
Citation: Jaiswal, A.K.; Jamal, S.B.;

Gabriel Rodrigues Gomes, L.; Profeta,

R.; Sales-Campos, H.; Oliveira, C.J.F.;

Figueira Aburjaile, F.; Tiwari, S.; Barh,

D.; Silva, M.V.d.; et al.

Neuroinformatics Insights towards

Multiple Neurosyphilis

Complications. Venereology 2022, 1,

135–160. https://doi.org/10.3390/

venereology1010010

Academic Editor: Pasquale Ferrante

Received: 31 March 2022

Accepted: 7 May 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Neuroinformatics Insights towards Multiple
Neurosyphilis Complications
Arun Kumar Jaiswal 1,* , Syed Babar Jamal 2 , Lucas Gabriel Rodrigues Gomes 1, Rodrigo Profeta 3,
Helioswilton Sales-Campos 4 , Carlo Jose Freire Oliveira 5, Flávia Figueira Aburjaile 6 , Sandeep Tiwari 1 ,
Debmalya Barh 7 , Marcos Vinicius da Silva 5, Siomar de Castro Soares 5,* and Vasco Azevedo 1,*

1 Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais,
Belo Horizonte 31270-901, Brazil; lucasgabriel388@gmail.com (L.G.R.G.); sandip_sbtbi@yahoo.com (S.T.)

2 Department of Biological Sciences, National University of Medical Sciences, Rawalpindi,
Rawalpindi 46000, Pakistan; babar.jamal@numspak.edu.pk

3 Department of Genetics, Ecology, and Evolution (GEE), Federal University of Minas Gerais,
Belo Horizonte 31270-901, Brazil; profeta.biotec@gmail.com

4 Institute of Tropical Pathology and Public Health, Federal University of Goias (UFG),
Goiânia 74690-900, Brazil; tonsales@ufg.br

5 Laboratory of Immunology and Bioinformatics, Department of Microbiology, Immunology, and Parasitology,
Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro,
Uberaba 38025-180, Brazil; carlo.oliveira@uftm.edu.br (C.J.F.O.); marcosuftm@gmail.com (M.V.d.S.)

6 Department of Preventative Veterinary Medicine, School of Veterinary Medicine,
Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; faburjaile@gmail.com

7 Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied
Biotechnology (IIOAB), Purba Medinipur 721172, India; dr.barh@gmail.com

* Correspondence: arunjaiswal1411@gmail.com (A.K.J.); siomars@gmail.com (S.d.C.S.);
vascoariston@gmail.com (V.A.)

Abstract: Treponema pallidum subspecies pallidum causes syphilis, a sexually transmitted disease
that infects more than 2.1 million pregnant women every year. Due to its maximum death rates and
augmented risk of human immunodeficiency virus (HIV) infection, the disease is still a matter of
debate in many low- and high-income countries. The infection has three stages that lead to several
complications if left untreated and can lead to many tertiary complications in the brain, eyes, ears,
heart, and pregnancy. Neurosyphilis is also known as the clinical result of infection of the central
nervous system by Treponema pallidum subspecies pallidum. It can evolve at any time and from
any stage of syphilis exposure. This review briefly explains the severe and multiple neurosyphilitic
complications and recently identified cases related to neurosyphilis. We also explained computational
neuroscience, neuroinformatics, and in silico models and techniques based on artificial intelligence
and other computational and mathematical methods. These techniques have already been applied to
several neurological and psychological brain complications and can be applied to neurosyphilis to
better understand the persistence of the disease related to the brain that causes neurosyphilis.

Keywords: Treponema pallidum; blood–brain barrier; neurosyphilitic meningitis; neurocognitive;
cognitive deficits; computational neuroscience

1. Introduction

Syphilis is a sexually-transmitted disease caused by Treponema pallidum (Tp) subspecies
pallidum infection that infects more than 2.1 million pregnant women every year. Due to
its maximum death rates of neonates, augmented risk of human immunodeficiency virus
(HIV) infection, and continued morbidity particularly in low-income countries [1,2] as
well as in high-income countries [3,4], such as Japan, where the rate of cases is increasing
at an alarming level in heterosexual men and women, syphilis is a disease of worldwide
concern [5]. Principally, the infection is transmitted through sexual contact, exception-
ally with blood transfusion and blood products, and transmits vertically from mother to
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child (Syphilis Transmission from Mother-to-Child (MTCT)) during pregnancy [4]. The
Tp spirochete transmits vertically to the fetus, leading to congenital syphilis infections in
poorly treated or utterly treated pregnant women, and causes multiple clinical manifesta-
tions, including stillbirth and neonatal death, skin and visceral manifestations, and other
asymptomatic infections [6,7]. According to the World Health Organization (WHO), a
recently published study estimating the burden of congenital syphilis showed more than
half a million (almost 661,000) cases of congenital syphilis in 2016, consequently facing
200,000 stillbirths and neonatal deaths [8,9]. Congenital syphilis is the second leading cause
of preventable stillbirth globally, preceded only by “Malaria” [8].

Following infection, syphilis can present as a chancre (primary syphilis/first site of
infection) 10–90 days (average three weeks) after manifestation. If syphilis is not adequately
treated, the chancre may disappear. Nevertheless, within a few weeks or months, the symp-
toms of secondary syphilis may appear and can be seen on the host body. The symptoms
may vary and comprise rashes on the body, alopecia (loss of hair), condylomata lata, and
vague symptoms with malaise, sore throat, weight loss, and low-grade fever. Secondary
syphilis manifestation can also vanish within a few weeks, even without treatment; then,
“latent syphilis” follows, where the patients do not display any symptoms and indications
but remain infectious for up to a year following infection [4,9]. Latent infection can last for
decades if untreated and leads to tertiary syphilis complications [10]. Tertiary syphilis can
evolve with manifestations that depend on which organ is involved [11–13].

Neurosyphilis (NS), also known as the clinical result of infection of the central nervous
system by the Tp spirochete [14,15], can evolve at any time of syphilis exposure. Due to
the lack of susceptible and specific diagnostic tests, diagnosis and identification depend on
clinical conclusions, cerebrospinal fluid (CSF) contrasts, and clinical decisions [16]. As there
is no standardized and specific diagnostic, NS remains challenging [17]. NS involves all
neurological disorders related to nervous system invasion by the Tp and can be seen during
the primo-secondary (early NS) or tertiary stages [18]. Emphatically, NS has two forms: an
early form often strikes the CSF, meninges, and vasculature; the late form hits the brain and
spinal cord parenchyma, and in several cases, it goes unnoticed or unidentified, leading to
multifarious neurological complications [12]. Early NS complications are asymptomatic
neurosyphilis (ANS), CSF abnormalities with no neurological signs or symptoms, for exam-
ple, gumma of the CNS (cervical spinal syphilitic gumma [18] and spinal intramedullary
syphilitic gumma [14]). In early symptomatic neurosyphilis, complications such as acute
syphilitic meningitis, neurorecurrence, neurosyphilitic meningitis, and meningovascular
syphilis have been reported. Late symptomatic neurosyphilis (SNS) complications include
parenchymatous syphilis, general paresis, and tabes dorsalis [13,19]. Ocular and otologic
syphilitic manifestations can occur but commonly coexist with early NS acute meningi-
tis [16]. ANS occurs in early NS infection, and ANS patients are highly susceptible and
quickly develop forthcoming SNS complications; almost 35% of ANS patients develop SNS
in a natural progression. However, the reason for SNS risk linked to SNS development
is still unclear [20]. Over the last many decades, a firm rise in syphilitic meningitis and
different forms of early NS have been observed in HIV-positive inhabitants, mainly in men
who have sex with men (MSM) [16].

Briefly, rather than becoming an infection of historical ponderance, syphilis contin-
ues to be challenging for scientists, researchers, and clinicians due to its multiple and
unclear neurological complications in the age of HIV [19]. This article focuses specifically
on exceptional and continued controversial NS complications such as “neurosyphilitic
meningitis” and “cerebral syphilitic gumma” of neurosyphilis for its clinical manifestations
and diagnosis. We attempt to highlight several important questions that remain unan-
swered. Our focus is to describe the Tp invasion capability of crossing the brain’s vascular
basement membrane (the blood–brain barrier; BBB) [21] and its neurocognitive and psychi-
atric transformations as an initial demonstration [22] in neurosyphilitic patients. We also
describe the new field of neuroinformatics (NI) as “The field of science whose objective
is to unite neuroscience data and introduce pioneer computational tools to enhance our
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understanding of the nervous system and its functions in health and disease” [23], and
computational neuroscience (CN) as “A wide and interdisciplinary area for the develop-
ment, simulation, and analysis of multiscale prototypes and principles of neural activities
from the molecular level, via cells, and networks, up to cognition and behavior” [23,24]
research in neurological disorders.

2. Treponema pallidum Pathogenesis in Neurological Complications

T. pallidum subspecies pallidum, a long lean (from 0.15 µm by 6 µm to 15 µm), is a
gradually growing bacterium that cannot grow and be easily cultured for clinical aims [25].
The bacterium is instinctively very delicate and fragile due to its abnormal envelope
arrangement. The peptidoglycan layer is enclosed with a cytoplasmic-membrane-adjoining
location rather than the typical outer-membrane-adjoining location as in conventional
Gram-negative bacteria. This abnormal ultrastructure and extremely fragile nature make
laboratory manipulation enormously difficult [21,26,27]. Tp’s manifestation depends on
the time instant, site, and immune condition of infected personnel [28,29]. The infection
can clasp any body organ and its tertiary syphilis chronic lesion that causes various disease
characteristics and conclusions. The tertiary syphilis lesions associated with internal organs
can be separated into three different categories—(A) mononuclear cell reactions similar to
secondary syphilis skin lesions, (B) gummas, and (C) deadly degenerative alterations to
loss of vascular or nerve supply [28–30].

Neurological lesions are associated with gummas, meningovascular inflammation,
cerebral vessels inflammation, and general paresis (dementia paralytica), which may lead to
multiple disorders (Table 1; Figure 1). The meningeal response in late syphilis can be asymp-
tomatic, but it has been associated with inflammatory cells in the CNS and a positive VDRL
test [31,32]. Meningitis in syphilis is characterized by thickened meninges; lymphocytic
perivascular pervades around small vessels; and in parenchymal syphilis, disseminated,
inflammatory, and proliferative changes occur in the cerebral cortex. Long ago, large
gummas were common and often connected with the periphery to the meninges [28,29].
The NS manifestations appear to be the outcome of Tp’s apparent efficacy in the tissues;
organisms gather massive amounts due to either incapability of immune response to be at
the site of infection or lack of the timely immune response to command the disease [28,33].
In the present-day scenario, infected patients do not demonstrate typical symptoms of tabes
dorsalis, general paresis, or meningovascular syphilis. Alternatively, bows show multiple
atypical complications, ophthalmic symptoms such as poor vision, strokes, confusion, or
personality changes. The disease was discovered incidentally during different medical
investigations for various causes in several findings. Moreover, viable Tp can be identified
with early and untreated syphilis in the CSF of 30% of patients [21,34]. In every stage
of syphilis, macrophages quickly produce several inflammatory cytokines that stimulate
the mechanism that secretes inflammatory mediators that lead to tissue damage, which is
the main reason for clinical manifestations of syphilis; yet, very little is known about the
process of this particular mechanism [35]. The specific manifestations of Tp infection rely on
the time, infection site, and immune condition of an infected person [28,35,36]. The capacity
of the immune system of the infected person depends on the syphilis stages, particularly
the impact of the strength of delayed-type hypersensitivity (DTH) mediated by CD4+ cells.
CD8+ cytotoxic T cells are comparatively inefficient in controlling the advancement of
lesions if the response to DTH is inadequate [28]. A recent study published by Wei Li in
2020 [37] showed that the recombinant Tp protein Tp0768, which is a stage-dependent
antigen, plays an important role in Tp infection and encourages proinflammatory cytokine
secretion of macrophages via endoplasmic reticulum stress and the ROS/NF-κB pathway.
In the study, the authors showed that Tp0768 stimulation of macrophages is able to increase
the expression levels of IL-1β, IL-6, and IL-8 mRNA in a dose- and time-dependent manner.
Furthermore, an investigation pointed out that Tp0768 activated endoplasmic reticulum
stress and the ROS/NF-κB pathway in macrophages [37]. Another study on neurosyphilis
dispersal in West China published by Dongdong Li in 2020 [38] demonstrated that the role
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of CSF_CXCL13 and syphilis serology is able to provide an additional precise context for the
clinical identification and diagnosis of neurosyphilis. The study showed that the sensitivity
of serology in neurosyphilis accompanied by CSF_CXCL13 can be helpful in neurosyphilis
monitoring and can also be a potential marker for neurosyphilis diagnosis [38].
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3. Treponema pallidum Neurological Invasion and Evasion Mechanism

Pathogens can employ multifold approaches for prolonged survival within the host,
seeking to avoid and prevent their immune responses and going unnoticed [39]. Invasion
of the CNS by pathogens is a grievous and often lethal phenomenon throughout several
perfuse diseases. It can lead to hearing and vision loss, cerebral palsy, hydrocephalus,
and cognitive impairment [40]. Spirochetes are strongly accommodated to encounter
the host defense system on multiple leads to ensure long-term persistence inside the
hosts. The symptoms and disease courses of spirochetes reflect their capability to expand
themselves throughout the host without producing acute responses from the host immune
recognition system, and these properties make them experts in immune evasion and
persistence [41]. The extremely invasive character of Tp is well-established and has been
described previously by various in vitro and in vivo laboratory studies [39,42–46]. The
bacterium enters the body through the entire mucosal surface or skin abrasions during
sexual intercourse before clinical manifestations. After entry, Tp unleashes to multiply
locally and populate itself from the local infection site through blood and lymphatic
vessels [47]. Coupling with host cells and the extracellular matrix is believed to be the
initial and crucial step of Tp infection [26,48]. After reaching underneath the epithelium,
Tp proliferates locally and disseminates via lymphatic vessels and the bloodstream. The
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spiral and flat-woven morphological characteristics of Tp make it robust and enable it
to ubiquitously infiltrate tissue and vascular barriers in the host’s body. In contrast, its
periplasmic mobility gears it farther through front-to-back stir and coordinates in response
to poorly explained chemotactic signals. Although it is still unclear how Tp has advantages
in invading deep visceral and musculoskeletal tissues, arriving and surviving in distant
skin and mucosal sites increase the chances of subsequent transmission [26,45,49].

This extracellular pathogen avoids recognition from the host’s innate and adaptive
immune responses. It does not contain lipopolysaccharide (LPS), a primarily proinflam-
matory glycolipid that is present in Gram-negative bacteria [50]. It is rich in lipoproteins
that are adequate for activating macrophages and dendritic cells (DCs) through Toll-like
receptor (TLR) 1, TLR2—dependent signaling pathway, and CD14 and mainly come to
the lower surface of the outer membrane [51], which is why these pathogen-associated
molecular patterns (PAMPs) are recognized as crucial proinflammatory agonists in spiro-
chetal infection. However, Tp has a unique outer membrane (OM) structure. It comprises a
scarcity of surface-exposed lipoproteins that empowers Tp to undergo dissemination and
remain difficult to identify by the innate immune mechanism. It also explains the shortage
of systemic inflammatory symptoms, which is the core characteristic of syphilis [49,51].
These multiple abnormal ultrastructural mechanisms may assist it in infection proliferation,
evasion of the immune response, and bacterial persistence [21].

4. Blood–Brain Barrier (BBB) and Central Nervous System (CNS) Crossing by
Treponema pallidum towards Neurosyphilis

The neurological disorder’s expression by neuro-invading pathogens is usually con-
nected via infiltration of the blood–brain barrier (BBB) and CNS invasion [52]. The BBB
is a structural and functional barrier built by the brain’s microvascular endothelial cells
(BMECs), astrocytes, and pericytes (Figure 2) and is one of the compact barriers inside the
human body that defends the brain from various infirmities caused by pathogens. Impor-
tantly, it maintains the neural microenvironment by controlling molecular travel into and
out of the CNS and permitting blood vessels to regulate ions and other molecules strongly.
It protects the CNS against blood-borne microorganisms and toxins [53–55]. BMECs are
essential for imparting nutrients to the brain with tight junctions and using the efflux
pump mechanism for unrecognized particles to carry blood circulation [56]. Astrocytes and
pericytes assist in properly handling BMECs [53,55]. However, their role in the microbial
traversal of the barrier is still not adequately explained. In addition, astrocytes (interaction
of endothelial cells via astrocyte end-feet, Figure 2) [57] and microglial cells [55,58] gov-
ern hematogenous cell recruitment and provide strength in the translocation of specific
pathogens [53]. Diverse microorganisms have the potential to traverse the BBB, infect the
CNS, and travel through the BBB Transcellularly (no evidence of Trojan horse disruption),
Paracellularly (between the cells), and by infection of phagocytes via the Trojan horse
mechanism (within infected phagocytes) [52,59]. Tp is an obligate human pathogen that
can rapidly invade the circulatory system and traverse the blood–placenta, blood–retina,
and blood–brain barriers [60].

Syphilis pathogenesis shows Tp’s invasive properties, but the exact tissue invasion
model is unknown. Tp could invade the host cells, according to Thomas et al., 1988,
who characterized the destination of radio-labeled motile organisms collated to HeLa cell
monolayer; 26 percent of treponemes were preceded by monolayer in trypsin-resistant
protection, and presumably the monolayer and the surface to which they persisted but did
not meet intracellularly. They found that Tp attachment by electrical resistance to cultured
human and rabbit aortic and human umbilical vein endothelial cells was 2 times greater
than that to HeLa cells. Tp aortic endothelial cells propagated on membrane filters with
circumstances in which tight intercellular junctions had formed and Tp was able to walk
via endothelial cell monolayers with no evidence of tight junction alteration. Heat-killed Tp
and Treponema phagendis (nonpathogenic) biotype failed in the infiltration of the monolayer.
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Moreover, transmission electron micrographs demonstrated Tp in intercellular junc-
tions. In vitro examinations enlighten this highly motile spirochete that can leave circulation
by penetrating the junctions amid endothelial cells (Figure 3) [45,59]. Additionally, an inter-
action between the Tp molecule Tp0751 and laminin may encourage tissue invasion [48,61].
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Some different studies have endorsed Tp’s distinct adhesion toward the vascular
endothelium and separation of basement membranes. Tp0751 binds to laminin−1, −2, −4,
−8, and −10 and amino acids positioned between 98 and 101, 127 and 128, and 182 and
185 in Tp0751 are sensitive to binding with laminin [62,63].

In their study, published in 2020, Lithgow and colleagues reported that recombinant
Tp0751 adheres to human endothelial cells of macrovascular and microvascular origin,
including a cerebral brain microvascular endothelial cell line of the molecular interactions
of Tp0751-mediated adhesion to the vascular endothelium. Endothelial binding is confined
to the lipocalin fold-containing domain of the protein, according to adhesion experiments
employing recombinant Tp0751 N-terminal truncation. They also used live Tp to confirm
this interaction and showed that Tp0751-specific antiserum disrupts spirochete adhesion
to endothelium monolayers. Using affinity chromatography, coimmunoprecipitation, and
plate-based binding techniques, they also identified the 67-kDa laminin receptor (LamR)
as an endothelium receptor for Tp0751. LamR has also been a receptor for the adhesion
of other neurotropic invasive bacterial pathogens to brain endothelial cells—including
Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae—implying the
existence of a similar mechanism for extravasation of insidious extracellular bacterial
pathogens [64].

Tp is difficult to maintain in vitro for an extended period without the male rabbit
testicle [65,66]. With the help of the hyaluronic acid enzyme, Tp removes the connective
matrix of the capillary and the auxiliary polysaccharide matrix around the blood vessels. It
eventually motivates tissue necrosis ulceration, which macrophages can remove through
antibody-mediated phagocytosis [67–69]. A recent work performed by Bu-Fang Xu et al. in
2019 [69] demonstrated the critical role of exosomes in pathogenesis and inflammatory dis-
eases, and tumor treatment. Bu-Fang Xu and his fellows analyzed the impact of Tp-induced



Venereology 2022, 1 141

macrophage-derived exosomes on vascular endothelial cells to identify their involvement
in syphilis pathogenesis. Their study demonstrated that exosomes derived from Tp-infected
macrophages increased cell adhesion and permeability of vascular endothelial cells and
may play a significant role in syphilis pathogenesis.

5. Regulatory T Cell (Treg-Cell) during Neurosyphilis Complications

Regulatory T cells, also known as Treg-cells, are T cells that help prevent autoimmune
illness by regulating other immune system cells and controlling the immune response to
self and foreign particles (Antigens). Treg-cells are immunosuppressive T cells essential
for immune homeostasis, inhibiting autoimmunity, promoting self-tolerance, and working
as sensitive inflammatory regulators in different pathological conditions such as autoim-
munity and injury, and nervous system degradation [70]. Understanding the potency of
the T cell response is an elementary issue in immunology with entanglement for immunity
to pathogens, autoimmunity, and immunotherapy. The early effects of the Treg-cell re-
sponse are depicted by the summation of free antigen signals, costimulation, and cytokines.
Treg-cells, CD4+, CD25+, and Foxp3+ cells perform a significant role in immune home-
ostasis, suppressing self-reactive T cell responses and binding pathogen-directed immune
responses before damage occurs [71]. As explained above, Tp subsp. Pallidum—the etio-
logical representative of syphilis—can propagate through any body organ, including the
central nervous system (CNS). Neuroinvasion leads to asymptomatic neurosyphilis (ANS),
such as gumma of the CNS and acute syphilitic meningitis/meningovascular syphilis
as “early symptomatic neurosyphilis”, and it can also cause severe, even irreversible,
late symptomatic neurosyphilis (SNS) as parenchymatous syphilis, general paresis, and
Tabes dorsalis.

The neurological damage in neurosyphilis complication mechanisms is still not well-
explained [13,18,19,72]. As an outcome of Tp infection, mammalian hosts organize substan-
tial cellular and humoral immune responses to clear the Tp spirochete from infected regions.
Patients with NS have contaminated CSF Treg-cell collection, and their immunosuppres-
sive cytokines cannot suppress T-cell-mediated inflammatory tissue damage, leading to
neurological complications [72,73]. According to Wang et al. in 2014, the Th17 response
is probably involved in CNS injury and is associated with clinical symptoms in neu-
rosyphilis patients. They performed flow cytometry analysis and IL-17 level quantification
in cerebrospinal fluid with ELISA of neurosyphilis patients. Th17 was screened out of
cytometry analysis in peripheral blood from 103 neurosyphilis patients, 69 syphilis pa-
tients without neurological symptoms, and 70 healthy donors. After a one-year follow-up,
44 neurosyphilis patients were examined further to determine whether Th17/IL-17 was
involved in NS. As a result, a growing frequency of Th17 cells was identified in NS patients’
peripheral blood compared with normal donors. A total of 55.3% of NS patients (average of
2.29 (0 59.83) pg/mL) had IL-17 in CSF, particularly those with symptomatic neurosyphilis
(61.9%). CSF IL-17 was obtained from Th17 cells in NS patients. The levels of IL-17 in the
CSF of NS patients were certainly associated with the total CSF protein CSF VDRL (Venereal
Disease Research Laboratory) titers. Regardless, the importance of the Th17 response in
NS is still unclear [73]. In another study by Yu Q et al. in 2017 [72] on the potential role
of humoral immunity in NS pathogenesis, the authors studied B-cell infiltration in the
CSF of NS patients and the respective intrathecal immunoglobulin levels. As a result, they
suggested that the upregulated expression of intrathecal CXCL13 in Treg-cells works as an
essential regulator for the recruitment of peripheral B cells into the CNS and activates aber-
rant antibody responses. The tenacity and function of B cells/immuno-globulin-secreting
cells can rely on activated B cells fostering ectopic germinal centers (EGCs) in the CNS
of NS patients [72]. Tp can grow to affect the CNS, causing NS. Accumulating evidence
suggests that Treg-cells may play a crucial role in syphilis pathogenesis. However, little is
known about the Treg-cell response in neurosyphilis complications [73,74].
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6. Immunological Changes/Adaptation of Syphilis–HIV Coinfections Associated with
Treg-Cell

Syphilis has risen significantly in MSM, particularly in HIV-infected patients at
supreme risk for syphilis [75]. Tp and HIV-1 are bidirectionally mutualistic, enhancing
disease projections reciprocally in coinfected people, and syphilis patients are 3- to 5-fold
more likely to acquire HIV if exposed to the virus via sexual intercourse [75–77]. Work
published by Guo N et al. in 2019 showed the phenotypic and immunological variations
in monocyte subsets and Tregs, and discovered the links between these cell types during
Tp/HIV-1 coinfection. They applied cell-staining techniques to find alterations in monocyte
subsets, Treg-cells, and any connections between these cells. In their identifications, the
frequency of classical monocytes was higher in the rapid plasma regain (RPR+) group
than in the healthy controls (HCs) and the chronic HIV-1 infection (CHI) plus RPR+ (CHI
and RPR+) group. The frequencies of Foxp3+, CD25+, CD45RA+, and Foxp3+, Helios+,
CD45RA+ Treg-cells were notably higher in the RPR+, CHI, and CHI and RPR+ groups
than in HCs. However, the frequency of CD45RA+ Treg-cells was lower in the CHI and
RPR+ group than in the CHI group. The frequencies of Foxp3+, CD25+, CD45RO+, and
Foxp3+, Helios+, CD45RO+ Treg-cells were shorter in the RPR+, CHI, and CHI and RPR+
groups than in HCs. The frequency of intermediate monocytes was negatively correlated
with CD45RA+ Tregs and positively correlated with the frequency of CD45RO+ Treg-cells.
These results showed that intermediate monocytes control the differentiation of Treg-cell
subsets in Tp/HIV-1 coinfection. Their findings provide new insight into an immunological
mechanism that involves monocytes/Tregs in HIV-infected individuals with syphilis [76].
However, it is still unclear as to the immunological modifications in monocytes and Treg-
cells, and the links between these cell types during syphilis infection among HIV-1-infected
MSM [76,78].

7. Multiple Neurosyphilitic Maladies
7.1. Neurosyphilitic Meningitis or Syphilitic Meningitis/Meningovascular Syphilis (MVS)

Chronic and long-term disease and clinical outcomes of infection of the CNS by Tp
can occur during any stage of neurosyphilitic meningitis. Approximately 30% of untreated
syphilis cases have led to complications in neurology and psychiatry for the last two cen-
turies [15,20]. Nevertheless, modern NS epidemiology is still not well-described because of
the lack of data based on population. NS infections have been primarily identified in HIV
patients [79], but there have been cases in non-HIV patients. For example, these patients
have had both symptomatic and asymptomatic syphilis, and the form of meningitis, with
space-occupying gummas, vasculitis, strokes, cranial neuropathy, myelopathy, dementia,
and seizures is hard to diagnose [79,80]. Asymptomatic neurosyphilis (ASN) is a type of
CNS infection in which patients have confirmed syphilis and have a CSF pleocytosis event
(an increase in WBC count in the CSF) but are neurologically asymptomatic. ANS patients
with constant infection or without medication are at high risk for disease progression
toward symptomatic neurosyphilis (SNS; 35% of ANS patients evolve SNS with the natural
progression [81]), notably with symptomatic syphilitic meningitis, MVS, intracranial gum-
mas, general paresis, and tabes dorsalis [20]. Syphilitic meningitis comprises meningeal
irritability and increases intracranial pressure, causing headaches, back pain, neck pain,
vision problems, nausea, and vomiting before antibiotic discovery. According to Merritt,
CSF was classified into three primary forms—hydrocephalic, vertical, and basilar—to
classify syphilitic meningitis [16]. Untreated syphilis appears in the secondary and later
stages of the infection and implicates all nervous system elements with brain disorders,
spinal cord, and cranial and peripheral nerves. With the arrival of antibiotic treatments,
NS has relocated its clinical demonstration from chronic and delayed forms, including the
CNS parenchyma, to an older way to affect the meninges and CNS blood vessels. These
are an unusual pathological representation of inboard NS, MVS, or meningovascular neu-
rosyphilis [15,16,82]. MVS is a distinct form of NS described by a meningo-encephalopathic
syndrome with superimposed cerebrovascular or myelovascular incidents and a fusion
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of chronic syphilitic meningitis and arthritis. MVS is an infection associated with inflam-
matory arteriopathy, causing outgoing damage to the blood vessels of the leptomeninges,
brain, and spinal cord, leading to necrosis [83,84]. MVS can lead to dementia responsible for
vascular dementia or hydrocephalus by clogging CSF permeation. The reason for syphilitic
dementia is paretic neurosyphilis (or dementia paralytica, or general paralysis of the insane,
or general paresis) [85]. Recent cases of MSV are mentioned in Table 2.

7.2. Syphilitic Myelitis (SM)

Syphilitic myelitis (SM) is a rare manifestation of NS caused by Tp. One-third (more
than 30%) of early syphilitic patients have CNS manifestations. Recently, the reemergence
of syphilis has been seen together with an increment in NS. Nevertheless, symptomatic
syphilis, particularly SM and its clinical symptoms, has been occasionally mentioned, and
fewer cases have been registered. Initial treatment and diagnosis are vital, as it demonstrates
that myelopathy has a curable and perhaps irregular cause [1]. Unfortunately, most cases
of SM are misdiagnosed, and there are not many research data available. Some articles
describe its clinical manifestations and neuroimaging characteristics, but there are no
consistent data on prognosis with long-term follow-up [86,87]. Cases of SM are mentioned
in Table 2.

7.3. Cerebral Syphilitic Gumma (CSG)

A gumma is also known as granuloma and is formed during inflammation (immune
response against foreign particles or microorganisms). Macrophages do not eliminate
chronic disease [28,88]. If the pathogens can be removed, the gumma’s progression can be
comprehensively cellular but can sustain growth if its antigens persist. The surrounding
epithelial cells vary in lymphocytes in number, macrophages, plasma cells, fibroblasts,
and connective tissue scarring, depending on the lesion’s progress stage. The gumma
is a highly typical lesion of tertiary syphilis [28] that guides CSG as a demonstration of
NS and is recognized to be infrequently included in the brain (first reported by Botalli
in 1563 [89]). Due to its rare and miscellaneous features on imaging, CSG is mostly
misdiagnosed, is comfortably confused with a brain tumor, and can be seen on any body
part; misdiagnosis makes CSG identification difficult [90–92]. CSG is the consequence of the
cellular immune response secondary to Tp invasion. Generally, it grows from the dura and
pia mater (cerebro meningeal). Macroscopically, CSG is discovered as soft, well-defined
lesions. It is considered a nonspecific, chronic inflammatory infiltrate, and the formation
of an inflammatory “tumor-like” granulation possessing lymphocytes and plasma cells;
abnormally, CSG intracerebral determines the problem of differential diagnosis with a
malignant cerebral tumor [18,92]. Secret invasion, headache, nausea, and vomiting are
the general clinical manifestations of CSG. The pathological signs of CSG are similar to
tuberculosis, which comprises sizeable inflammatory intrusion of lymphocytes, plasma
cells, and central caseous necrosis edged by epithelioid cells, multinucleated giant cells,
and lymphocytes with intimal hyperplasia and peripheral arterial inflammation. CSG
can be separated into multiple intracranial lesions growing from the meninges, with
asymmetrical growth and surrounding edema that nearly resembles a brain tumor. CSG is
infrequently misdiagnosed as a brain neoplasm, which requires surgery [89]. Cases of CSG
are mentioned in Table 2.

7.4. Atypical Behavior and Neuropsychiatric Symptoms in NS

Neurology and psychiatry both fight to employ disorders that evade different clas-
sifications. NS is one of the most extensive and deadly forms of degenerative mental
complications. Neuropsychiatric symptoms of syphilis habitually occur in the late stage,
representing tertiary syphilis, presumed as general paresis, also known as general paralysis
of the insane paralytic dementia or meningoencephalitis—an outcome of direct Tp invasion
into the brain [93–97]. Initial symptoms comprise memory loss, irritability, insomnia, and
personality change. A developing dementia malady can grow over many years and lasts as
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confusion and disorientation, loss of judgment, seizures, and psychiatric symptoms, such
as depression, mania, and psychosis. A physical check-up can be expected, but patients
generally display various complications. Among them are dysarthria, hypomimia, limb
hypotonia, facial and limb intention tremor, hyperreflexia, tabes dorsalis, sensory ataxia,
and Argyll Robertson pupils, a small number of these mimic early-onset Alzheimer’s
disease [98–100]. Cases are mentioned in Table 1.

Table 1. Reported cases of multiple disorders in neurosyphilitic patients.

Complication Disorders Case Report/References

Neurosyphilitic Patients

Attention Deficit Disorder [101]

Anger/Violent Behavior [102–104]

Anxiety [102]

Bipolar Disorder [105]

Behavioral/Neuropsychiatric Changes

Complex Condition [106]

Drug/Alcohol [107–109]

Dissociative Disorder [110]

Hearing Disorder [111–113]

Hormonal Disabilities [114,115]

Memory Loss and Dementia [116–118]

Psychotic Mania and Hypomania [105,119]

Panic Disorder

Personality Disorder [104]

Post-Traumatic Disorder

Sleep Disorder/Insomnia [19,120]

Suicidal Thoughts [102]

Traumatic Brain Injury

Trigeminal Nerve Dysfunction [121]

Weight Loss [122]

Table 2. Recent reported specific NS complications cases (MRI—Magnetic resonance imaging, CT—
Computed Tomography).

Types of
Neurosyphilis Age/Sex Symptoms Treatment/Recovery References

NS Meningitis, MVS,
SM

31/M
Paresis of upper extremities,

Predominantly in the right arm
Intense holocranial headache

Crystalline Sodium Penicillin [79]

28/M Low CRP (10 mg/L, reference value: <8 mg/L) with
HIV-positive Benzyl-penicillin [123]

43/M Frontal headache, fever, nausea, vomiting, HIV-positive
with tuberculous meningitis Antiretroviral therapy [82]

49/M

Recurrent strokes in the left middle cerebral artery
territory; dysphasia, higher cognitive deficits, motor
deficits, and subsequent infarcts in the right middle

cerebral and anterior cerebral artery territories manifest
with seizures and behavioral and social problems

Injection procaine penicillin,
1.8–2.4 million units

intramuscularly;
Probenecid, 500 mg orally

[124]

24/F Severe and persistent headache, migraine headache,
significant dizziness, vertigo

Benzathine Penicillin G
intramuscularly, 1.6 million

units
[80]

43/F Rash of legs, numbness, and weakness in the bilateral
feet; lesions in the cervical and thoracic cord

Penicillin G intravenous, 24
million units [86]

19 patients included M
and F Sensory disturbance, paraparesis, urinary retention Penicillin [1]

29/F Progressive bilateral lower extremities’ numbness and
weakness

Penicillin G, 4 million units;
dexamethasone, 5 mg [87]

63/M
Progressive lumbago, weakness of both lower

extremities, bilateral lower-limb weakness with motor
power of 4–5, lower-limb hyporeflexia

Ceftriaxone,
Methylprednisolone [125]
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Table 2. Cont.

Types of
Neurosyphilis Age/Sex Symptoms Treatment/Recovery References

CSG

62/M Speech disturbance, medical history of hypertension
The clinical diagnosis was a

glioma; patients admitted for
the surgery

[126]

52/F Headache with intensity from very mild to severe
attacks and dizziness; presence of a metastatic tumor

Water-soluble penicillin-G
administered intravenously [91]

44/M Bisexual
General fatigue and rash, HIV-positive; later showed
headache, nausea, and vomiting; brain mass lesion

detected in the right temporal lobe through MRI

Oral amoxicillin; later
ceftriaxone intravenous, 2 g [127]

45/M
Severe headache, left-sided weakness

MRI identified a small lesion near to sagittal sinus in
the right frontal lobe; surgery was performed

Intravenous penicillin,
2.5 million units;

intramuscular injections of
benzathine penicillin,

2.4 million units

[90]

59/F
Dysarthria showed a mass in the brain; after surgery,
fever and rash were reported with infiltration on the

chest
Ceftriaxone [128]

50/F

The MRI and CT scan identified headaches and speech
disturbances (mixed aphasia), left parietal injury, and
later left temporal recurrence; the last relapse of the

tumor lesion in the left temporal region was identified
with MRI

Intravenous benzathine
penicillin [92]

6 Patients between
32–61/4M-2F

All 6 patients exhibited 10 lesions, nine of which were
located in the cerebral hemisphere, primarily in the

grey matter identified by MRI neuroimaging; surgery
was performed

High dose of penicillin
after surgery [129]

52/F

MRI identified intermittent headache lasting for
5 months, vomiting, history of hypertension and
hyperlipidemia, multiple nodules with evident

perilesional edema in the right temporal lobe; severe
edema in the brain tissue of the right temporal lobe was

also observed; surgery was performed

Penicillin treatment,
18 million units [89]

58/M

Extradural cervical spinal syphilitic gumma; the
epidural lesion was removed via a posterior approach;

brain MRI revealed a cerebro-meningeal syphilitic
gumma

An antibiotic regime based on
aqueous penicillin G [18]

66/M

MRI identified affective disorder, hypomnesia,
convulsion, cerebral swelling, hyperintensity in the

cortex/subcortex, and multiple lacunar cerebral
infarctions. The presence of a pial arteriovenous fistula

was also detected by CT angiography

Diazepam was used for
convulsion and antibiotic

therapy
[130]

46/M

Numbness of bilateral lower limbs, lower back pain,
irregular defecation, homogeneous peripheral

enhancement, and the intramedullary nodule was
identified at the T7 level with extensive thoracic cord

edema; MRI syphilitic gumma was considered

Penicillin G [131]

47/M

History of diabetes mellitus, the patient had
generalized seizures, multiple brain tumors were

identified through MRI, and multiple cerebral syphilitic
gummas were diagnosed

High dose of penicillin [132]

8. Advantages of Bioinformatics (BI), Computational Neuroscience (CN), and
Neuroinformatics (NI) in Neuroscience

Bioinformatics (BI) is a research area where biologists, computer scientists, physicians,
mathematicians, and chemists blend their skills and fetch various fields, such as molec-
ular biology, genetics, microbiology, mathematics, chemistry, biochemistry, physics, and
informatics. The communication of these fields helps resolve distinct tasks to discover
new evidence in complex biological systems to justify health organizations to better com-
prehend life and disease mechanisms [133–135]. BI was initially defined as comparing
and databasing the genome (DNA), individual molecules such as RNA and proteins, and
modeling the structure and function of existing and newly made proteins. It is a biological
concept in terms of biological molecules (DNA, protein). It applies “Information Tech-
nology (IT)” obtained from fields on a large scale—e.g., applied mathematics, computer
science, and statistics—to better perceive and assemble the information allied with these
molecules. In short, BI manages information systems for molecular biology and possesses
diverse uses, which lead to several research areas [128–130]. Further outbreaks in BI—for
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example, the vast amount of data generated after the advent of next-generation sequencing
technologies and large-scale investigation of the genomes of several microorganisms to
humans—formed comprehensive transformations in biology to deem multiple dissimilar
complications in humans caused by diverse microorganisms [136–138].

The human brain is a complex and biological organ ranging from 3 pounds to 1.4 kg in
weight (2% of total body weight) that expends almost 20% of oxygen with a high energy re-
quirement, and its temporal behavior corresponds to development, structure, and function.
Coding and automation are crucial to model, analyze, and understand the 86.1 ± 8.1 billion
neurons. The non-neuronal glial cells and the human brain’s neuronal networks contain
approximately 100 trillion (excitatory and inhibitory synapses) connections. Almost 13%
of global disease sets are established by neurological disorders of the human brain (more
than the cardiovascular problem representing only 5% of global disease sets). Physiologists,
theoretical and experimental physicists, mathematicians, computer scientists, engineers,
molecular biologists, physicians, clinicians, BI, psychologists, and philosophers, among
others, are all involved in neuroscience study today [24,139].

The computational neuroscience (CN) area has evolved quickly in the last two decades.
CN comprises computational (theoretical and mathematical) techniques to comprehend
neural events at divergent hierarchical levels of neural organization, as well as how does
the human brain make calculations [140]? CN is primarily reliant on biology, physics,
mathematics, and computation- and direction-type issues. At the same time, the archival,
mounting, and combining of the large amount of data generated by clinical records, sci-
entific articles, and unique databases are drifted by “Neuroinformatics (NI)” [24]. NI is
an exceptionally interdisciplinary area of study that engages several techniques and per-
spectives from the area of computer science, information systems, and integrative biology
to identify, analyze, digest, simulate, and compute large-scale neuroscientific data [141]
and thus works as an interface between computer science and experimental neuroscience.
Although, in a broader scenario, NI includes neuromorphic engineering and computational
neuroscience and is connected with software tools and ontologies; database integration,
sharing, transformation, visualization; and quantification of neuroscience research. De-
spite the pioneering rising start from the 1990–2000 “Decade of the Human Brain” [142],
the informatics organization’s infrastructure for neuroscience constantly needs adequate
advancement. The exceptional diversity of neuroscience, representing multiscale and
multimodal study direction by brain complexity and interspecies diversity, has reduced
information management culture and data sharing policies. However, these scientific
complexities and data heterogeneity challenges make the integration of informatics more
imperative for neuroscience [24,143].

9. Application of Computational Neuroscience (CN) and Neuroinformatics (NI) and
Their Benefits in Brain Complications

Computational neuroscience (CN) reflects the perspective of making the hypothesis of
brain functions about the information processing quality of structures that make up nervous
systems. The CN is the analytical study of the brain to discover the theory and procedure
that escorts the growth, organization, information processing, and mental functions of
the nervous system [24,144]. The CN techniques advance our awareness of brain function
and assist in converting the obtained knowledge into technological applications from a
scientific viewpoint to identify how the brain thinks. Currently, CN can also specify the
brain circuits or network study to determine how the human brain processes multiple
actions, as maintained by precise information and properties of structural and functional
activities with the assistance of computational strength [24].

Artificial intelligence (AI) underpins cellular and synaptic activities and the biophysi-
cal underpinning of neuronal computing and algorithms. AI refers to a computer system’s
ability to perform tasks that would generally need human intelligence. In contrast, artificial
neural networks (ANN) are computational models built on many small neural units that
are utilized in computer science and research (artificial neurons). Roughly analogous to the
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observed behavior of a biological brain’s axons, the field has provided systemic and com-
putational abilities to simulate artificial human or animal brain models. In doing so, it aims
to comprehend how the brain functions and understand cognition and behavior through
the inspection of neuronal data by Artificial Brains [145,146]. Neuroinformatics (NI) plays
an essential part in neuroscience and clinical research for managing scientific questions
and practicing medicine. NI facilitates the secure storage of neuroscience databases and
is linked to the development of scientific tools and computer models for data exchange,
knowledge integration, and big data analysis in neuroscience [24,136]. NI is also thought to
hold more conventional BI and recently renowned computational systems’ biology research
for neuroscience. The NI area has grown expeditiously to expand present-time information
and communication technology (ICT)-based tools. Briefly, an expansion in NI incorporates
(a) the accumulation and organization of neuroscience data (for both wet and dry labo-
ratories) and the development of a knowledge foundation; (b) workflow enlargement to
manage data, metadata, and other research-related documents; (c) generation of multipur-
pose tools, automated data acquisition, analysis, and visualization; (d) the invention of
tools and mounting depositories for data distribution; and (e) the advancement of tools
for the hypothesis, computation, and simulation of a neural event [23]. In silico modeling
in NI may create a new, reciprocal tool for chemical design and potential neurotoxicity
predictions (damage to the brain or peripheral nervous system by exposure to natural or
artificial toxic substances) and in neurotoxicity, screening to assist in clarifying the early
speculations attained in vitro and in vivo. Certified in silico models can be applied in
pharmacological target recognition to help connect with in vitro and in vivo studies and,
finally, to establish safe chemicals and powerful therapeutic strategies [23] in neurological
disorders such as NS complications.

10. Computational Neuroscience and Neuroinformatics in
Neurosyphilis Complications

One of the most complex organs in humans is the brain, and the unusual brain behavior
in psychiatric or mental illness is still comprehensively unknown. Despite having intended
advancements in diagnostics and therapy in several medical areas in the last few decades,
our insights into mental deformation are limited and outdated [141]. The bacterium Tp
subsp. pallidum, responsible for syphilis, can cause several complications in the CNS
and can be recognized in CSF in the early phase of the complication. Neurosyphilis can
arise at any time from the first infection, as explained above, with several life-threatening
severe psychiatric consequences in diverse brain parts later, for example, in early NS
complications—meninges, cerebrospinal fluid, cranial nerves, and vasculature—and late
NS complications—the brain with spinal cord parenchyma has been reported [17,147]. One
of the milestone studies by Lukehart et al. [37] illustrated that approximately 12 out of
40 patients had neuroinvasion proof in the early phase of the disease compared with the
late phase [17,37]. However, CSF examination is still the central component [148]. CN and
NI are cutting-edge neuroscience research fields to integrate computer science, physics,
and applied mathematics. In this review article, we explain multiple new CN techniques,
as explained above. NI techniques (which are already in use for several mental illnesses)
can be applied to various NS complications to better understand them. These techniques
may also help researchers generate new theories, create computational and simulation
environments for modeling, and better understand NS complications. They may also help
develop tools for data acquisition, exploration, visualization, and distribution of NS.

10.1. Artificial Intelligence (AI)-, Machine Learning (ML)-, and Deep Learning (DL)-Based
Techniques for Neurological Maladies

For the past several decades, medical institutions and healthcare centers have gener-
ated significant data, for example, medical imaging (MI) data, genomic information, and
free text through screening applications. Exploring these types of data has transformed
the previous techniques applied by medical researchers, doctors, and brain scientists to
better understand and distinguish brain disease diagnoses from the importance of therapy
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behaviors. However, this remarkable outcome generated in recent years has increased the
volume and complexity of data. Several old computer-based programs and algorithms
are not sufficient to handle these datasets [149,150]. In the present scenario, AI (Figure 4)
became a significant computer science area and has been massively applied in complex
data analysis and in identifying significant and influential connections in given datasets.
In neurological complications and the brain supervision domain, AI has been used to
innovate diverse applications, accomplished outstanding outcomes, and unlocked various
perspectives for disease diagnosis, analysis, and outcome, especially in brain research and
related complications [151,152]. Thus, AI approaches have fascinated brain research and
CN in recent decades. Amidst these techniques, ML (Figure 4), a subapproach of AI, has
gained experience, identified and categorized unknown conditions, learned from earlier
experiences using data, and became a famous and comprehensively applied technique to
understand brain complications. Currently, DL (Figure 4)—another subarea of AI—has
also reformed several neurological assignments. Exclusively, DL algorithms have been
enhanced and have become an essential technique in computational vision from other
approaches to diverse brain-related image analysis [151,153].
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10.1.1. Computational Models and BBB Permeability Detection in NS

Outstanding computational technique growth has increased the biological and chemi-
cal data by a vast amount and played an essential role in chemical and biological research.
ML and DL are branches of AI that use mathematical algorithms and statistical strategies
to deal with many complications and problems, and the continuous development of ML
benefited drug discovery by focusing on the identification, analysis, and prediction of
the physicochemical character and biological behavior of the compounds [154]. The BBB
is a part of the neurovascular unit (NVU) composed of pericytes, glial cells, neuronal
cells, and endothelial cells (ECs) and works as an interface between the brain and CNS,
transports essentials (explained above) to the brain cells, and protects the brain against
the neuroinvasion of pathogens [155]. Tp’s extremely invasive character is demonstrated
by the spirochetes’ extensive vascular dissemination early in the disease’s course, with
spirochetes crossing tissue barriers and the highly protected blood–brain, placental, and
retinal barriers. A recent study published in 2019 by Wang F. et al. stated that high levels of
HbA1c (5.7–64%) may modify the ordinary course of syphilis by increasing the permeability
of the BBB and speeding up the progression of NS in syphilis patients with high HbA1c
levels. However, because syphilis can mimic any ailment and hence go undetected, it might
cause a delay in receiving adequate treatment. Rather than being a historically significant
illness, syphilis continues to pose fresh diagnostic and treatment obstacles [156].

A recent study showed that 98% of micro and macro drug molecules could not pass
over the BBB. This characteristic points to the direct drug-likeness of a molecule. Thus,
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novel in silico computational tools are needed in the CNS drug search process that could be
less expensive and clinically compatible and can significantly benefit traumatic brain disor-
ders (TBI) and neurological complications [154,157,158]. In recent years, several research
works on the BBB have been published. For example, a work published by Chai et al. in
2014 [159] demonstrated that rabies virus infection with the laboratory-attenuated rabies
virus (RABV) helps in brain drug penetration, and their research has guided scientists for
new drugs in BBB permeability [154,158]. An enormous quantity of research related to
the BBB and in silico models has been excellent. The in silico models (Figure 5) identify
molecular properties and activities in enhancing the drug discovery process. The primary
purpose of in silico models for BBB is to use ML techniques such as support vector machines
(SVM) and artificial neural networks (ANN). A recent study published by Singh et al., 2020,
developed BBB classification models based on the machine learning algorithm, random
forest, multilayer perception, and minimal sequential optimization to enhance the perme-
ability capability of the BBB by using 605 molecules in a large, curated data set with two
categorization thresholds. A training set of 479 compounds for threshold-1, 432 compounds
for threshold-2, and a test set of 126 compounds for threshold-1 and 110 compounds for
threshold-2 were created from the data set. The consensus QSAR methodology was applied
to generate and predict BBB models. The consensus model produced better results than
individual models and outperformed other available techniques. The BBB compound sub-
structure study found a list of fragments that were more prevalent among BBB compounds
than among BBB–compounds. The concord BBB classification model generated in their
study was good, and it could be beneficial for the early screening of drugs in discovery
projects to determine their likely permeability across the BBB [160].
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vector machines (SVM) and artificial neural networks (ANN). A recent study published 
by Singh et al., 2020, developed BBB classification models based on the machine learning 
algorithm, random forest, multilayer perception, and minimal sequential optimization to 
enhance the permeability capability of the BBB by using 605 molecules in a large, curated 
data set with two categorization thresholds. A training set of 479 compounds for 
threshold-1, 432 compounds for threshold-2, and a test set of 126 compounds for 
threshold-1 and 110 compounds for threshold-2 were created from the data set. The 
consensus QSAR methodology was applied to generate and predict BBB models. The 
consensus model produced better results than individual models and outperformed other 
available techniques. The BBB compound substructure study found a list of fragments 
that were more prevalent among BBB compounds than among BBB–compounds. The 
concord BBB classification model generated in their study was good, and it could be 
beneficial for the early screening of drugs in discovery projects to determine their likely 
permeability across the BBB [160]. 
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Several studies have been reviewed in BBB permeability detection through ML and DL
algorithms, mainly in image diagnosis when predicting brain drug penetration [154,159]
and could also apply for Tp brain invasion.

10.1.2. Computational/In Silico Approaches Based on AI for NS Meningitis or SM

Meningitis is a severe inflammation of the meninges caused by pathogens (mostly-
bacteria and viruses). Intense symptoms include fever, headache, neck stiffness, altered
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consciousness, and vomiting if untreated. Due to its sensitivity, it depends on abnormalities
that can affect its activity. Meningitis infection is an example of an abnormal meningeal
layer [161]. As explained above, NS meningitis or SM—a rare clinical outcome of infection
of the CNS by Tp—can occur during any stage of syphilis and leads to several complications
(Table 3); a minimal number of SM cases have been documented. In this section, we
explain methods based on AI, and the existing model was used to simulate meningitis
caused by various pathogens and can be beneficial to better understanding NS meningitis
or SM. Mostafa Langarizadeh et al., 2015, developed the system based on fuzzy logic
and a technique for order performance by similarity to an ideal solution (TOPSIS—89%
identification precision, 92% singularity, and 97% individual sensitivity) for meningitis in
adults. The system was developed to elucidate meningitis with high-level discovery [162,
163]. The Bacterial Meningitis Diagnosis System (BMDS) is a mathematical model system
established by N. D. Oye and Thomas., in 2019, for diagnosing bacterial meningitis using
L. L. MATLAB R2015a, using fuzzy logic to assess bacterial meningitis. Their research
aims to use fuzzy logic methods to simulate and construct an expert system for diagnosing
bacterial meningitis. The researcher engaged in a series of tasks to achieve the stated
goal. Initially, all input variables (symptoms) needed to establish the presence of bacterial
meningitis in a patient were determined through interviews with the domain expert,
who also defined the system input variables’ membership degree. The system employed
the triangle membership function. The triangle fuzzifier was used to fuzzify the input
variables, and the fuzzy output was used as the inference input. Mamdani is the inference
type. The logical AND operator combined the preceding IF and the subsequent THEN
(IF–THEN statements) to build 177 rules that are triggered to produce an output, which
became the defuzzifier’s input. The system employs the centroid defuzzification approach,
with the system’s output being a graph displayed on the surface viewer. Depending on
the input data, different graphs are displayed. A mathematical model was created to
determine whether a patient had bacterial meningitis or not. MSSQL Server Management
Studio 2012 was used to create the knowledgebase component containing all required data.
Microsoft Visual Studio 2015 and the C# object-oriented language were used to develop
the expert system for the diagnosis. The system’s features include a home page with three
menus, a patient registration page, a patient diagnostic page, a data page with a tabular
representation of the patient’s information, and reports with graphical representations
depending on gender, age group, and LGA of residence. This study developed a fuzzy
model for bacterial meningitis detection and implemented it as a system named the Bacterial
Meningitis Diagnosis System (BMDS). BMDS will go a long way toward assisting medical
staff in saving the lives of bacterial meningitis sufferers. BMDS can assist medical workers
in maintaining a computerized patient record, analyzing the record, and generating reports
in a graphical format for easy study. Any approved medical personnel or paramedical
workers can utilize the system [164].

Abubakar A. M. et al., 2019, developed an artificial intelligence (AI)-based method
to diagnose meningitis. This study uses image processing techniques and an artificial
neural network (ANN) to demonstrate a recently created system based on the AI method
for the automatic diagnosis of meningitis from Gram-stained sputum smear microscopy
pictures. Blood samples were obtained from the patient and placed in a special dish for
microorganism growth observation, mainly bacteria, to develop an intelligent method of
meningitis diagnosis using ANN employing image processing techniques. Meningitis
was also examined using imaging data extracted from patient cerebrospinal fluid (CSF)
samples. Due to Gram-staining, meningitis bacilli were segmented by pixel intensity value
using a cascade adaptive-threshold-based technique. A multilayer (ML) ANN with scaled
conjugate gradient descent backpropagation training approach was utilized to classify
the presence or absence of TB bacilli in the preprocessed input image. The system was
simulated using MATLAB image processing and Neural Network Toolboxes. The ANN
classifier had a mean squared error (MSE) of 0.025 and 94.7 percent accuracy. These findings
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show that image processing can aid in detecting meningitis bacilli in Gram-stained CSF
smear samples [165].

In 2019, Zaccari K. et al. developed a machine learning (ML) approach using multiple
algorithms such as adaptative boosting (AdaBoost), decision tree, gradient boosting, K-
nearest neighbors (KNN), logistic regression, random forest, and support vector machines
(SVM) to identify meningitis in patients in Sao Paulo, Brazil. Their decision tree algorithm
was the best, with 94.56% and 96.18% accuracy for the training and testing data, respectively.
The outcomes showed valuable help to doctors in early meningitis diagnosis [166]. In 2020,
an open and coordinated clinical choice emotionally supportive network was developed
by Viviane M. L. et al. to examine meningitis based on tree-based machine learning, also
known as decision trees, with 88% detection accuracy in patients [167]. Work published
by Solomon O. A. et al. in 2020 developed an AI-based method known as Bayesian
belief network (which gains experience based on experience). They simulated a model to
identify patients’ meningococcal meningitis and serogroup types. Their model had 99.99%
prediction accuracy with 97.12% susceptibility to meningococcal meningitis. The model
also showed 95.42% sensitivity with Neisseria meningitidis serogroup types A, B, and C [168].

10.1.3. Computational/In Silico Modeling for CSG

A gumma (CSG) is also known as granuloma and is formed during inflammation. It
is a soft, granulomatous, tumorlike lump that occasionally becomes evident during late
syphilis. It primarily exists under the skin and mucous membranes. It can also be seen in
bones, nervous systems, multiple tissues, and organs, mimicking a metastatic tumor, also
known as primary cancer or primary tumor. CSG is misdiagnosed and often mistaken for
a brain neoplasm, leading to surgery [91,127]. Several specialists, researchers, clinicians,
and doctors have been trying to predict cancer for many decades based on their personal
experiences. After the advent of the digital information period, most scientists and clinicians
acknowledge the power and benefits of AI-based techniques (ML and DL) as decision-
making supporting tools and techniques, which have been applied to the diagnosis and
classification [169]. Recently published work by Huang et al., 2019, used AI to distinguish
the optimal prognosis index for brain metastases by ML. In 700 cancer patients with brain
metastases, they developed mutual algorithm information and a rough set with particle
swarm optimization (MIRSPSO) approaches to forecast a patient’s prognosis with the most
remarkable accuracy. A total of 700 cancer patients with brain metastases were enrolled in
this trial, and divided into 446 training and 254 testing cohorts. To assess the performance
of cancer prognosis for each patient, 7 features and 7 prediction methods were used. The
area under the curve (AUC) = 0.978 ± 0.06 forecasts the patient’s prognosis with the
highest accuracy using MIRSPSO techniques. MIRSPSO outperformed the classic statistical
methods of sequential feature selection (SFS), mutual information with particle swarm
optimization (MIPSO), and mutual information with sequential feature selection (MISFS)
in terms of AUC by 1.72 percent, 1.29 percent, and 1.83 percent, respectively.

Moreover, in terms of accuracy, sensitivity, and specificity, the clinical performance of
the best prognosis outperformed the conventional statistical technique. Clinical applications
must find the best machine-learning approaches for predicting overall survival in brain
metastases. Machine learning has a far greater accuracy rate than traditional statistical
methods and could be a realistic and convenient way to find optimum index markers for
clinical usage [169,170].

ML-based techniques for predicting brain metastases have become crucial in clinical
applications [170]. AI develops technological systems that can solve complex tasks in
systems that would traditionally need human intelligence.

Simeone Marino and colleagues devised a computational biology method in 2015
to determine how macrophages influence bacterial control, polarization, and function
in granulomas during mycobacterium TB infection. They created a computational tool
in granulomas to explore the mechanisms that drive macrophage polarization, function,
and bacterial control. A “macrophage polarization ratio” is a metric to understand how
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cytokine signaling translates into the polarization of single macrophages in a granuloma,
which regulates cellular functions such as antimicrobial activity and cytokine production.
The created approach determined the macrophage polarization ratio to understand how
cytokine signaling defines single macrophage polarization in a granuloma, which governs
cell functions and produces antimicrobial cytokines. After expanding the macrophage
polarization ratio to the tissue level, they dubbed the granuloma polarization ratio and
explained the mean polarization value for complete granulomas. Their findings show
that NF-kB signaling is a more plausible therapeutic target for macrophage polarization
during the early stages of infection. They used experimental data from TB granulomas in
nonhuman primates to create a computational model that predicted two new and testable
hypotheses about macrophage profiles in TB aftermath. First, the temporal dynamics of
granuloma polarization ratios are indicative of granuloma outcome. Second, short NF-kB
signal activation intervals describe stable necrotic granulomas with low CFU numbers
and minor inflammation. These findings imply that NF-kB signaling dynamics could be
used as a therapeutic target to enhance M1 polarization early in infection and improve
outcomes [171].

AI techniques are useful in specific gene mutation discovery through pathological tu-
mor images. For example, New York University School of Medicine researchers developed
DL techniques to analyze pathological images of lung tumors. The group’s DL technique
can determine the differences between two different lung cancers (adenocarcinoma and
squamous cell carcinoma) with high accuracy and can also discover gene mutations via
images [172]. The future model mentioned above and techniques based on AI and in silico
computation will help innovate new CSG techniques and systems. The existing AI models
are mentioned in Table 3.

Table 3. In silico models for multiple brain disorders based on AI, AL, and DL.

Different Neurological
Complications

In Silico Model,
Systems/Techniques Motive/Brain Complications Reference

Meningitis

Fuzzy expert system Bacterial and aseptic meningitis [163]

Fuzzy cognitive map with TOPSIS Assessment of meningitis ratio in
adults

Based on decision trees Meningitis diagnosis [167]

Based on machine learning algorithms Prediction of meningitis outbreaks in
the Nigerian population [161]

Based on the genetic algorithm and
decision tree

Distinguishing between bacterial and
viral meningitis [173]

Mathematical model Meningococcal meningitis [174]

Mathematical modeling Bacterial meningitis transmission
dynamics with control measures [175]

Cancer/Gumma/Granuloma
Mining prognosis index based on AI

and ML
To identify the optimum prognosis

index for brain metastases [170]

Deep learning Lung cancer histopathology images [172]

Atypical Behavior Bayesian model To diagnose psychiatric disorders

Artificial neural networks using
cerebral perfusion SPECT data To identify Alzheimer’s [176]

Dynamical bifurcation model based
on learned expectation and

asymmetry
Bipolar disorders [177]

Deep neural networks Anxiety [178]

Linear discriminant analysis based on
ML Depression [179]

Random forest Healthy aging [180]

Through ML text analysis Cognitive distortions [181]

In silico modeling based on support
vector machine Stress [182]

Multicenter ML Schizophrenia [183]
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10.1.4. In Silico Model and Techniques for Atypical Behavior and Neuropsychiatric
Symptoms in NS

Many brain research projects have been supported in the study to better understand
psychiatric disorders. Even though psychiatric disorders belong to brain science and
research, psychotherapists yet diagnose and treat patients with experiences instead of the
diseases’ pathophysiology [184]. As explained above, NS is one of the most extensive
and deadly forms of degenerative mental complications. Neuropsychiatric symptoms
of syphilis habitually occur in the late stage and demonstrate memory loss, irritability,
insomnia, personality change, and mimic Alzheimer’s disease. Recent work published by
Dariusz and his colleague in 2019 illustrated the ANN method to diagnose Alzheimer’s
disease by utilizing brain single-photon emission computed tomography (SPECT) data. The
sensitivity and differentiation studies were 93.8% and 86.1%, respectively, in Alzheimer’s
disease diagnosis [176]. Eduardo Nigri and Nivio Ziviani—professors at the Federal
University of Minas Gerais Department of Computer Science—and their colleagues released
a Deep Convolutional Neural Network, MRI-based computational model for Alzheimer’s
Disease Diagnosis in 2020. They proposed a different manner of explanation tailored to
the brain scan task. The Swap Test approach was employed in their research. It creates
heatmaps that illustrate the parts of the brain that are most symptomatic of Alzheimer’s
disease and provide interpretability for the model’s decisions in a format that physicians
can comprehend. The method was created especially for registered brain MRI scans, and
experimental findings utilizing an axiomatic evaluation suggest that the proposed method is
better for explaining Alzheimer’s disease diagnosis using MRI. According to their findings,
2D+C models have higher selectivity numbers, whereas 3D models have somewhat higher
continuity numbers. Furthermore, they discovered that the proposed Swap Test explanation
methodology identifies regions traditionally associated with Alzheimer’s disease diagnosis
by visually evaluating the results [185].

Several techniques have already been developed for psychiatric disorders, demon-
strating how AI techniques could help discover biomarkers for psychiatric disorders and
atypical behavior in patients. These techniques could be beneficial to treat and diagnose psy-
chiatric disorders related to NS. Detailed techniques are explained in Table 3 for psychiatric
disorder identification and treatment.

11. Conclusions

The central nervous system (CNS) plays an essential role in decision making and
communication. Formed by nerves, the brain, and the spinal cord, the peripheral nervous
system (PNS) manages to regulate and control every step of the daily routine. The CNS has
significant anatomic and cellular heterogeneity, and participates deeply in responding to
numerous brain functions and behaviors in disease and its pathogenesis during complica-
tions. However, acute variation in the brain condition due to inflammation symbolizes CNS
complications with neurological pathogens. Treponema pallidum subspecies pallidum was
identified almost 500 years ago, causing sexually-transmitted syphilis in people, and if it
goes untreated, can cause significant complications in patients. NS is known as the clinical
result of Tp infection of the CNS. Due to the lack of susceptible and specific diagnostic tests,
diagnosis and identification depend on the clinical conclusion, cerebrospinal fluid (CSF)
contrasts, and clinical decision. As there is no standardized and specific diagnostic, NS re-
mains challenging. This review article broadly explained NS, its various complications, and
recent identified cases. We have also briefly described BI, NI, CN, in silico models (based
on AI, ML, and DL), and their importance and applications. The existing or developed in
silico models and tools for various neurological complications with outstanding outcomes
help researchers, doctors, and scientists better understand the diseases. These models and
techniques may also apply to NS complications. They can lead to a better understanding of
NS and treat this life-threatening complication.
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