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Abstract: Proliferative lupus nephritis, which is diagnosed by renal biopsy, has significant impact on
the treatment choices and long-term prognosis of juvenile SLE (jSLE). Renal biopsies are however not
always possible or available, thus leading to an ongoing search for alternative biomarkers. This study
aimed to develop a clinical predictive machine learning model using routine standard parameters as
an alternative tool to evaluate the probability of proliferative lupus nephritis (ISN/RPS Class III or
IV). Data were collected retrospectively from jSLE patients seen at Selayang Hospital from 2004 to
2021. A total of 22 variables including demographic, clinical and laboratory features were analyzed. A
recursive feature elimination technique was used to identify factors to predict pediatric proliferative
lupus nephritis. Various models were then used to build predictive machine learning models and
assessed for sensitivity, specificity and accuracy. There were 194 jSLE patients (165 females), of
which 111 had lupus nephritis (54 proliferative pattern). A combination of 11 variables consisting of
gender, ethnicity, fever, nephrotic state, hypertension, urine red blood cells (RBC), C3, C4, duration of
illness, serum albumin, and proteinuria demonstrated the highest accuracy of 79.4% in predicting
proliferative lupus nephritis. A decision-tree model performed the best with an AROC of 69.9%,
accuracy of 73.85%, sensitivity of 78.72% and specificity of 61.11%. A potential clinically useful
predictive model using a combination of 11 non-invasive variables to collectively predict pediatric
proliferative lupus nephritis in daily practice was developed.
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1. Introduction

Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disease
with a juvenile onset (before the age of 18 years) in only 10–20% of all patients. Juvenile SLE
is associated with significant morbidity, mortality and long-term organ damage [1–3]. It is
a rare disease with an estimated incidence of approximately 0.3 to 2.2 per 100,000 children
years and a prevalence rate ranging widely between 3.3 and 9.7 per 100,000 children and
adolescents [3–7]. There are distinct variations amongst different ethnicities worldwide,
with the highest prevalence reported among the African American, Hispanic and Asian
populations [1,2,8–10]. In addition, children and adolescents with SLE present with more
severe disease predominantly affecting major organs and tend to run a more aggressive
disease course [11–16]. The clinical presentation of jSLE is also highly heterogeneous
with distinct differences when compared with adult-onset SLE. The organ systems more
commonly affected in jSLE include cutaneous, haematological, renal and central nervous
systems [1,2,4,17–20]. This higher prevalence of renal and neurological involvement in chil-
dren also accounts for the higher disease activity seen in jSLE, especially in non-Caucasian
populations [1,8,21,22].
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The kidneys are one of the major organs affected in both juvenile and adult forms of
SLE, and this affects up to 40–70% of all SLE patients. This renal involvement is correlated
with a higher morbidity and damage accrual, as well as mortality [1,12,17,19,23,24]. The
higher damage accrual in lupus nephritis occurs not only via glomerular and tubuloint-
erstitial lesions but also from vascular involvement [25]. Even a single episode of lupus
nephritis occurring in early life can result in podocyte and nephron loss, exacerbating
normal age-related nephron changes [25]. This in turn potentiates the risk of progression to
end-stage renal failure in about 15% of children with lupus nephritis [24]. Additionally, pre-
mature cardiovascular mortality has been reported in 10–26% of adult patients with lupus
nephritis, occurring as early as 5 years after diagnosis. Lupus nephritis is also associated
with progressive deterioration in the quality of life within 6–12 months after the initiation
of dialysis [25–28]. Therefore, early, prompt and optimal treatment of lupus nephritis is
essential to prevent further morbidities, the accrual of damage and possible mortality.

Current lupus nephritis treatment is primarily guided by the histopathological classifi-
cation of renal involvement according to the International Society of Nephrology, Renal
Pathology Society (ISN/RPS) [29,30]. Patients identified with proliferative lupus nephritis
(Class III and IV) generally have a poorer prognosis and are subjected to more intensive
immunosuppressive therapies [23,30,31]. Therefore, all patients with features suggestive
of renal involvement should undergo further investigations including a renal biopsy to
determine the exact nature and extent of the disease. Unfortunately, the indications for
renal biopsy, especially the amount of proteinuria, is yet to be determined for children,
although it is well established in adults [24].

In addition, access to renal biopsy or the corresponding histopathological services
may not be available to children in remote regions, low-income countries or communities
in conflict zones [32,33]. Renal biopsies may also be contraindicated due to inherent renal
defects such as the presence of only one kidney, or medical conditions with uncontrolled
hypertension or coagulopathy either due to disease or from concomitant drugs. Under
such circumstances, non-invasive predictive machine learning models will be an extremely
useful substitute to identify those with proliferative lupus nephritis who require the most
urgent or more aggressive immunosuppressive treatments. There have been some attempts
to develop such models amongst patients with adult-onset SLE, but the data remain limited
and such research is still lacking in juvenile SLE [34].

The aim of our study was to develop a predictive machine learning model to identify
jSLE patients with a significant risk of developing proliferative lupus nephritis. This
will facilitate early effective therapy and the avoidance of significant morbidity whilst
improving outcomes in the future. A robust predictive model will reduce the reliance on
invasive renal biopsy and would be especially crucial in poorly resourced countries without
access to such expertise.

2. Materials and Methods

This was a retrospective study conducted at the Pediatric Rheumatology Unit, Se-
layang Hospital, Selangor, Malaysia, which is currently the sole pediatric rheumatology
referral center for patients from the whole country. The records of all children with jSLE
seen at this center from January 2004 to December 2021 were reviewed. Patients were
included in our study if they were first diagnosed with SLE before the age of 18 years at
our center, fulfilled the Systemic Lupus International Collaborating Clinics (SLICC) criteria
retrospectively [35] and had a duration of follow-up of at least 6 months at our center. Data
was collated from the patients’ electronic medical records (EMR) and included demographic
data, date of onset of symptoms, date of initial SLE diagnosis, disease duration, clinical
features (present or absent) and laboratory findings (normal or abnormal) at diagnosis, and
renal biopsy results.

Ethical approval for this study was obtained from the Medical Research & Ethics
Committee Malaysia (NMRR-20-2549-57246) and we received approval for a waiver of
informed consent.
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2.1. Data Pre-Processing

This study used the demographic, clinical and laboratory data of jSLE patients at
Selayang Hospital to build, train and evaluate classifier models for predicting the risk of
proliferative lupus nephritis in children with SLE. A total of 22 features including demo-
graphic characteristics, clinical characteristics and laboratory investigations were combined
into a single dataset for feature selection. After removing instances with missing values in
at least one of these features, 194 patients were retained for feature selection, model training
and evaluation. The outcome variable with non-proliferative or no lupus nephritis was
encoded as category 0 and proliferative lupus nephritis as category 1. ‘No lupus nephritis’
was defined as patients who did not have any renal involvement. The classification into
‘proliferative’ or ‘non-proliferative lupus nephritis’ was based on histopathological changes
(ISN/RPS Classification) found on renal biopsies. Proliferative lupus nephritis involved
Class III or IV changes on renal biopsy whilst non-proliferative was either Class I, II or
purely class V. Class III or IV coexisting with Class V was classified as proliferative.

2.2. Feature Selection: Support Vector Machine Classification (SVM)-Recursive Feature
Elimination (RFE)

The RFE is a feature selection method that was used to identify important features and
then build various models with different feature subsets of a dataset. The selection process
involved selecting significant features and removing the weaker ones until it had achieved
the optimum number needed for peak performance. In this study, the caret package in
R-studio (which is a classification and regression training function) was used to carry
out SVM-RFE, which is an SVM-based feature selection algorithm. SVM is a supervised
learning model used for classification. The algorithm was configured to explore all possible
subsets of the features from demographic, clinical and laboratory test datasets. Hence, only
participants (n = 194) that had complete data for all three datasets (demographic, clinical
and laboratory test) were included in the analysis.

The SVM-RFE eliminated features that were least important in iterations and con-
sidered the interdependencies with other features and also the two categories (no lupus
nephritis and non-proliferative lupus nephritis versus proliferative lupus nephritis). To
determine the optimal number of features, 10-fold cross-validation with three repeats was
used and the results were visualized using a plot showing the accuracy of the different
feature subset sizes. The final feature subset was selected from the iteration in which SVM
achieved the best classification performance.

2.3. Model Training and Parameter Tuning

The dataset containing the final feature subset was first randomly split into a 70:30 ratio.
Seventy percent of the dataset was used as the training dataset to train the model and the
remaining 30% of the dataset was used to evaluate the accuracy of the model. The training
dataset was used to train five machine learning models, namely support vector machine
(SVM) with linear kernel, support vector machine (SVM) with radial kernel, K nearest
neighbors (Knn), random forest (RF), and decision-tree Rpart (Rpart). All these five models
were developed using the R ‘caret’ and ‘e1071’ packages.

Using the training dataset and the 10-fold cross-validation method, the hyperparam-
eters of each model were tuned to obtain the set of optimal hyperparameters with the
‘train’ function in the ‘caret’ package. The package by default created a grid of tuning
parameters with a grip size of 3ˆp (p is the number of tuning parameters). This process was
repeated three times and the optimal values (values that maximize the model accuracy)
were automatically chosen as the model hyperparameters.

2.4. Model Evaluation

The performance of each of these models with the optimal set of hyperparameters was
evaluated on the test dataset. The accuracy (percentage of correct predictions), sensitivity
and specificity were calculated. The performance of the models was visualized using the
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area under the receiver operating characteristic curve (AROC) and confusion matrixes. The
modes were then evaluated on the test set based on sensitivity, specificity and area under
curve (AUC).

The process for the feature selection, model training and evaluation is summarized in
Figure 1.
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Figure 1. Workflow process for feature selection, model training and evaluation. SVM-RFE: Support
vector machine classification- Recursive Feature Elimination; SVM_Linear: Support vector machine
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3. Results
3.1. Demographic and Characteristic of Study Population

There was a total of 224 jSLE patients, of which 194 had complete datasets and were
included into the study. The majority (68.9%) were of Malay ethnicity and 165 (85.5%)
were females, with an overall female: male ratio of 5.5:1. The median age at diagnosis was
peripubertal, at 11.7 years, and there was a marked gender variation with age. The female
preponderance increased with advancing age, with the teenage group of 13–18 years of age
having an extremely high female: male ratio of 23.4:1. Of the 194 patients, 111 patients had
renal involvement over the course of their disease, of which 54 patients were confirmed to
have proliferative lupus nephritis. The demographic characteristics of the study population
are summarized in Table 1.
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Table 1. Demographic characteristics of Malaysian children with SLE.

Characteristics No. of Participating Patients,
n = 194 (%)

Gender
Female 165 (85.5)
Female: Male Ratio 5.5:1

Female: Male Ratio based on age:
0–5 years old 2.7:1
6–12 years old 7.8:1
13–18 years old 23.4:1

Median age (years, IQR)
At diagnosis 11.7 (9.0–15.3)
At data collection 15.0 (13.4–20.0)

Duration of illness, median
Onset of symptoms to diagnosis (months, IQR) 2 (0–64)
Diagnosis to data collection (years, IQR) 3 (0–13)

Ethnicity
Malay 133 (68.9)
Chinese 45 (23.3)
Indians 10 (5.2)
Others 5 (2.6)

SLICC index at diagnosis
Median (range) score 20 (1–61)

SLE: Systemic Lupus Erythematosus; IQR: interquartile range; SLICC: Systemic Lupus International Collaborat-
ing Clinics.

3.2. Clinical Features and Major Organ Manifestations at Presentation

The most frequent presenting clinical features were fever (89.1%), vasculitic rash
(69.9%) and fatigue (68.4%).

At diagnosis, 34.2% had renal involvement. Other major organs affected included
the liver (24.9%), central nervous system and heart (both 12.9%). The frequency of clinical
features at presentation are shown in Table 2.

Table 2. Clinical features at diagnosis of 194 Malaysian children with SLE.

Characteristics Our Cohort
n = 194 (%)

Clinical features
Fever 172 (89.1)
Lethargy 132 (68.4)
LOA 124 (64.2)
LOW 97 (50.3)
Alopecia 80 (41.4)
Vasculitic rash 133 (68.9)
Livedo Reticularis 10 (5.2)
Myositis/Myopathy 53 (27.5)
Headache 37 (19.2)
Eye manifestation 18 (9.3)
Hypertension 52 (26.9)
Nephrotic Syndrome 32 (16.6)
Nephritic Syndrome 21 (10.9)

LOA: loss of appetite; LOW: loss of weight; CNS: central nervous system.

The prevalence of baseline clinical and immunological symptoms, as satisfied by the
SLICC classification criteria, is summarized below in Table 3. The most frequently observed
criteria at diagnosis were ANA (98.4%), followed by low complement levels (88.6%) and
a positive direct Coombs test result (76.7%). The least frequently observed criteria were
antiphospholipid antibodies (11.9%).
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Table 3. Prevalence of SLICC Classification Criteria in jSLE cases at diagnosis.

Characteristics Our Cohort
n = 194 (%)

Clinical and laboratory features
Acute cutaneous lupus 124 (64.2)
Chronic cutaneous lupus 25 (13)
Oral ulcers 87 (45.1)
Nonscarring alopecia 78 (40.4)
Synovitis 66 (34.2)
Serositis 32 (16.6)
Renal disorder 66 (34.2)
Neurologic 53 (27.5)
Hemolytic anemia 40 (20.7)
Leukopenia or Lymphopenia 101 (52.3)
Thrombocytopenia 77 (39.9)

Immunological features
Anti-nuclear Antibodies 190 (98.4)
Anti-dsDNA antibodies 141 (73.1)
Anti-smith antibodies 60 (31.1)
Low complement 171 (88.6)
Direct Coombs tests 148 (76.7)

3.3. Determination of Variables That Could Predict Proliferative Lupus Nephritis among the
jSLE Cases

A total of 22 variables, including demographic, clinical and laboratory features, were
included for feature elimination to identify variables that were not required in predicting
proliferative lupus nephritis in patients with jSLE. Figure 2 indicates that a combination of
11 variables, namely (1) gender, (2) ethnicity, (3) fever, (4) nephrotic (defined as clinically
edematous state), (5) hypertension, (6) Urine RBC, (7) Complement 3 (C3), (8) Complement
4 (C4), (9) duration of illness, (10) serum albumin, and (11) urine protein collectively, had
the highest accuracy of 79.4% in predicting proliferative lupus nephritis. Clinical features
such as fever, nephrotic, hypertension, urine RBC and urine protein are categorized as
present or absent. Laboratory findings such as complement 3, complement 4 and serum
albumin are categorized as normal or abnormal.

These 11 variables were then used to train and test five machine leaning models,
namely support vector machine (SVM) with linear kernel, support vector machine (SVM)
with radial kernel, K nearest neighbors (Knn), random forest (RF), and decision-tree Rpart
(Rpart), to predict proliferative lupus nephritis. The performance evaluations of these
models are summarized in Table 4.

Table 4. Performance evaluation of proposed models by means of sensitivity, specificity, and accuracy.

Models Sensitivity (%) Specificity (%) Accuracy (%)

SVM-Linear 93.62 27.78 75.38

SVM-Radial 95.74 33.33 78.46

Knn 88.89 45.00 75.38

RF 91.11 50.00 78.46

Rpart 78.72 61.11 73.85
SVM-Linear: Support vector machine (SVM) with linear kernel; SVM-Radial: Support vector machine (SVM) with
radial kernel; Knn: K nearest neighbors; RF: random forest; Rpart: decision-tree Rpart.

During the process of testing, the models SVM Radial and RF had an accuracy of
78.46% for predicting proliferative lupus nephritis, but the specificity of these models was
low (33.33% and 50.00%, respectively). The SVM Radial model had the highest sensitivity
(95.74%) in predicting proliferative lupus nephritis, but the specificity was the second
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lowest (33.33%). Overall, the decision-tree Rpart model performed the best by having
high accuracy (73.85%), specificity (78.72%) and sensitivity (61.11%) when predicting
proliferative lupus nephritis. Figure 3 shows that the decision-tree Rpart model performed
the best based on the highest AROC value (69.9%), followed by the SVM Radial model, the
SVM-Linear model and the knn model. The random forest model gave the lowest AROC at
50.5%. The confusion matrixes of all these five models are presented in Figure 4.
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Figure 3. Receiver Operating Curves (ROC) curves of the five models. The performance of the
support vector machine (SVM) with linear kernel model (SVM-Linear), support vector machine
(SVM) with radial kernel model (SVM-Radial), K nearest neighbors (Knn) model, random forest (RF)
model, and decision-tree Rpart (Rpart) model visualized using Receiver Operating Curves (ROC)
curves. The decision-tree Rpart model performs the best based on highest AROC value (69.9%),
followed by the SVM-Radial model, the SVM-Linear model, the Knn model and lastly the Random
Forest model.
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Figure 4. Confusion matrixes of the five models. Confusion matrix reporting the number of (A)
support vector machine (SVM) with linear kernel model (SVM-Linear), (B) support vector machine
(SVM) with radial kernel model (SVM-Radial), (C) K nearest neighbors (Knn) model, (D) random
forest (RF) model, and (E) decision-tree Rpart (Rpart) to predict proliferative lupus nephritis among
jSLE patients (n = 194; 70 training set: 30 test set with nested cross validation) using the 11 variables
identified from recursive feature elimination. Category 0: no lupus nephritis and non-proliferative
lupus nephritis; Category 1: proliferative lupus nephritis.
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4. Discussion

This study is important because it provides a preliminary machine learning model
that can be used to predict proliferative lupus nephritis in children. Renal involvement is
common in SLE (40–70%) and affects jSLE patients both at onset and during the course
of disease [1,12,17,19,23,24]. It is important as it adversely affects the long-term prognosis
and survival of jSLE patients [14,18,21,36–38]. The current gold standard for diagnosis of
lupus nephritis is a renal biopsy, and the histopathological classification is used to guide
treatment all around the world. However, this invasive procedure may be unattainable
under certain circumstances, such as uncontrolled hypertension and coagulopathy, or due
to external situations such as war or in resource-poor countries [32,33].

It is therefore not surprising that there have been numerous attempts to use non-
invasive biomarkers to predict lupus nephritis activity and renal flares. Some of the
commonly used biomarkers include serum creatinine, urinary protein excretion, comple-
ment levels and anti-dsDNA antibody levels. However, these biomarkers are imprecise
and lack a robust model to differentiate between proliferative and non-proliferative renal
lesions [23,39,40]. Recent research has also identified other promising serum and urinary
biomarkers such as NGAL (neutrophil gelatinase-associated lipocalin), MCP-1 (monocyte
chemoattractant protein), TWEAK (tumor necrosis factor-like weak inducer of apoptosis),
VCAM (vascular cell adhesion molecule), adiponectin, hemopexin, kidney injury molecule-
1 and HMGB1 (high mobility group box protein 1) [23,41]. However, these biomarkers are
still experimental, and any future potential use will likely be hindered by the cost of these
tests as well as the lack of availability, especially in low-resource countries.

In our study, we similarly found that previously reported individual biomarkers
such as complements and serum albumin were useful to predict lupus nephritis [23,40,42].
However, the robustness of this predictive model was enhanced by using a combination of
11 variables selected by machine learning in our study, when compared with using single
biomarkers alone. In addition, these 11 variables consisted of routine standard clinical
and laboratory parameters, which are typically obtained in the management of any child
with jSLE. All of these biomarkers, with the exception of complement levels, are readily
available in most healthcare facilities, including those in resource-limited countries. Our
model specifically did not include the utility of anti-dsDNA antibodies, although this is a
known biomarker for lupus nephritis. This investigation is often not readily available or
the results are not available on an urgent basis in many countries, especially in those with
low resources [23,40].

In evaluating these predictive machine learning models, we found that the decision-
tree Rpart model provides the best performance in terms of balancing both specificity
and sensitivity in predicting the presence of proliferative lupus nephritis. This distinction
between non-proliferative and proliferative lupus nephritis is important as it differentiates
those who might require more than standard immune suppression, including more potent
immunosuppressives or even biologic agents to ensure optimal outcomes [20,30,31].

4.1. Strengths

The main strength of this model is that it has the potential utility in routine clinical
practice to assess the risk of proliferative lupus nephritis in children using readily available
variables. It can help clinicians to objectively evaluate the kidneys in addition to using
standard disease activity measures in any patient with biochemical or clinical signs indica-
tive of active lupus nephritis. This additional information of predicting proliferative lupus
nephritis enables clinicians to make better informed decisions on treatment, thus potentially
improving outcome and survival [23,30,31]. Even in settings where renal biopsies are easily
available, this model can help to provide a more precise indication on when to perform a
renal biopsy, especially in children where the indications are not well established [24]. In
resource-poor settings, this model can potentially be used to identify proliferative lupus
nephritis and guide treatment decisions in place of a renal biopsy, which may not be avail-
able. In addition, in places with inadequate access to specialty services, such as conflict
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zones or remote areas, this model could also help non-specialty doctors with potentially
lifesaving treatment decisions.

4.2. Limitations

The limitation of this predictive model is that it is useful for risk assessment and
clinical decisions that are only applicable to a time point during the disease course. It
cannot be used to predict the long-term course and renal outcomes of jSLE, particularly
whether a patient might develop proliferative lupus nephritis in the future, as this model
was built on data obtained at the initial diagnosis of a disease that tends to evolve over time.
Furthermore, not all patients with renal involvement had a renal biopsy, including those
who had a mild involvement that initially responded to steroids, and this could potentially
cause a bias in the overall modelling. In addition, this model requires the presence of all 11
variables in a patient, failing which this model cannot work.

4.3. Recommendations

This model could be further improved by obtaining data over a longer time frame and
incorporating the changes in the biomarkers over the course of the disease. Additionally,
the sensitivity and specificity of this preliminary model is limited by the small sample size.
Further refining and validation of this model needs to be performed in other paediatric
cohorts to improve its precision and sensitivity for disease prediction. Future studies should
also be conducted prospectively to ensure the completeness of data variables. This may
lead to the introduction of other potentially important variables that were not considered
in this study.

5. Conclusions

A potential clinically useful predictive model was successfully developed by machine
learning, featuring a combination of 11 non-invasive common risk factors, to identify jSLE
patients at risk of proliferative lupus nephritis in daily practice. This preliminary model
has important clinical utility, especially in circumstances where a renal biopsy is either
contraindicated or unavailable in low-resource countries or regions with poor access to
specialty services. Further prospective validation of this preliminary model is planned.
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