
descriptions and use linear graph modeling on SPICE-level models to create SPICE-level
SFGs. To compare these graphs, we use graph reduction techniques to transform them into
a common canonical form. By observing the successful application of the methodology
to the provided examples, we learned that using graphs to show formal equivalency is a
viable option that merits further investigation.
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The methods presented in this article can be extended in multiple ways. As a slight
difference between the SPICE-level and system-level models might be tolerable, the method
can be modified to generate an error value between the models. For this, the poles and
zeros of the transfer function in the canonical SFGs can be compared. Additionally, the
current application scope of this work is restricted to linear analog circuits. A generalization
to nonlinear circuits should be investigated. Another interesting research direction is to
leverage the graph-based representation using established search methods to map possible
bugs between the two models. Furthermore, the method can be extended to multiple-input
multiple-output systems and can be used to analyze systems with external noise input.
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Abbreviations
The following abbreviations are used in this manuscript:

SoC System-on-chip
SFG Signal-flow graph
LPF Low-pass filter
HPF High-pass filter
DUV Design under verification
VP Virtual prototyping
ESL Electronic system level
TDF Timed data flow
LSF Linear signal flow
ELN Electrical linear networks
MoC Model of computation
LTF Laplace transfer function
RF Radio frequency
SSM Small-signal model
CS Common source
AMS Analog/mixed-signal
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