
����������
�������

Citation: Bossard, A. Memory

Optimisation on AVR

Microcontrollers for IoT Devices’

Minimalistic Displays. Chips 2022, 1,

2–13. https://doi.org/10.3390/

chips1010002

Academic Editor: Pak Kwong Chan

Received: 9 March 2022

Accepted: 15 April 2022

Published: 21 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Memory Optimisation on AVR Microcontrollers for IoT
Devices’ Minimalistic Displays

Antoine Bossard

Graduate School of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka 259-1293, Japan;
abossard@kanagawa-u.ac.jp

Abstract: The minimalistic hardware of most Internet of things (IoT) devices and sensors, especially
those based on microcontrollers (MCU), imposes severe limitations on the memory capacity and
interfacing capabilities of the device. Nevertheless, many applications prescribe not only textual
but also graphical display features as output interface. Due to the aforementioned limitations, the
storage of graphical data is however highly problematic and existing solutions have even resorted to
requiring external storage (e.g., a microSD card) for that purpose. In this paper, we present, evaluate
and discuss two solutions that enable loading fullscreen, optimal 18-bit colour image data directly
from the MCU, that is, without having to rely on additional hardware. Importantly, these solutions
retain a very low footprint to suit the microcontroller architecture; the AVR architecture has been
selected given its popularity. The obtained results show the feasibility and practicability of the
proposal: in the worst case, 21 Kbytes of memory are required, in other words approximately 33% of
the flash memory of a 32-Kbyte MCU remain available.

Keywords: IoT; sensors; microcontroller; interface; display; storage; output

1. Introduction

Internet of things (IoT) devices and sensors are in general small units with minimal
interfacing. For example, a temperature sensor can both report its measurements via
Internet for remote monitoring, and show on a display panel the current temperature in
the room. Humidity measurement is another example. In recent years, smart agriculture
has relied on such technology: adding the remote feature to sensing devices in, say, a
crop factory is obviously attractive [1]. Weather forecast is yet another popular usage: the
inferred meteorological condition is displayed as a graphical icon (sun, cloud, rain, etc.)
on a small screen. These are only a few of the numerous application examples of output
interfacing for IoT devices and sensors.

Because of power consumption (battery) and cost issues, the hardware of such devices
is minimalistic [2]. This is especially the case when they are based on microcontrollers: very
few memory is available, and interfacing is reduced to a minimum. Yet, as explained above,
some applications can prescribe a display interface, both textual and graphical.

Displays for such minimalistic devices are often either a text-only liquid crystal display
(LCD) panel that is only capable of displaying hard-coded characters (e.g., displays based
on the Hitachi driver HD44780 [3]), very small thin-film transistor-LCD (TFT-LCD) panels
(e.g., 18-bit colour TFT-LCD panels based on the Sitronix driver ST7735R [4], like the
Adafruit 0.96 in, 1.44 in and 1.8 in ones) or electronic paper (e.g., WaveShare devices, like [5]).
Text-only displays with hard-coded characters do not face memory issues as only character
codes, like ASCII codes, need to be transferred to the peripheral. Regarding electronic
paper, because they are in most cases monochrome or near-monochrome (e.g., dual colour)
displays and because only small size devices are considered here, fullscreen pixel data can
easily fit into the microcontroller memory [5]. Therefore, we focus hereinafter on 18-bit
colour displays as they exacerbate the memory limitation issue. Precisely, we have selected

Chips 2022, 1, 2–13. https://doi.org/10.3390/chips1010002 https://www.mdpi.com/journal/chips

https://doi.org/10.3390/chips1010002
https://doi.org/10.3390/chips1010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chips
https://www.mdpi.com
https://orcid.org/0000-0001-9381-9346
https://doi.org/10.3390/chips1010002
https://www.mdpi.com/journal/chips
https://www.mdpi.com/article/10.3390/chips1010002?type=check_update&version=1

Chips 2022, 1 3

the larger 1.8 in TFT-LCD version since it requires the most memory compared to other,
smaller sized TFT-LCD panels. (A smaller size here means a lower display resolution.)

It is not possible to load a fullscreen, optimal 18-bit colour image as is from the
microcontroller unit (MCU) into the memory: there are too many pixels, so they cannot all
fit in the program memory (details are given in the next section). Existing workarounds
involve extra hardware, for instance a microSD card and the corresponding card reader,
and thus have a non negligible impact on the system cost. For example, a small TFT-LCD
panel mounted on a such a board with a card reader (but not including a microSD card)
costs about twice as much ($19.95 for the Adafruit 1.8 in TFT-LCD as of March 2022 [6]) as
the exact same TFT-LCD panel on its own ($9.95 as of March 2022 [7]). Even if part of this
difference can be explained by the soldering work needed, these numbers clearly show the
cost impact that this memory issue has on hardware.

So, our objective is to optimise the extremely limited storage capacity of such minimal-
istic devices. To this end, we describe, then evaluate, in this paper two very low footprint
solutions for AVR microcontrollers to address this severe memory limitation issue in order
to enable loading of fullscreen, optimal 18-bit colour image data directly from the MCU.
These two techniques, colour indexing and run-length encoding (RLE), are combined in
an attempt to further reduce memory usage. Although these two solutions have already
been applied to a variety of computing scenarios, such as accessibility improvement for
visually impaired users and information hiding (steganography) for colour indexing and
three-dimensional display with electro holography for RLE [8–11], it is here interesting to
concretely describe, practically measure and quantitatively discuss their implementations
and performance thereof in the case of such specific and limited hardware.

The rest of this paper is organised as follows. Additional details on the selected
hardware are given in Section 2. Then, the proposal is described in Section 3 before being
both qualitatively and quantitatively evaluated. The obtained results are presented in
Section 4. These results are discussed and compared to those of related works in Section 5.
Finally, this paper is concluded in Section 6.

2. Preliminaries

When making hardware choices, it is recalled that the adoption (popularity) of a chip is key
as it directly impacts, or even conditions further developments. Effectively, a widely adopted
hardware architecture enjoys multiple software libraries and peripherals. In other words,
technical specifications such as the clock frequency and the amount of available memory
of a chip are generally imposed by the selected ecosystem. This is why it is relevant to
consider the 8-bit AVR architecture and precisely the ATmega328P chip: it equips the extremely
popular microcontroller board Uno of the Arduino ecosystem, ranked no. 1 by Amazon.com
in the Robotics (Industrial & Scientific) category (https://www.amazon.com/gp/bestsellers/
industrial/8498884011/, (last accessed 8 March 2022)) as of March 2022, and which “has
been used in thousands of different projects and applications” to quote the official guide
introduction (https://www.arduino.cc/en/Guide/Introduction, (last accessed 8 March 2022)).
Besides, the price of 8-bit AVR chips is very competitive: for example, the chip used in this
research is sold for $2.70 by the supplier (Microchip Technology, part no. ATMEGA328P-PU)
and a very similar chip (same core size and speed, same program memory size, comparable
connectivity and peripherals) by another manufacturer, National Semiconductor (manufacturer
part no. COP8CDR9IMT7), for $3.06 by the supplier (Rochester Electronics) at the time of
writing. (Both chips are still available for purchase as of March 2022).

In addition, small size TFT-LCD panels are well adapted to minimalistic devices, such
as sensors, as they are light, thin (e.g., 2.4 mm [7]), provide high colour display—even better:
an 18-bit colour depth is frequent—while limiting the required memory size, albeit with a
resolution that is greatly superior to, for instance, LED matrix panels. Furthermore, they do
not suffer from the lengthy display update and poor colour support of electronic papers [5].
And obviously, TFT-LCD panels have a more flexible usage than text-only displays: they can
display whatever is needed, not only characters. Finally, their cost is, as mentioned previously,

https://www.amazon.com/gp/bestsellers/industrial/8498884011/
https://www.amazon.com/gp/bestsellers/industrial/8498884011/
https://www.arduino.cc/en/Guide/Introduction

Chips 2022, 1 4

generally lower than, or on a par with the aforementioned alternatives: for example, $9.95 for a
1.8 in 18-bit colour TFT-LCD (Adafruit part no. 618 [7]) versus $17.50 for a 2.13 in monochrome
flexible electronic paper (Adafruit part no. 4243), $15.95 for a bicolour LED matrix (Adafruit
part no. 902), $9.95 for a monochrome 2-row 16-character text-only display (Adafruit part
no. 181). (All the prices have been taken from the same vendor for fair comparison; they are as
of March 2022. The price of the raw display panel was taken, when available.)

The microcontrollers that are based on the AVR instruction set architecture (ISA) have
proven to be very popular for sensors and Internet of things devices. A reduced power
consumption and ease of use are two important properties which can explain this trend.
The AVR ISA abides by the reduced instruction set computer (RISC) architecture principles:
it consists in few, simple instructions. The memory architecture of such microcontrollers
is also reduced to a minimum: for example, the popular ATmega328P chip which equips
many Arduino boards (Uno, Nano, etc.), only features 32 Kbytes of program memory
in flash and 2048 bytes for the data memory space in SRAM. (1024 bytes of EEPROM
non-volatile memory are also provided [12]).

In this research, in order to reduce the footprint of the proposed system and the memory
usage in general as much as possible, we directly rely on assembly instructions. According
to the AVR ISA, data in the program memory space can be read with the LPM instruction,
while the data memory space in SRAM can be accessed with the LD instruction [13]. In this
research, we rely on both of these memory spaces and thus on both of these two instructions.

These hardware characteristics demand comparable, simple I/O interfacing which ac-
commodates itself to the extremely limited memory capacities of the MCU. The selected 1.8 in
TFT-LCD panel features an 18-bit colour depth, which is common for such low-specification
TFT-LCDs. In other words, the colour of one single pixel is expressed with eight bits, and there
are in total 218 = 262,144 available colours. The resolution of the display is 128× 160 pixels,
with thus a total of 20,480 pixels. Hence, this display has a pixel density of

√
1282 + 1602

1.8
≈ 113.83

pixels per inch. The 18-bit colour mode expressing each red, green, blue (RGB) channel
with one byte, an uncompressed fullscreen image requires 3 × 20,480 = 61,440 bytes,
which is, as explained, problematic considering the amount of available memory. We
control this display device with the serial peripheral interface (SPI) from an ATmega328P
microcontroller and in accordance with the display driver (Sitronix ST7735R [4]).

3. Methodology

The two compression techniques and, importantly, their very low-footprint implemen-
tations are described in this section. We naturally focus here on the processing done by the
microcontroller; preprocessing, such as image data preparation, is only briefly presented as
not directly related to our research subject.

3.1. Colour Indexing with a Palette
3.1.1. Approach Description

As explained previously, it is not possible to store fullscreen 18-bit colour image data as
is directly into the program memory space (flash memory) of the MCU. So, in a first attempt
at reducing the size required by the pixels, we rely on the colour indexing method: the set of
colours present in the image data is reduced to a set of at most 256 distinct colours and each
image pixel is mapped to the index of one palette entry. This can be done for instance with a
conventional palette generation method such as that of GIMP, based on histograms [14]. And,
to visually improve the resulting image, we adjust pixels with Floyd-Steinberg dithering [15].

Because both the palette and the indexed image data need to be stored into the pro-
gram memory space of the MCU, we limit the maximum number of palette entries to 256.
Each palette entry consists in three bytes, one per RGB channel, with the value x of each
RGB channel being first converted from the range [0, 255] into [0, 63] with the function

Chips 2022, 1 5

f (x) = r(63x/255), r() rounding to the nearest integer, and second left-shifted by two bits,
so as to match the native 18-bit colour format of the TFT-LCD panel [4]. As a result, storing
the palette itself takes at most 3× 256 = 768 bytes.

Moreover, thanks to this palette limitation, each pixel of the image data can be repre-
sented with one single byte—it is recalled that palette indexing is 0-base. Therefore, storing
the image data after indexation requires exactly 128× 160 = 20,480 bytes for the selected TFT-
LCD panel. In total, palette and image data thus require at most 768 + 20,480 = 21,248 bytes
of the program memory space. Of course, colour indexing is a lossy compression method.

3.1.2. Two Loading Techniques

Now that the image representation issue has been discussed, we describe in this section
how to concretely load the compressed image data so that it is displayed on the TFT-LCD
panel. We present two techniques: the first one relies solely on the program memory (flash)
for the loading process, whereas the second one relies on both the program memory and
the data memory in SRAM for increased performance (see below). We mention in this
section only the code that is directly relevant to the image loading issue. In other words,
initialization of peripherals and devices (e.g., SPI) is omitted.

After being formatted in accordance with the assembler syntax, the palette and indexed
image data are included into the assembly source file with the .include directive; both are
assigned a label (palette and image, respectively) for subsequent address manipulations.
The main idea of the image loading algorithm is here simply to iterate each of all the palette
indices that make the image data, looking up the corresponding RGB channel values inside
the palette. Details are given in Listing 1.

Listing 1. Image loading solely done with the program memory space.

ldi r20 , lo8(palette)
ldi r21 , hi8(palette)
ldi r26 , lo8(image)
ldi r27 , hi8(image)
ldi r24 , lo8 (20480) ; image size
ldi r25 , hi8 (20480)
clr r0

data_send:
movw r30 , r26
lpm r17 , Z ; current pixel ’s index

; index address in the palette
movw r30 , r20
add r30 , r17
adc r31 , r0
add r30 , r17
adc r31 , r0
add r30 , r17
adc r31 , r0

lpm r16 , Z+ ; red channel value
rcall transmit ; SPI transmission
lpm r16 , Z+ ; green channel value
rcall transmit
lpm r16 , Z ; blue channel value
rcall transmit

adiw r26 , 1 ; next pixel

sbiw r24 , 1 ; decrement counter
brne data_send

Because loading directly from the program memory in flash takes one more cycle than
loading from the data memory space in SRAM (the LPM instruction requires 3 cycles against
only 2 for the LD instruction), copying the entire palette to the data memory space in SRAM
before doing lookups is a possible optimisation since a palette entry is likely to be accessed

Chips 2022, 1 6

more than once: the probability that a same index is used multiple times inside the image data
is high. So, the loading code can be refined as shown in Listing 2; it is key to notice therein
that the transfer of the red, green, blue channel values to the display are now done with the
LD instruction instead of the LPM instruction as done in Listing 1. Besides, this optimisation
requires the number of palette entries to be known; it is stored as prefix to the palette.

Listing 2. Image loading done with both the program memory space (flash) and the data memory
space (SRAM).

ldi r26 , lo8(SRAM) ; data space addr.
ldi r27 , hi8(SRAM)
ldi r30 , lo8(palette)
ldi r31 , hi8(palette)
lpm r1, Z+

mov r24 , r1 ; palette size calcul.
clr r25
adiw r24 , 1
clr r0
add r24 , r1
adc r25 , r0
add r24 , r1
adc r25 , r0

copy: ; one channel at a time
lpm r16 , Z+ ; load from flash
st X+, r16 ; copy into SRAM
sbiw r24 , 1 ; decrement counter
brne copy

ldi r30 , lo8(image)
ldi r31 , hi8(image)
ldi r24 , lo8 (20480)
ldi r25 , hi8 (20480)
ldi r26 , lo8(SRAM)
ldi r27 , hi8(SRAM)
clr r0

data_send:
lpm r17 , Z+ ; current pixel ’s index

movw r28 , r26 ; index address calcul.
add r28 , r17
adc r29 , r0
add r28 , r17
adc r29 , r0
add r28 , r17
adc r29 , r0

ld r16 , Y+ ; red channel value
rcall transmit ; SPI transmission
ld r16 , Y+ ; green channel value
rcall transmit
ld r16 , Y ; blue channel value
rcall transmit

sbiw r24 , 1 ; decrement counter
brne data_send

3.2. Run-Length Encoding

Compression with colour indexing as presented and implemented earlier is a first
step to reduce the size of the image data. As a second, complementary step, we rely
on run-length encoding (RLE), which is this time a lossless compression method (refer,
for instance, to the T.45 recommendation [16] for a sample application). The principle
of this compression method is to represent a sequence of consecutive same values as a
(count, value) pair with count the number of times value appears in the sequence. Hence,

Chips 2022, 1 7

the size of the compression result greatly varies depending on the structure of the data:
the more the consecutive same values, the smaller the result size.

Considering the severe memory restriction faced as mentioned previously, not only
needs the size of the image data to be appropriately reduced, but the size of the machine
code required to process such data also needs to be minimal in order to leave enough
program memory available for the rest of the microcontroller program. Hence, when
selecting a compression algorithm, its ease of implementation and simplicity in general are
critical. Besides, although not as critical as the memory issue, the processing performance of
the chip has to be taken into account: decompression of image data is expected to be fast in
order to retain practicability. For these reasons, RLE compression is a meaningful solution,
and this is why it is frequently used in such minimalistic environments (e.g., sensors) [17].
Finally, even if an RLE compression technique is suboptimal when dealing with images
including many colours and thus few consecutive pixels of the same colour, the fact that
we combine this compression method together with colour indexing with a palette, thus
effectively reducing the number of colours throughout the image data and consequently
increasing the probability of consecutive pixels of a same colour, induces the relevance of
our approach even in this particular situation.

So, we rely on this principle and adapt it to the MCU architecture so as to optimise the
results. Just as we restricted the number of palette entries to 256 in order to be able to express
image data with single byte palette indices, we limit the length of a sequence of consecutive
same pixel values (i.e., palette indices) to 255, that is, 1 ≤ count ≤ 255, so as to use one
single byte to iterate. Therefore, if there is a sequence of more than 255 consecutive same
values, several (count, value) pairs are generated. Precisely, a sequence of x consecutive
same values v induces bx/255c pairs of the form (255, v) followed by one pair of the form
(c, v) where c = x mod 255, if c 6= 0. The total number of such pairs is needed to process
the image data, and thus added as prefix to them.

Not only can this second compression method drastically reduce the program memory
required, it can also accordingly reduce the number of program memory read operations
(LPM instruction), which is, we recall, a heavier operation (3 cycles) than usual ones (1 cycle).
This is important for parallelisation with pipelining as provided by the MCU. Precisely, instead
of executing n (n ≤ 255) program memory read operations with the LPM instruction, we
execute one read operation to retrieve count and another one for value, here a palette index.

For the sake of conciseness, the assembly source of this second method is omitted. Of
course, the two loading methods described previously and detailed in Listings 1 and 2 are
applicable. The main difference when implementing the RLE compression method we have
just described is that image data consist of count–index pairs, so, for each such pair, count
and index are read from the program memory, index is looked up in the palette as before
and the corresponding RGB channel values are repeatedly transmitted count times.

4. Results
4.1. Experimental Conditions

The experimental setup is shown in Figure 1: on the left, the ATmega328P micro-
controller is mounted on an Arduino Uno board, and on the right, the TFT-LCD panel is
inserted into a breadboard for wiring. No additional memory is used.

Three sample images have been selected so that each of them illustrates a precise
rendering scenario as detailed below:

Image 1—a text logo image, that is, featuring notably antialiasing, few colours and large
monochromatic areas;

Image 2—a colour spectrum image, that is, featuring notably many colours and no large
monochromatic areas;

Image 3—a “photograph” image, that is, featuring notably many colours, but with possible
same or near-same colour areas.

Chips 2022, 1 8

Figure 1. A photograph of the experimental setup, showing the ATmega328P microcontroller
mounted on an Arduino Uno board on the left and the TFT-LCD on the right.

These original images have then been preprocessed: precisely, they have been con-
verted with the colour indexing method described in Section 3, from which the correspond-
ing palette has been calculated.

Finally, the source code described in Section 3 has been assembled by the avr-as
assembler of the GNU as assembler collection. The obtained machine code has been linked
with avr-ld of GNU ld and translated to the Intel HEX file format with avr-objcopy
of GNU objcopy. These utilities are all from the GNU Binutils collection. The HEX file
has then been conventionally transferred to the microcontroller with the avrdude utility
(see, for instance, ref. [18] for additional details). The size of the generated machine code
has been calculated with avr-size of GNU size, also from the GNU Binutils collection.
This utility reports the size in bytes of each memory section (.text, .data and .bss); the
amount of required program memory is thus given by the sum of the two .text and .data
memory sections. The version of GNU Binutils is 2.26.20160125.

Renderings on the TFT-LCD panel have been photographed in daytime, indoor condi-
tions, without direct exposure to sunlight.

4.2. Qualitative Results

As first results, we start by showing the actual renderings obtained on the TFT-LCD
panel. As explained previously, we have selected three sample images which each matches
one particular rendering scenario. For each of these three sample images, the actual
rendering on the TFT-LCD panel has been photographed; it appears below the original
sample image in Figure 2.

4.3. Quantitative Results: Machine Code Size

We have measured the size (in bytes) of the machine code produced in the following
four cases, which match the two methods described in Section 3:

Palette/Flash—colour indexing (palette) compression with image loading from the program
memory space in flash only;

Palette/Flash-SRAM—colour indexing (palette) compression with image loading from
both the program memory space in flash and the data memory space in SRAM;

Palette-RLE/Flash—colour indexing (palette) compression combined with the proposed
run-length encoding, with image loading from the program memory space in flash
only;

Palette-RLE/Flash-SRAM—colour indexing (palette) compression combined with the pro-
posed run-length encoding, with image loading from both the program memory
space in flash and the data memory space in SRAM;

The results corresponding to these four scenarios are given in Figure 3 and detailed in
Table 1.

Chips 2022, 1 9

160 pixels

12
8

pi
xe

ls

(a)

160 pixels

12
8

pi
xe

ls

(b)

160 pixels

12
8

pi
xe

ls

(c)

Figure 2. The rendering of three sample images which have been each selected to illustrate a precise
rendering scenario: (a) a text logo image, that is, with antialiasing, few colours, large monochromatic
areas; (b) a colour spectrum image, that is with many colours, no large monochromatic areas; (c) a
“photograph” image, that is, with many colours, but with possible same or near-same colour areas.
The rendering result is given below each original image.

Image 1 Image 2 Image 3

0.5

1

1.5

2

2.5

3

3.5

·104

m
ac

hi
ne

co
de

si
ze

(i
n

by
te

s)

Palette/Flash Palette-RLE/Flash
Palette/Flash-SRAM Palette-RLE/Flash-SRAM

Figure 3. Size (in bytes) of the machine code produced for each of the three sample images in the
four described scenarios.

Table 1. The detailed results of the size (in bytes) of the machine code produced for each of the three
sample images in the four described scenarios.

Palette/Flash Palette/Flash-SRAM Palette-RLE/Flash Palette-RLE/Flash-SRAM

Image 1 21,142 21,174 6758 6788
Image 2 21,316 21,348 11,420 11,450
Image 3 21,406 21,438 36,432 36,462

4.4. Quantitative Results: Loading Time

We next measure the time required to load the fullscreen image from the microcon-
troller, data being transferred as explained to the TFT-LCD panel. The required time
is expressed in the number of cycles needed to execute the corresponding program; for

Chips 2022, 1 10

reference, the clock frequency of the ATmega328P microcontroller is at most 20 Mhz [12] (ex-
ternal clock). It should be noted that, for the sake of clarity, we only count the instructions
that load the image, not the instructions for the TFT-LCD panel setup since they are the
same for all programs, and we do not count the cycles induced by the RCALL instruction
since, once again, they are exactly the same for all programs. Finally, we consider a palette
of maximum size, that is, with 256 entries, and a fullscreen image of 128 × 160 = 20,480
pixels so as to obtain an upper bound on the required loading time.

Because the proposed run-length encoding induces image data of varying sizes, the
calculated number of cycles depends on n the number of count–index pairs in the compres-
sion result of the image file. The detailed results of the loading time, that is, clock cycles,
for each of the four described scenarios are given in Table 2 and illustrated in Figure 4.

Table 2. The detailed results of the loading time (in clock cycles) for each of the four described
scenarios. n is the number of count–index pairs in the compression result of the image file.

Palette/Flash Palette/Flash-SRAM Palette-RLE/Flash Palette-RLE/Flash-SRAM

532,486 411,925 11 + 1564n 2329 + 1558n

0 100 200 300 400 500

0

2

4

6

8

·105

number of count–index pairs in the image data

lo
ad

in
g

ti
m

e
(i

n
cl

oc
k

cy
cl

es
)

Palette/Flash
Palette/Flash-SRAM
Palette-RLE/Flash
Palette-RLE/Flash-SRAM

Figure 4. The loading time in clock cycles for each of the four described scenarios. The number of
count–index pairs in the image data depends on the image file.

5. Discussion
5.1. General Discussion of the Obtained Results

First, we discuss the obtained qualitative results (renderings): the images were all
instantly loaded and rendered successfully on the TFT-LCD panel. Besides, there are no
apparent graphical artefacts or glitches other than the inevitable minor ones induced by
colour indexing compression. Image 1 induces a colour palette of 223 entries (text anti-
aliasing produces many colours) and Images 2 and 3 a full colour palette of 256 entries. The
quality of the renderings, for instance the visible horizontal lines, matches the hardware
specifications of the TFT-LCD panel used for this experiment and are thus unrelated to the
proposed methodology. The reduction of the number of colours is most visible with the
rendering of the colour spectrum of Image 2 (Figure 2b); it is characteristic of colour spectra
since they consist of colour gradients.

While the run-length encoding compression method has been applied to binary
(monochrome) images [19], we have selected this algorithm for its performance, sim-
plicity and lossless properties. It has also enabled us to increase parallelization by reducing

Chips 2022, 1 11

the number of multi-cycles instructions (LPM, precisely), which is discussed in [20] but
again for binary images.

The feasibility of the proposal has been successfully shown given that image data are
successfully loaded and displayed. The practicability of the proposal has also been shown:
program memory remains available, it is not fully used. Of course, this depends on the
loaded image, but in the worst case (palette only, no RLE compression) 1 + 256 × 3 bytes
are required for the palette, 20,480 × 1 bytes for the image data, plus the machine code
that corresponds to the loading code—here we take the loading method that is based on
the program memory & SRAM combination since we are considering the worst case—for
a grand total of 21,438 bytes. Hence, since 32 Kbytes of program memory are available,
approximately 33% remain available for other instructions.

Without compression, 20,480 × 3 = 61,440 bytes are required to represent a fullscreen
image in this 18-bit colour mode, which is thus impossible to store directly into the micro-
controller as explained. The results show that the proposal is able to significantly reduce
the size required to represent such an image.

Depending on the image data, RLE compression can adversely affect the required
memory size (i.e., a larger size than the original image data), and that even if RLE is
applied to image data that have been compressed beforehand with colour indexing as in
our proposal. This is precisely the case for Image 3 as shown in Figure 3; the size of the
produced machine code exceeds the available amount of program memory and cannot thus
be uploaded to the ATmega328P microcontroller. The worst case of such a scenario is when
the image has no two consecutive pixels of the same colour.

Regarding the loading time results, they exhibit an optimal time complexity, that is,
a time complexity which is linear in the size of the input data (i.e., the image data). It is
recalled that these results are an upper bound on the loading time: this time is reduced for
images that induce smaller colour palettes.

5.2. Comparison with Related Works

Finally, we conclude this discussion section by further showing the contribution of the
proposal by comparing it to related works. First, with the Adafruit GFX Library by Phillip
Burgess [21], it is not possible to load such images, only monochrome bitmaps (e.g., in the
XBM format)—see the drawBitmap function and its variants. (Coloured bitmap files could
be loaded with this library from an SD card.)

Second, we consider the RLEbitmap library by Michael Hotchin [22]. To start, it should
be noted that due to its low-level memory management calls (e.g., pgm_read_byte_far),
the RLEbitmap library is simply not usable for a low-memory microcontroller such as the
ATmega328P—errors are produced when attempting to compile the image loading program.
It is instead required to select a chip such as the ATmega2560, and this is yet another severe
limitation compared to our proposal. Nonetheless, we specify an ATmega2560 chip to the
library to further investigate.

We reuse the exact same three sample images (Images 1, 2 and 3 of Section 4) for fair
comparison. These images are saved in the BMP format (uncompressed format) as required
by RLEbitmap and converted to a bit map in C++ code (a byte array, precisely) by the
utility provided with RLEbitmap (bmper). Then, the corresponding machine code for the
MCU which simply displays the image on the TFT-LCD has been conventionally built with
the Arduino development environment with ATmega2560 as build target. It should be
noted that, as specified by RLEbitmap, the Adafruit GFX Library and Adafruit ST7735 and
ST7789 Library are loaded to generate the machine code.

First, it is essential to note that the RLEBitmap library generates significantly larger
machine code than our method: +132% in the case of Image 1 and +30% in the case of
Image 2, approximately. The required size of the program memory space is calculated
just as it was for the results of Section 4, with avr-size. Second, the RLEBitmap library
simply fails at producing any machine code in the case of Image 3 due to the large size of
this image. This library is thus again superseded by our proposal. The obtained results

Chips 2022, 1 12

with respect to the machine code size, that is, the required amount of program memory, are
summarised and compared with our proposal in Figure 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

·104

Image 1

Image 2

required program memory size (in bytes)

RLEBitmap library Proposal

Figure 5. The obtained results with respect to the machine code size: our proposal clearly outperforms
the RLEBitmap library. In the case of Image 3, the RLEBitmap library simply fails at generating
machine code.

6. Conclusions

The minimalistic hardware of most IoT devices and sensors, especially those based
on microcontrollers, induces severe restrictions on their storage capacity and interfacing
capabilities. Nonetheless, there exist many applications that demand not only textual but
also graphical display features. The storage of fullscreen data is thus highly problematic
and existing solutions have even resorted to requiring external storage (e.g., a microSD
card) for that purpose. In this paper, we have described two very low-footprint solutions to
enable this scenario without having to rely on additional hardware. These two solutions can
be combined for improved results. The proposal has been qualitatively and quantitatively
evaluated, and the obtained results have been discussed. Simply stated, we have shown
that what was previously impossible is now not only feasible but also practical, and can
pave the way for significant cost reductions.

Regarding future works, conducting experiments with additional sample images to
further generalise the obtained results is one possibility. Although it might be interesting
to consider other compression algorithms, one merit of our approach is its simplicity,
necessary for microcontroller architectures, and short implementation, necessary given
tight storage limitations. In any case, investigating integration means of the proposal into
existing applications is a meaningful objective. Finally, although devices based on the ARM
architecture include generally larger memory spaces, some like the Arduino MKR Zero
and the Raspberry Pi Pico still face severe memory restrictions. Considering the ARM
architecture instead of AVR is thus yet another possible future research direction.

Funding: This research was partly supported by a Grant-in-Aid for Scientific Research (C) of the
Japan Society for the Promotion of Science under grant no. 19K11887.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author wishes to thank the reviewers for their insightful comments and
suggestions which helped improve the paper. In addition, the author is sincerely grateful towards
Leo Nagamatsu (Kanagawa University, Japan) and Takeyuki Nagao (Chiba University of Commerce,
Japan) for their insightful advices on microcontrollers.

Conflicts of Interest: The author declares no conflict of interest.

Chips 2022, 1 13

References
1. Ijaz, F.; Siddiqui, A.A.; Im, B.K.; Lee, C. Remote management and control system for LED based plant factory using ZigBee and

Internet. In Proceedings of the 14th International Conference on Advanced Communication Technology (ICACT), PyeongChang,
Korea, 19–22 February 2012; pp. 942–946.

2. Bossard, A. Autonomous on-chip debugging for sensors based on AVR microcontrollers. J. Sens. Technol. 2021, 11, 19–38.
http://doi.org/10.4236/jst.2021.112002. [CrossRef]

3. Hitachi. HD44780U (LCD-II)—Dot Matrix Liquid Crystal Display Controller/Driver; ADE-207-272(Z), ’99.9, Rev. 0.0; Hitachi: Tokyo,
Japan, 1998.

4. Sitronix Technology. ST7735R—262K Color Single-Chip TFT Controller/Driver; Version 1.4; Sitronix Technology: Jhubei,
Taiwan, 2010.

5. Waveshare Electronics. Specification—2.9′′ e-Paper (B); Revision 2.0; Waveshare Electronics: Shenzhen, China, 2017.
6. Adafruit Industries. 1.8′′ Color TFT LCD display with MicroSD Card Breakout—ST7735R. Available online: https://www.

adafruit.com/product/358 (accessed on 18 April 2022).
7. Adafruit Industries. 1.8′′ SPI TFT Display, 160x128 18-bit Color—ST7735R Driver. Available online: https://www.adafruit.com/

product/618 (accessed on 18 April 2022).
8. Tigwell, G.W.; Flatla, D.R.; Archibald, N.D. ACE: A colour palette design tool for balancing aesthetics and accessibility. ACM

Trans. Access. Comput. 2017, 9, 1–32. http://doi.org/10.1145/3014588. [CrossRef]
9. Brisbane, G.; Safavi-Naini, R.; Ogunbona, P. High-capacity steganography using a shared colour palette. IEE Proc.—Vision Image

Signal Process. 2005, 152, 787–792. http://doi.org/10.1049/ip-vis:20045047. [CrossRef]
10. Xiang, L.; Wang, X.; Yang, C.; Liu, P. A novel linguistic steganography based on synonym run-length encoding. IEICE Trans. Inf.

Syst. 2017, E100-D, 313–322. http://doi.org/10.1587/transinf.2016EDP7358. [CrossRef]
11. Nishitsuji, T.; Shimobaba, T.; Kakue, T.; Ito, T. Fast calculation of computer-generated hologram using run-length encoding based

recurrence relation. Opt. Express 2015, 23, 9852–9857. http://doi.org/10.1364/OE.23.009852. [CrossRef] [PubMed]
12. Microchip Technology. ATmega48A/PA/88A/PA/168A/PA/328/P megaAVR Data Sheet; DS40002061A; Microchip Technology:

Chandler, AZ, USA, 2018; ISBN 978-1-5224-3502-0.
13. Microchip Technology. AVR Instruction Set Manual; DS40002198A; Microchip Technology: Chandler, AZ, USA, 2020; ISBN

978-1-5224-5882-1.
14. Arvo, J. Graphics Gems II; Graphics Gems—IBM; Elsevier Science: Amsterdam, The Netherlands, 1991.
15. Floyd, R.W.; Steinberg, L. An adaptive algorithm for spatial grey scale. Proc. Soc. Inf. Disp. 1976, 17, 75–77.
16. International Telecommunication Union. Series T: Terminals for Telematic Services, Run-Length Colour Encoding; Article no. E 18362;

International Telecommunication Union: Geneva, Switzerland, 2000.
17. Saidani, A.; Xiang, J.; Mansouri, D. A new lossless compression scheme for WSNs using RLE algorithm. In Proceedings of the

20th Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan, 18–20 September 2019; pp. 1–6.
http://doi.org/10.23919/APNOMS.2019.8893093. [CrossRef]

18. Bossard, A. Understanding Microcontrollers—A Gentle Introduction to an AVR Architecture; Ohmsha: Tokyo, Japan, 2021.
19. Qin, Y.; Wang, Z.; Wang, H.; Gong, Q. Binary image encryption in a joint transform correlator scheme by aid of run-length

encoding and QR code. Opt. Laser Technol. 2018, 103, 93–98. http://doi.org/10.1016/j.optlastec.2018.01.018. [CrossRef]
20. Trein, J.; Schwarzbacher, A.; Hoppe, B.; Noffz, K.H. A hardware implementation of a run length encoding compression algorithm

with parallel inputs. In Proceedings of the IET Irish Signals and Systems Conference (ISSC), Galway, Ireland, 18–19 June 2008;
pp. 337–342. http://doi.org/10.1049/cp:20080685. [CrossRef]

21. Burgess, P. Adafruit GFX Graphics Library; Adafruit Industries: New York, NY, USA, 2021.
22. Hotchin, M. RLEBitmap—Run Length Encoded Bitmaps for the Arduino. Available online: https://github.com/MHotchin/

RLEBitmap (accessed on 18 April 2022).

http://doi.org/10.4236/jst.2021.112002
https://www.adafruit.com/product/358
https://www.adafruit.com/product/358
https://www.adafruit.com/product/618
https://www.adafruit.com/product/618
http://dx.doi.org/10.1145/3014588
http://dx.doi.org/10.1049/ip-vis:20045047
http://dx.doi.org/10.1587/transinf.2016EDP7358
http://dx.doi.org/10.1364/OE.23.009852
http://www.ncbi.nlm.nih.gov/pubmed/25969026
http://dx.doi.org/10.23919/APNOMS.2019.8893093
http://dx.doi.org/10.1016/j.optlastec.2018.01.018
http://dx.doi.org/10.1049/cp:20080685
https://github.com/MHotchin/RLEBitmap
https://github.com/MHotchin/RLEBitmap

	Introduction
	Preliminaries
	Methodology
	Colour Indexing with a Palette
	Approach Description
	Two Loading Techniques

	Run-Length Encoding

	Results
	Experimental Conditions
	Qualitative Results
	Quantitative Results: Machine Code Size
	Quantitative Results: Loading Time

	Discussion
	General Discussion of the Obtained Results
	Comparison with Related Works

	Conclusions
	References

