Biotechnological Application of Cutinase: A Powerful Tool in Synthetic Biology
Abstract
:1. Introduction
2. Diversified Cutinases from Different Sources
2.1. Fungal Cutinases
2.2. Bacterial Cutinases
2.3. Plant Cutinases
2.4. Comparison of Cutinases from Different Sources
3. Applications of Cutinases
3.1. Traditional Applications
3.2. Ecological Restoration and Biodegradation
3.2.1. Degradation of Toxicants
3.2.2. Degradation of Polyesters
3.3. Biosynthesis
4. Frontier Methods in Engineering Robust Cutinases
5. Summary and Future Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novy, V.; Carneiro, L.V.; Shin, J.H.; Larsbrink, J.; Olsson, L. Phylogenetic analysis and in-depth characterization of functionally and structurally diverse CE5 cutinases. J. Biol. Chem. 2021, 297, 101302. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.Y.; Köller, W. Diversity of cutinases from plant pathogenic fungi: Differential and sequential expression of cutinlytic esterases by Alternaria brassicicola. FEMS Microbiol. Lett. 1998, 158, 33–38. [Google Scholar] [CrossRef]
- St Leger, R.J.; Joshi, L.; Roberts, D.W. Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the re-quirements of their ecological niches. Microbiology 1997, 143, 1983–1992. [Google Scholar] [CrossRef] [PubMed]
- Heinen, W.; Linskens, H. Enzymic breakdown of stigmatic cuticula of flowers. Nature 1961, 191, 1416. [Google Scholar] [CrossRef]
- Chen, S.; Chen, J.; Wu, J. Cutinase: Characteristics, preparation, and application. Biotechnol. Adv. 2013, 31, 1754–1767. [Google Scholar] [CrossRef]
- Dutta, K.; Sen, S.; Veeranki, V.D. Production, characterization and applications of microbial cutinases. Process Biochem. 2009, 44, 127–134. [Google Scholar] [CrossRef]
- Villafana, R.T.; Rampersad, S.N. Diversity, structure, and synteny of the cutinase gene of colletotrichum species. Ecol. Evol. 2020, 10, 1425–1443. [Google Scholar] [CrossRef]
- Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Marty, A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020, 580, 216–219. [Google Scholar] [CrossRef]
- Duan, X.; Jiang, Z.; Liu, Y.; Yan, Q.; Xiang, M.; Yang, S. High-level expression of codon-optimized Thielavia terrestris cutinase suitable for ester biosynthesis and biodegradation. Int. J. Biol. Macromol. 2019, 135, 768–775. [Google Scholar] [CrossRef]
- Carvalho, C.M.; Aires-Barros, M.R.; Cabral, J.M. A continuous membrane bioreactor for ester synthesis in organic media: I. Operational characterization and stability. Biotechnol. Bioeng. 2001, 72, 127–135. [Google Scholar] [CrossRef]
- Purdy, R.E.; Kolattukudy, P.E. Hydrolysis of plant cuticle by plant pathogens. properties of cutinase i, cutinase ii, and a nonspecific esterase isolated from Fusarium solani pisi. Biochemistry 1975, 14, 2832–2840. [Google Scholar] [CrossRef] [PubMed]
- Egmond, M.R.; Vlieg, J.D. Fusarium solani pisi cutinase. Biochimie 2000, 82, 1015–1021. [Google Scholar] [CrossRef]
- Pio, T.F.; Macedo, G.A. Optimizing the production of cutinase by Fusarium oxysporium using response surface methodology. Enzym. Microb. Technol. 2007, 44, 613–619. [Google Scholar] [CrossRef]
- Caspers, M.; Brockmeier, U.; Degering, C.; Eggert, T.; Freudl, R. Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagene-sis of the N-domain of the AmyE signal peptide. Appl. Microbiol. Biotechnol. 2010, 86, 1877–1885. [Google Scholar] [CrossRef] [PubMed]
- Rueda, H.; Jimenez-Junca, C.A.; Correa, R. Cutinases obtained from filamentous fungi: Comparison of screening methods. Dyna 2020, 87, 183–190. [Google Scholar] [CrossRef]
- Köller, W.; Parker, D.M. Purification and characterization of cutinase from Venturia inaequalis. Phytopathology 1989, 79, 278–283. [Google Scholar] [CrossRef]
- Castro-Ochoa, D.; Peña-Montes, C.; González-Canto, A.; Alva-Gasca, A.; Esquivel-Bautista, R.; Navarro-Ocaña, A. Ancut2, an extracellular cutinase from aspergillus nidulans induced by olive oil. Appl. Biochem. Biotechnol. 2012, 166, 1275–1290. [Google Scholar] [CrossRef]
- Chen, Z.; Franco, C.F.; Baptista, R.P.; Cabral, J.M.S.; Coelho, A.V.; Rodrigues, C.J. Purification and identification of cutinases from colletotrichum kahawae and colletotrichum gloeosporioides. Appl. Microbiol. Biotechnol. 2007, 73, 1306–1313. [Google Scholar]
- Lin, T.S.; Kolattukudy, P.E. Structural studies on cutinase, a glycoprotein containing novel amino acids and glucuronic acid amide at the N termi-nus. FEBS J. 1980, 106, 341–351. [Google Scholar]
- Weisenborn, P.C.; Meder, H.; Egmond, M.R. Photophysics of the single tryptophan residue in Fusarium solani cutinase: Evidence for the occurrence of conforma-tional substates with unusual fluorescence behaviour. Biophys. Chem. 1996, 58, 281–288. [Google Scholar] [CrossRef]
- Chen, S.; Tong, X.; Woodard, R.W.; Du, G.; Wu, G.; Chen, J. Identification and characterization of bacterial cutinase. J. Biol. Chem. 2008, 283, 25854–25862. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, J.; Kolattukudy, P.E. Purification and characterization of cutinase from a fluorescent pseudomonas putida bacterial strain isolated from phyllosphere. Arch. Biochem. Biophys. 1988, 263, 77–85. [Google Scholar] [CrossRef]
- Fett, W.F.; Wijey, C.; Moreau, R.A.; Osman, S.F. Production of cutinolytic esterase by filamentous bacteria. Lett. Appl. Microbiol. 2000, 31, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wu, Y.; Su, L.; Wu, J. Contribution of disulfide bond to the stability of Thermobifida fusca cutinase. Food Biosci. 2019, 27, 6–10. [Google Scholar] [CrossRef]
- Sulaiman, S.; You, D.J.; Kanaya, E.; Koga, Y.; Kanaya, S. Crystal structure and thermodynamic and kinetic stability of metagenome-derived lc-cutinase. Biochemistry 2014, 53, 1858–1869. [Google Scholar] [CrossRef]
- Fett, W.F.; Gérard, H.C.; Moreau, R.A.; Osman, S.F.; Jones, L.E. Cutinase production by Streptornyces spp. Curr. Microbiol. 1992, 25, 165–171. [Google Scholar] [CrossRef]
- Heslop-Harrison, Y. The pollen-stigma interaction: Pollentube penetration in crocus. Ann. Bot. 1977, 41, 913–922. [Google Scholar] [CrossRef]
- Maiti, I.B.; Kolattukudy, P.E.; Shaykh, M. Purification and characterization of a novel cutinase from nasturtium (tropaeolum majus) pollen. Arch. Biochem. Biophys. 1979, 196, 412–423. [Google Scholar] [CrossRef]
- Linskens, H.F.; Haage, P. Cutinase-nachweis in phytopathogenen pilzen. J. Phytopathol. 1963, 48, 306–311. [Google Scholar] [CrossRef]
- Kolattukudy, P.E. Cutinases from fungi and pollen. Lipases 1984, 71, 652–664. [Google Scholar]
- Zeng, W.; Li, X.; Yang, Y.; Min, J.; Huang, J.W.; Liu, W.; Niu, D.; Yang, X.; Han, X.; Zhang, L.; et al. Substrate-Binding Mode of a Thermophilic PET Hydrolase and Engineering the Enzyme to Enhance the Hydrolytic Efficacy. ACS Catal. 2022, 12, 3033–3040. [Google Scholar] [CrossRef]
- Baker, P.J.; Poultney, C.; Liu, Z.; Gross, R.; Montclare, J.K. Identification and comparison of cutinases for synthetic polyester degradation. Appl. Microbiol. Biotechnol. 2012, 93, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Shimada, T.; Kondo, M.; Tamai, A.; Mori, M.; Nishimura, M.; Hara-Nishimura, I. Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol. 2010, 51, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Teles, F.R.R.; Cabral, J.M.S.; Santos, J.A.L. Enzymatic degreasing of a solid waste from the leather industry by lipases. Biotechnol. Lett. 2001, 23, 1159–1163. [Google Scholar] [CrossRef]
- Gururaj, P.; Khushbu, S.; Monisha, B.; Selvakumar, N.; Chakravarthy, M.; Gautam, P. Production, purification and application of Cutinase in enzymatic scouring of cotton fabric isolated from Acinetobac-ter baumannii AU10. Prep. Biochem. Biotechnol. 2021, 51, 550–561. [Google Scholar] [CrossRef]
- Degani, O. Synergism between cutinase and pectinase in the hydrolysis of cotton fibers’ cuticle. Catalysts 2021, 11, 84. [Google Scholar] [CrossRef]
- Poulose, A.J.; Boston, M. Enzyme Assisted Degradation of Surface Membranes of Harvested Fruits and Vegetables. U.S. Patent 5037662 A, 23 June 1996. [Google Scholar]
- Kolattukudy, P.E.; Poulose, A.J. Enzymes as agricultural chemical adjuvants. Biotechnol. Adv. 1997, 15, 511. [Google Scholar]
- Zhang, Z.; Wang, W.; Li, D.; Xiao, J.; Wu, L.; Geng, X.; Wu, G.; Zeng, Z.; Hu, J. Decolorization of molasses alcohol wastewater by thermophilic hydrolase with practical application value. Bioresour. Technol. 2021, 323, 124609. [Google Scholar] [CrossRef]
- Kolattukudy, P.E.; Poulose, A.J. Cutinase Cleaning Composition. U.S. Patent 5512203 A, 30 April 1996. [Google Scholar]
- Carvalho, C.; Aires-Barros, M.R.; Cabral, J. Cutinase structure, function and biocatalytic applications. Electron. J. Biotechnol. 1998, 1, 28–29. [Google Scholar] [CrossRef]
- Su, L.; Hong, R.; Kong, D.; Wu, J. Enhanced activity towards polyacrylates and poly(vinyl acetate) by site-directed mutagenesis of Humicola insolens cutinase. Int. J. Biol. Macromol. 2020, 162, 1752–1759. [Google Scholar] [CrossRef]
- Nyyssölä, A. Which properties of cutinases are important for applications. Appl. Microbiol. Biotechnol. 2015, 99, 4931–4942. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.Y.; Kim, Y.H.; Min, J.; Lee, J. Accelerated degradation of dipentyl phthalate by Fusarium oxysporum f. sp. pisi cutinase and toxicity evaluation of its degradation products using bioluminescent bacteria. Curr. Microbiol. 2006, 52, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Lee, J.; Ahn, J.Y.; Gu, M.B.; Moon, S.H. Enhanced degradation of an endocrine-disrupting chemical, butyl benzyl phthalate, by Fusarium oxysporum f. sp. pisi cutinase. Appl. Environ. Microbiol. 2002, 68, 4684–4688. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Lee, J.; Moon, S.H. Degradation of an endocrine disrupting chemical, DEHP [di-(2-ethylhexyl)-phthalate], by Fusarium oxysporum f. sp. pisi cutinase. Appl. Microbiol. Biotechnol. 2003, 63, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Ahn, J.Y.; Moon, S.H.; Lee, J. Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase. Chemosphere 2005, 60, 1349–1355. [Google Scholar] [CrossRef]
- Barlas, N.E. Toxicological assessment of biodegraded malathion in albino mice. Bull. Environ. Contam. Toxicol. 1996, 57, 705–712. [Google Scholar] [CrossRef]
- Bharti, S.; Rasool, F. Analysis of the biochemical and histopathological impact of a mild dose of commercial malathion on Channa punctatus (Bloch) fish. Toxicol. Rep. 2021, 8, 443–455. [Google Scholar] [CrossRef]
- Kumar, K.; Ansari, B.A. Malathion toxicity: Effect on the liver of the fish brachydanio rerio (cyprinidae). Ecotoxicol. Environ. Saf. 1986, 12, 199–205. [Google Scholar] [CrossRef]
- Gao, B.; Chi, L.; Tu, P.; Bian, X.; Thomas, J.; Ru, H.; Lu, K.; Zeng, Z.; Hu, J. The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system. Toxicol. Lett. 2018, 283, 52–57. [Google Scholar] [CrossRef]
- Viksoe-Nielsen, A.; Soerensen, B.H. Cutinase for Detoxification of Feed Products. WO Patent 2009080701, 2 July 2009. [Google Scholar]
- Viksoe-Nielsen, A.; Soerensen, B.H. Detoxification of Aflatoxin in Feed Products. U.S. Patent 2009226570, 10 September 2009. [Google Scholar]
- Chen, C.C.; Dai, L.; Ma, L.; Guo, R.T. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 2020, 4, 114–126. [Google Scholar] [CrossRef]
- Carnie, A.; Gomes, A.C.; Coelho, M.A.Z.; Castro, A.M. Process strategies to improve biocatalytic depolymerization of post-consumer pet packages in bioreactors, and inves-tigation on consumables cost reduction. Bioprocess Biosyst. Eng. 2021, 44, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Sankhla, I.S.; Sharma, G.; Tak, A. Fungal degradation of bioplastics: An overview. New Future Dev. Microb. Biotechnol. Bioeng. 2020, 4, 35–47. [Google Scholar]
- Kawai, F.; Kawabata, T.; Oda, M. Current state and perspectives related to the PET hydrolases available for biorecycling. ACS Sustain. Chem. Eng. 2020, 8, 8894–8908. [Google Scholar] [CrossRef]
- Vogel, K.; Ren, W.; Pfaff, L.; Breite, D.; Maskow, T. Enzymatic degradation of polyethylene terephthalate nanoplastics analyzed in real time by isothermal titration calorimetry. Sci. Total Environ. 2021, 773, 145111. [Google Scholar] [CrossRef]
- Huang, S. Polymer waste management—biodegradation, incineration, and recycling. J. Macromol. Sci. Pure Appl. Chem. 1995, 32, 593–597. [Google Scholar] [CrossRef]
- Shi, K.; Jing, J.; Song, L.; Su, T.; Wang, Z. Enzymatic hydrolysis of polyester: Degradation of poly(ε-caprolactone) by candida antarctica lipase and fusarium solani cutinase. Int. J. Biol. Macromol. 2020, 144, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, C.M.L.; Aires-Barros, M.R.; Cabral, J.M.S. Cutinase: From molecular level to bioprocess development. Biotechnol. Bioeng. 1999, 66, 17–34. [Google Scholar] [CrossRef]
- Murphy, C.A.; Cameron, J.A.; Huang, S.J.; Vinopal, R.T. Fusarium polycaprolactone depolymerase is cutinase. Appl. Environ. Microbiol. 1996, 62, 456–460. [Google Scholar] [CrossRef]
- Moeis, M.R.; Maulana, M.F. Improving plastic degradation by increasing the thermostability of a whole cell biocatalyst with lc-cutinase activity. J. Phys. Conf. Ser. 2021, 1764, 012029. [Google Scholar] [CrossRef]
- Akçaözoğlu, S.; Adıgüzel, A.O.; Akçaözoğlu, K.; Deveci, E.Ü.; Gönen, Ç. Investigation of the bacterial modified waste PET aggregate VIA Bacillus safensis to enhance the strength properties of mortars. Constr. Build. Mater. 2021, 270, 121828. [Google Scholar] [CrossRef]
- Kawai, F. The current state of research on PET hydrolyzing enzymes available for biorecycling. Catalysts 2021, 11, 206. [Google Scholar] [CrossRef]
- Singhvi, M.S.; Zinjarde, S.S.; Gokhale, D.V. Poly-Lactic acid (PLA): Synthesis and biomedical applications. J. Appl. Microbiol. 2019, 127, 1612–1626. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Kim, C.; Moon, J.; Heo, J.; Jung, S.P.; Kim, J.R. Polymer film-based screening and isolation of polylactic acid (PLA)-degrading microorganisms. J. Microbiol. Biotechnol. 2017, 27, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Kitadokoro, K.; Mizuki, K.; Matsui, S.; Osokoshi, R.; Uschara, T.; Kawai, F. Structural insights into the unique polylactate-degrading mechanism of Thermobifida alba cutinase. FEBS J. 2019, 286, 2087–2098. [Google Scholar] [CrossRef] [PubMed]
- Puchalski, M.; Szparaga, G.; Biela, T.; Gutowska, A.; Sztajnowski, S.; Krucińska, I. Molecular and supramolecular changes in polybutylene succinate (PBS) and polybutylene succinate adipate (PBSA) copolymer during degradation in various environmental conditions. Polymers 2018, 10, 251. [Google Scholar] [CrossRef][Green Version]
- Tan, Y.; Henehan, G.T.; Kinsella, G.K.; Ryan, B.J. An extracellular lipase from amycolatopsis mediterannei is a cutinase with plastic degrading activity. Comput. Struct. Biotechnol. J. 2021, 19, 869–879. [Google Scholar] [CrossRef]
- Shi, K.; Ma, Q.; Su, T.; Wang, Z. Preparation of porous materials by selective enzymatic degradation: Effect of in vitro degradation and in vivo compatibility. Sci. Rep. 2020, 10, 7031–7040. [Google Scholar] [CrossRef]
- Xu, Z. Research Progress on bacterial cutinases for plastic pollution. Earth Environ. Sci. 2020, 450, 012077. [Google Scholar] [CrossRef]
- Barros, D.; Fonseca, L.P.; Fernandes, P.; Cabral, J.; Mojovic, L. Biosynthesis of ethyl caproate and other short ethyl esters catalyzed by cutinase in organic solvent. J. Mol. Catal. B Enzym. 2009, 60, 178–185. [Google Scholar] [CrossRef]
- Dutta, K.; Dasu, V.V. Synthesis of short chain alkyl esters using cutinase from Burkholderia cepacia NRRL B2320. J. Mol. Catal. B Enzym. 2011, 72, 150–156. [Google Scholar] [CrossRef]
- Gonçalves, A.P.V.; Cabral, J.M.S.; Aires-Barros, M.R. Immobilization of a recombinant cutinase by entrapment and by covalent binding. Appl. Biochem. Biotechnol. 1996, 60, 217–228. [Google Scholar] [CrossRef]
- Zoungrana, T.; Findenegg, J.H.; Norde, W. Structure, stability, and activity of adsorbed enzymes. J. Colloid Interface Sci. 1997, 190, 437–448. [Google Scholar] [CrossRef]
- Gross, R.A.; Ganesh, M.; Lu, W. Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends Biotechnol. 2010, 28, 435–443. [Google Scholar] [CrossRef]
- Su, A.; Kiokekli, S.; Naviwala, M.; Shirke, A.N.; Pavlidis, L.V.; Gross, R.A. Cutinases as stereoselective catalysts: Specific activity and enantioselectivity of cutinases and lipases for menthol and its analogs. Enzym. Microb. Technol. 2020, 133, 109467. [Google Scholar] [CrossRef]
- Ribitsch, D.; Yebra, A.O.; Zitzenbacher, S.; Wu, J.; Nowitsch, S.; Steinkellner, G. Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis. Biomacromolecules 2013, 14, 1769–1776. [Google Scholar] [CrossRef]
- Emori, M.; Numoto, N.; Emori, M.; Senga, A.; Bekker, G.; Kamiya, N.; Kobayashi, Y.; Ito, N.; Kawai, F.; Oda, M. Structural basis of mutants of PET-degrading enzyme from Saccharomonospora viridis AHK190 with high activity and thermal stability. Proteins Struct. Funct. Bioinf. 2020, 89, 502–511. [Google Scholar] [CrossRef]
- Xi, X.; Ni, K.; Hao, H.; Shang, Y.; Zhao, B.; Qian, Z. Secretory expression in Bacillus subtilis and biochemical characterization of a highly thermostable polyethylene ter-ephthalate hydrolase from bacterium HR29. Enzym. Microb. Technol. 2021, 143, 109715. [Google Scholar] [CrossRef]
- Lu, H.; Diaz, D.J.; Czarnecki, N.J.; Zhu, C.; Kim, W.; Shroff, R.; Acosta, D.J.; Alexander, B.R.; Cole, H.O.; Zhang, Y.; et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 2022, 604, 662–667. [Google Scholar] [CrossRef]
- Arnling Bååth, J.; Novy, V.; Carneiro, L.V.; Guebitz, G.M.; Olsson, L.; Westh, P.; Ribitsch, D. Structure-function analysis of two closely related cutinases from Thermobifida cellulosilytica. Biotechnol. Bioeng. 2022, 119, 470–481. [Google Scholar] [CrossRef]
Source | Organism | NCBI No. | Substrate |
---|---|---|---|
Fungi | Alternaria brassicicola cutinase | AAA03470.1 | Cutin |
Aspergillus nidulans cutinase | ABF50887.1 | PET | |
Aspergillus niger cutinase | CAL00335.1 | PET | |
Aspergillus niger cutinase 2 | AKE48475.1 | PET | |
Aspergillus niger cutinase 3 | AKA62190.1 | PET | |
Aspergillus oryzae cutinase | BAA07428.1 | Cutin | |
Aspergillus oryzae cutinase 2 | ALB07219.1 | Cutin | |
Colletotrichum capsici cutinase | ADQ27862.1 | Cutin | |
Colletotrichum fiorinae cutinase | EXF73863.1 | Cutin | |
Colletotrichum fructicola cutinase | ELA29687.1 | Cutin | |
Colletotrichum gloeosporioides cutinase | AAL38030.1 | Cutin | |
Colletotrichum incanum cutinase | KZL82629.1 | Cutin | |
Colletotrichum orbiculare cutinase | TDZ15371.1 | Cutin | |
Colletotrichum orchidophilium cutinase | XP_022472246.1 | Cutin | |
Colletotrichum salicis cutinase | KXH52034.1 | Cutin | |
Colletotrichum sidae cutinase | TEA20600.1 | Cutin | |
Colletotrichum simmondsii cutinase | KXH53950.1 | Cutin | |
Colletotrichum spinosum cutinase | TDZ13928.1 | Cutin | |
Colletotrichum trifolii cutinase | TDZ54558.1 | Cutin | |
Colletotrichum truncatum cutinase | P10951.1 | Cutin | |
Cryptococcus sp. cutinase | BAK82405.1 | Cutin | |
Fusarium petroliphilum cutinase | AAB05922.1 | Cutin | |
Fusarium solani pisi cutinase | AAA33334.1 | PCL | |
Fusarium solani pisi cutinase 2 | AAL18696.1 | PCL | |
Humicola insolens cutinase | QAY29138.1 | PET | |
Magnaporthe grisea cutinase | EHA46959.1 | Cutin | |
Monilinia fructicola cutinase | AAZ95012.1 | Cutin | |
Penicillium sp. 2HH cutinase | KAF7739429.1 | Cutin | |
Pseudozyma antarctica cutinase | GAC73680.1 | Cutin | |
Pyrenopeziza brassicae cutinase | CAB40372.1 | Cutin | |
Thermothielavioides terrestris cutinase | ATP16782.1 | Cutin | |
Bacteria | Botrytis cinerea cutinase | CAA93255.1 | Cutin |
Ideonella sakaiensis PETase | GAP38373.1 | PET | |
Leaf and branch compost cutinase (LCC) | AEV21261.1 | PET | |
Mycobacterium tuberculosis cutinase | CEL55977.1 | Cutin | |
Thermobifida alba AHK119 Tha-Cut1 | ADV92525.1 | PET and PLA | |
Thermobifida cellulosilytica Thc-Cut1 | ADV92526.1 | PET | |
Thermobifida cellulosilytica Thc-Cut2 | ADV92527.1 | PET | |
Thermobifida fusca cutinase | AAZ54921.1 | PET | |
Thermobifida fusca TfCut1 | CBY05529.1 | PET | |
Thermobifida fusca TfCut 2 | CBY05530.1 | PET | |
Thermobifida fusca Thf42-Cut1 | ADV92528.1 | PET | |
Thermobifida fusca KW3 TfCa cutinase | CAZ65068.1 | PET | |
Thermobifida fusca YX Tfu-0882 cutinase | AAZ54920.1 | PET | |
Thermomonospora curvata Tcur0390 cutinase | ACY95991.1 | Cutin | |
Thermomonospora curvata Tcur1278 cutinase | ACY96861.1 | Cutin |
Source | Size | Optimum Temp | Optimum pH | Inhibitors |
---|---|---|---|---|
Fungi | 22–26 kDa | 30–40 °C | 10.0 | Serine-directed reagents |
Bacteria | 30 kDa | 40–60 °C | 8.5–10.5 | Serine-directed reagents |
Plant | 40 kDa | 30–40 °C | 6.8–8.0 | Thiol-directed reagents |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Zou, H. Biotechnological Application of Cutinase: A Powerful Tool in Synthetic Biology. SynBio 2023, 1, 54-64. https://doi.org/10.3390/synbio1010004
Liang X, Zou H. Biotechnological Application of Cutinase: A Powerful Tool in Synthetic Biology. SynBio. 2023; 1(1):54-64. https://doi.org/10.3390/synbio1010004
Chicago/Turabian StyleLiang, Xiuhong, and Huibin Zou. 2023. "Biotechnological Application of Cutinase: A Powerful Tool in Synthetic Biology" SynBio 1, no. 1: 54-64. https://doi.org/10.3390/synbio1010004