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Abstract: Mechanochemistry is one of the ten great discoveries of green chemistry methods for
synthesizing new substances. A drug substance from the fluoroquinolone group was exposed to
high-intensity mechanical impacts using a laboratory knife mill for 21 min and constantly monitored
by analyzing samples extracted every 3 min with DLS, SLS, LALLS, 2D-LS, optical and digital
microscopy, FTIR, and Spirotox methods. A dispersity phenomenon was detected in an area where
catastrophic dislocations formed and multiplied via laser methods. The positive correlation between
the temperature of deformation and stress was demonstrated, similar to a typical stress–strain curve
of a Bochvar–Oding curve and Young’s modulus: the angular coefficient of the straight section
to OX was tgα = 10 min−1. Z-Average, ζ-potential, and polydispersity index dependences were
represented as discontinuous periodic oscillations analogous to the defect and impurity transitions
near the dislocation core. Deformation r from the high-intensity mechanical impact resulted in
covalent bonds showing hyper- and hypochromic effects under FTIR spectra, a bathochromic shift
of the maximum, and an oscillation emission at 3240 cm−1. A 2D-LS fingerprint diagram obtained
via the topological convolution of the light scattering matrix made it possible to distinguish the
off-loading samples from the native substance. The investigation of the dissolution kinetics in water
via laser diffraction led to conclusions about the limiting diffusion stage and the acceleration of the
mechanoactivation of the solid body’s dissolution under both linear and plastic deformation. The
acceleration of obsEa of the cell death process in the temperature range from 296 to 302 K indicated
a significant (2.5-fold) decrease in the toxicity of the aqueous 9 mM (1:3) sample solution at 21 min
compared to that of the native levofloxacin. Adherence to the mechanochemistry laws provides an
opportunity for drug repositioning to change their brand status by identifying new physicochemical
and biological properties.

Keywords: mechanochemistry; tribochemichemistry; mechanical action; structural defects and
impurities; dislocations; stress field; new surface; levofloxacin hemihydrate; elastic and plastic
deformation

1. Introduction

Mechanochemistry (MCh) and mechanoactivation (MAct) are of great interest in
materials science, as they apply the law of conservation of energy (light and heat less
frequently) by converting impact energy into a controlled mechanical response proportional
to the applied stress [1,2]. The produced effect caused by the deformation of solids leads to
non-thermal chemical reaction processes, i.e., in the solid phase without dissolution or the
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melting of substances. However, it is precisely this fact that allows MCh and MAct to be
classified as successful soft and green chemistry technologies [3].

In fact, the potential of mechanochemistry in various domains of research, industry,
and in commercial entities has been recently recognized by the IUPAC after the inclusion
of mechanochemistry among the ten chemical innovations that will change our world [4].

MCh treatment methods, as an example of inexpensive and environmentally friendly
methods, have been used successfully in the chemical and pharmaceutical industries
to decompose and degrade xenobiotic wastes entering surface and groundwater. The
authors of [5] successfully demonstrated the influence of a planetary ball mill operating
parameters (milling time, rotational speed, ratio of grinding ball to material, and grinding
ball type) on the effective reductions in the initial content and toxicity of fluoroquinolone
ciprofloxacin in the studied wastewater samples. The choice of MCh conditions can
influence different variables, including the directed synthesis of pure enantiomers and the
distribution of stereoisomers in the solid-phase synthesis of novel bioactive compounds [6].
Conformational changes in proteins are an example of a unique natural strategy that takes
place during mechanotransduction processes: the conversion of mechanical signals into
chemical reactions (Figure 1) [7].
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parent macroscopic simplicity, the transfer of mechanical energy to a solid body is very 
complex and occurs via multistage dissipation channels. The energy input is proportional 
to the volume of SB to be collapsed—work A1 or the area of the new surface formed—A2 
(Figure 2). 

 
Figure 2. Dissipation of mechanical energy. 

Figure 1. Example of a uniaxial method of mechanically unwinding a receptor protein (R) with
hidden adhesion sites which become available for the ligand (nL) recognition process to form a
supramolecular complex (SMComplex).

The conversion process of elastic energy, from the mechanical impact on a solid body
(SB), into heat is accompanied by metastable structures with energy reserves, characterized
by shifting of atoms from equilibrium stable positions in the lattice nodes, changes in
length and bond angles, and the excitation of electronic subsystems [8,9]. Despite the
apparent macroscopic simplicity, the transfer of mechanical energy to a solid body is very
complex and occurs via multistage dissipation channels. The energy input is proportional
to the volume of SB to be collapsed—work A1 or the area of the new surface formed—A2
(Figure 2).
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One theory suggests that friction and high-intensity displacement impacts lead to
quasi-adiabatic local energy accumulation in sub-microscopic zones with the formation
of matter in a high-energy state, similar to plasma—“triboplasm” (Greek: τριβoσ—rub,
grind) [10]. The resulting metastable structures release some of the stored energy to move
to a more stable thermodynamic state. According to this approach, a multistep process
of energy dissipation takes place. From the macro-peak point of view, energy relaxation
occurs according to mechanisms of heat release, plastic deformation, and the breaking of
chemical bonds [11]. During this period, tribochemical (TrbCh)-phase transformations take
place [12]. The properties and decay rate of the intermediate non-equilibrium state—the
black box—determine the nature of the resulting products, MCh, MAct, or TrbCh, as well
as the rate constant of the process [13]. The effects of stress on the k rate constant of the
MCh, MAct, or TrbCh of elastically deformed bond breaking reactions is described by the
Eyring–Kozman equation [14].

k = A0 exp
(
−Ea − σVa

RT

)
, (1)

Here, A0 is the pre-exponential factor, Ea is the energy of thermal decomposition
activation, σVa—the work of elastic stresses, R is the universal gas constant, and T is the
temperature (K). It is implied that the action of stresses facilitates energy barrier passage
but does not influence its height.

The introduction of new drugs for clinical use is a very complex, lengthy, time-
consuming, and costly process, so drug repositioning—changing brand status by identify-
ing new physico-chemical properties and biological activities—is becoming increasingly
important. Based on the above and as applied to drug chemistry, the laws of MCh, MAct, or
TrbCh provide an opportunity to explore the effects of repositioning to address the issue of
new drug discovery [15]. The emergence of bacterial resistance has motivated researchers
to discover new antibacterial agents. Nowadays, fluoroquinolones keep their status as one
of the essential classes of antibacterial agents [16].

The aim of the study is to investigate the mechanisms of solid-body tribochemistry
due to the mechanical impact and the dynamics of the physicochemical and biological
properties of a fluoroquinolone group drug substance for a new perspective on its pharma-
ceutical applications.

2. Materials and Methods
2.1. Fluoroquinolone Sample Substance

The object of the study in this work is the 99.9% high-purity levofloxacin hemihydrate
(Lvf·Hh) pharmaceutical raw material of a fluoroquinolones (FQs) group (Jiangsu Aimi
Tech Co., Ltd., Suzhou, Jiangsu, China (Mainland); 519963/1 batch ID and expiry date:
8 February 2025. Appearance: light yellowish-white crystalline powder, sparingly soluble
in water, and practically insoluble in n-hexan (Figure 3).
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levofloxacin hemihydrate 

(3S)-9-Fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7oxo-2,3-dihydro-7H-pyrido[1,2,3-de][1,4]ben-
zoxazine-6-carboxylic acid hemihydrate 

Figure 3. The chemical structure and pharmacopoeia name of the substance in question. Figure 3. The chemical structure and pharmacopoeia name of the substance in question.
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2.2. Tribochemical Equipment

To study the effect of cramped-impact-type mechanical action on the Lvf·Hh phar-
maceutical substance, we used a Stegler LM-250 high-speed laboratory mill with a brush
motor (Shenzhen Bestman Instrument Co., Ltd., Suzhou, Jiangsu, China (Mainland), with
speed of 28,000 rpm and power of 13 kV (Figure 4).
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Figure 4. The operation principle of laboratory knife mill: (a) view of the grinding bowl inside the
knife mill. (b) Techniques for applying mechanical stress to the solid body surface: 1—constrained
impact, 2—crushing, 3—abrasion, 4—splitting, 5—cutting, where P is mechanical force; V is
shear direction.

The powders to be ground inside the grinding chamber of the mill are subjected to
an intensive impact, cutting, splitting, and abrasion loading due to the special system
of all-metal cutting blades and “trailing point” blades of different sizes (with the point
bent upwards).

Study Design

The stages of the investigation of the drug substance MA using a high-speed laboratory
mill were as follows: the loading of the substance weight in the initial state (native) was
carried out, not exceeding 1

2 the volume of the milling bowl with the following engine start.
The unloading of substance samples was carried out every 3 min of continuous mechanical
impact (MI) followed by a comprehensive study of the dispersion, spectral, biological
properties, and dissolution rate and colloidal stability; the weights of the substances
unloaded were recorded, and the temperature in the milling chamber of the knife mill was
measured using a non-contact infrared thermometer AMF008A (Amtast USA Inc., Suzhou,
Jiangsu, China (Mainland). The number of uploads was n = 7.

2.3. Determination of Disperse-Phase Particle Size and Particle Size Distribution

To determine the particle size samples of levofloxacin hemihydrate (Lvf·Hh) samples
after mechanoactivation (MAct), the methods of optic microscopy, static and dynamic light
scattering were used.

2.3.1. Static Light Scattering (SLS)

The Mact via static laser scattering (SLS) method was used to characterize particle size
distribution before and after they were dispersed in n-hexan (1:200). In the particle size
analysis, the size spectra (volumetric distribution on an ensemble of particles by size) was
recorded using a MasterSizer 3600 Ec low-angle laser meter (Malvern, UK) [17]. The optical
module of the equipment used made it possible to determine the size of the dispersed-
phase particles in the range from 1 µm to 180 µm based on the measurement of the angular
dependence of the intensity of the scattered laser light passing through the dispersed
sample [18]. The SLS method also made it possible to determine the integral dispersion
characteristics of the particles examined: laser obscuration (LO), volume concentration
(VC, %), and specific surface area (ssa, m2/cm3). To obtain dimensional spectra, the
distribution of the fraction of heterogeneous-phase particles was determine and then
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organized into dimensional groups, and this was used as a background as well as a
medium to prepare the heterogeneous solution.

2.3.2. Dynamic Light Scattering (DLS)

Dynamic light scattering, also known as photon correlation spectroscopy or quasi-
elastic light scattering [19], characterized by the Brownian motion of particles, is a simple
technique to investigate the hydrodynamic size (HS) from 0.1 nm to 10,000 nm, zeta
potential (ZP), and polydispersity index (PDI) of nanoparticles (NPs).

2.3.3. Optical and Digital Microscopy (OM and DM)

The determination of the size, shape, and granulometric composition of Lvf·Hh
samples before and after Mact was carried out using a microscope with a special binocular
attachment (Altami BIO 2, St. Petersburg, Russia) with magnification 10× (linear field of
view 20 mm). To do this, a sample of dry matter was distributed on a glass slide without
the adhesion of particles. The preliminary calibration was carried out using a micrometer
object with a scale of 1DIV = 0.01 mm. The particles were observed in separate fields of
view. The length was measured on microscopic images, and the shape of the particles was
determined using the Altami Studio 3.3 software system.

The surface structure of Lvf·Hh samples was investigated by using a portable USB
digital microscope LX200 (Levenhuk DTX 50, 124th Ave. Ste D, Tampa, FL 33612, USA)
to determine the size of objects from 1 to 50 µm [20]. This microscope is equipped with a
built-in digital 1.3 megapixel camera connected to a computer. The advantage of a digital
microscope is that it can be used to express diagnostics of large sample areas without
sample preparation. The analysis of the structure, relief, and defects of the layers adjacent
to the surface allowed us to identify the objects under study.

2.4. LALLS Study of Dissolution Rate Kinetics Design

The dissolution rate kinetics of Lvf·Hh samples before and after Mact were researched
in water solvents: ultrapure water (UPW) (>18 MΩ·cm−1 at 25 ◦C, TOC ≤ 5 ppb, Merck
Millipore). The intensity of laser light scattering over time was determined using a low-
angle laser particle dispersion meter Particle Sizer (Malvern Instruments, Malvern, UK)
with a scanning wavelength λ = 632 nm and capacitive cell (V = 3 mL) equipped with a
mechanical stirrer (Figure 5) [21].
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radiator with integrated high-spectral-density LEDs and a video camera. New-generation 
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Figure 5. The optical set-up of dissolution rate kinetics design: 1—632.8 nm He-Ne laser; 2—capacity
cell with examined disperse system; 3—diffraction pattern; 4—detector.

The measurement of Laser Obscuration time (LO) was achieved by adding a sample
of the substance to the cell every 10 s until the complete dissolution of the substance, and
the laser obscuration parameter was recorded during this entire process.

2.5. 2D Light Scattering (2D-LS) Method

The equipment, based on a backscatter detection solution, consists of a small-sized radi-
ator with integrated high-spectral-density LEDs and a video camera. New-generation LEDs
were used to probe the sample surface, providing a power density of up to 50 mVt/cm2 in
the 360–410 nm range and a spectral line width of up to 2–4 nm (model AA3528LVBS/D,
type C503B-BCN-CV0Z0461, CreeLED, Inc., Zhuhai, China) (Figure 6) [22].
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Sb is the threshold level of the signal. 

The number of different ele-
ments, regardless of the degree of 
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The resulting light scattering patterns were processed using ten topological descriptors
similar to the Wiener (W) and Balaban (J) QSAR descriptors, modified by Trinajstic (l)
(Table 1).

Table 1. Representation of chemometric 2D-LS descriptors.

Descriptor Mathematical Representation Description

d1

d1 = i∆Si>Sb
it

·100%
it is the total number of elements.

∆Si is the value of differences in the signal level of the elements of
two interference patterns.

Sb is the threshold level of the signal.

The number of different elements, regardless
of the degree of difference.

d2

d2 = ∑∆Si>Sb ∆Si

it·S
·100%

∑∆Si>Sb ∆Si is the average value of the signal level of all the
elements of the original interference pattern.

The degree of difference for each discrete
element based on the original interference

pattern and the total intensity of the level of
its signal.

d3

d3 = ∑∆Si>Sb ∆Si
it·∆Smax

·100%
∆Smax is the sum of max possible differences in terms of the
signal level of all the relevant elements of the interference

patterns of absolute black and absolute white.

The max value of possible differences
between the interference patterns of absolute

black and absolute white.

The family of descriptors d1,d2,d3 also includes the triads: standard deviation sd1,
sd2, sd3; r1, r2, r3 (ri = di/sdi); and R = ∏i Ri/∑i Ri. Each descriptor is a topological
convolution of the light scattering matrix obtained by the element-by-element subtraction
of the background. Therefore, a descriptor reflects not only spatial irregularities on the
surface or color, but also the dynamic variability in light reflection. A combination of
ten descriptors characterizes each of the surfaces under study and reflects the degree of
difference in the resulting interference patterns.

2.6. Fourier-Transform IR Spectroscopy

To obtain and analyze the vibrational spectra of the Lvf·Hh samples before and after
MAct in the spectral range from 4000 to 500 cm−1, a Fourier-transform infrared spectroscope
(FTIR) (Agilent Cary 630, Santa Clara, CA 95051, USA) with a transmission attachment was
used [23].

2.7. Molecular Docking Studies

For molecular computer modeling, the Lvf·Hh structure was generated with Hyper-
Chem 8.0.8 and docked to the crystallographic structure of DNA-Gyrase II (PBD: 6RKV)
using the BIO-HPC Achilles Blind Docking Server online service [24]. The identified inter-
actions between the low-molecular-weight ligand and the DNA-Gyrase II structure were
visualized using PyMol and the Achilles Blind Docking Server [25].
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2.8. Spirotox Method

The aqueous protozoan Spirostomum ambiguum was used as a cellular model to evaluate
the biological activity/toxicity of the tested substance samples. The survival of the ciliated
protozoan Sp. ambiguum incubated in aqueous solutions of the test samples was investigated
using different MI times at T, C = const and Arrhenius kinetics (T = 296–302 K) of cell death
with corresponding obsevedEa calculations. The mechanism of ligand–receptor interactions
involves the cell–ligand interaction stage, the formation of the C·Ln intermediate state, the
decay of the intermediate complex due to conformational changes, and the death of ciliated
protozoan (Figure 7).
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Figure 7. Kinetic scheme of ligand–receptor interaction of Sp. ambiguum with toxicant: C—cell,
L—ligand, n—stoichiometric coefficient, C·Ln—intermediate state (cell after interaction with the
ligand), Keq—equilibrium constant fast stage, fm—rate constant of the cell transition to the dead state,
DC—dead cell.

Spirotox Study Design

Relationship between the survival of Sp. ambiguum test culture and the nature of the
samples: at an incubation thermostated chamber (T = 24 ◦C) filled with 200 µL of Mili-Q
water, the 100 µL of 9 mM test substance aqueous solution were added and the protozoa
have been immediately placed. The time of cell death was recorded and confirmed through
consecutive biological signs: the convulsion–twisting–cessation of motor activity. The
Arrhenius time dependence of ciliated protozoan Sp. ambiguum cell death was investigated
between 296 and 302 K in an environment containing a 9 mM aqueous solution of the test
substance diluted 1:3 with Mili-Q water.

2.9. Statistical Data Processing

All statistical processing of the data was performed under repeatable experimental con-
ditions using Origin Pro 2023b (v10.05) software. Differences were considered statistically
significant at p < 0.05.

3. Results
3.1. Disperse-Phase Particle Size and Particle Size Distribution
3.1.1. Static Laser Scattering Data

Tribochemical transformations may be accompanied by a reduction in particle size
(fine grinding) or a change in their agglomerated state [26].

A high-intensive mechanical impact on the Lvf·Hh powder for 21 min with a maximum
load of 40 g resulted in an observable dispersity phenomenon (DPh) of the test sample
unloading from the milling bowl every 3 min, as measured using SLS (Figure 8).

The Lvf·Hh native sample size spectra as a size distribution is presented as a fraction
of particles occupying a certain volume in the micron dispersal system, and it is represented
by two max peaks: size groups at d1 = 20 µm and d2 = 115 µm, where the larger fraction
of 20 µm particles indicates the native sample is a non-uniform, bimodal substance. The
sample unloading with MI duration at t = 3 min demonstrates a redistribution of size groups
(d1 = 33 µm and d2 = 86 µm) with a tendency to increase dispersity—a decrease in particle
size in the larger micron fraction. This is also confirmed by results of particle morphology
analyses in OM: the grain size and shape of the disperse phase after fine grinding during
the first and second powder discharges (t = 3 min, t = 6 min) are indistinguishable and
appear in a highly dispersed state, which is close to amorphous (Figure 9).
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Figure 9. Morphology of Lvf·Hh substance unloading samples with different MI times: (a) t = 0 min
(native sample); (b) t = 3 min; (c) t = 6 min.

However, continued high-intensity MI at t ≥ 6 min on Lvf·Hh powder led to the dis-
persity phenomenon (DPh) of discharge samples, consisting of an increase in the diameter
(d, µm) and volume fraction (%) of the particle size groups (Figure 8a). We propose that
while the initial state of Lvf·Hh is a low defective crystalline substance, the instabilities of
the plastic zone accumulate from MI as a result of the formation of catastrophic dislocation
and their multiplication, which is due to dislocation interactions in high-dislocation-density
regions [27]. The analysis of the integral dispersion characteristics confirms the SLS results
for the observed DPh (Figure 8b. The nature of the structures formed by the continuing
MI has a significant effect on the dispersion in the disperse medium, represented in the
form of an oscillatory motion: a successive decrease in the value of the specific surface area
(ssa, m2/cm3) of disperse-phase particles up to t = 9 min. Other observable effects include
an increase in the light scattering properties (LO) and volume concentration (VC, %) of the
disperse system. At MI t > 9 min, identified by a high amplitude of forced oscillations, the
dependence of the system’s response to MI on the Lvf·Hh powder substance is described
as a gradual shortening of the vibration lifetime—the vibration amplitude decreases e times
according to the τ = 1/γ law.

3.1.2. Stress–Strain Relationships

It is interesting to compare the dynamic change in the amplitude values of forced
oscillations (see Figure 8b, red curve) with the change in resistance to the SB deformation
(strength) caused by Bochvar–Oding dislocations: the maximum SB strength will decrease
with the increase in dislocation density until it reaches a critical value, at which, dislocations
will start to hinder and inhibit their own movement in the defective SB structure [28,29].
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The results also show that the gradual application of the MI load to the SB results
in an increase in temperature inside the grinding bowl containing the Lvf·Hh substance,
where the sample undergoes deformation. This suggests that deformation stress has a
positive temperature dependence. As the temperature inside the milling bowl rises, the
number of vacancies and the dislocation density in SB will increase. If we consider the
temperature change inside the TrbCh reactor as the dispersal system’s response to the MI
stress, accompanied by an increase in SB deformation, it is similar to the typical stress–strain
curve form (Figure 10) [30].
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Figure 10. Temperature curve duration of the applied MI: (a) the heating inside the milling bowl;
(b) the typical of SB stress–strain curve.

The resulting temperature curve, “milling bowl heating–duration of the MI applied”,
greatly resembles the “stress–strain curve” and allows us to predict dynamic changes in SB
properties such as the ultimate strength at MI and the angle ratio of the straight line to the
axis OX: k = tgα = 10 min−1, similar to the Young’s modulus calculation.

It can be seen that the critical points (see Figure 10a) are the sections of the curve
corresponding to the applied MI at t = 6 min—the elastic zone; t = 9 min—the yield point;
and t > 9 min—the plastic deformation zone. This shows a trend of the tensile strength due
to MI increasing and the hardening of SB increasing.

A further observed correlation between the increasing stress of dislocation currents
and dimensional anomalies and temperature is demonstrated in the molecular systems of
the investigated samples.

3.1.3. Dynamic Laser Scattering Data

The effect of non-thermal mechanical influence on the drug powder (in the range from
0 to 21 min at a load value of 40 g) was evaluated via the DLS method based on the analysis
of the autocorrelation function determined by the time-varying intensity of scattered light
(Photon Correlation Spectroscopy in aqueous solutions of the test samples with different
MI times (Figure 11).

Figure 11a shows the micelle size in aqueous solutions of Lvf·Hh as well as changes
in aggregate size before and after MI: all substance samples are characterized as being
non-homogeneous, being polymodal with low scattering capacity in the nano-region:
d1~1 nm and d2~100 nm, and having high scattering capacity in the submicron region:
d3 = 300–700 nm. A more informative illustration of the MI effect on the structure and
properties of the Lvf·Hh molecular systems is the polydispersity index dynamics (PDI)
of the samples showing free damping oscillations of the measured quantity with a PDI
maximum approaching 1 at t = 6 min of MI.
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The Z-Average—the intensity-weighted mean hydrodynamic size of the ensemble 
collection of particles and colloidal stability expressed in terms of zeta potential values—
shows a jump-like, periodic, and antibate relationship. The particle aggregation in Lvf·Hh 
molecular systems during the MI promotes a reduction in the absolute value of ζ-potential 
with agglomeration probability. A sharp rise in the Z-Average amplitude is observed at t 
> 9 min with a peak at t = 12 min, produced by MI, which corresponds to the region of 
plastic deformation (see Figure 10) and SB hardening under TRbCh action (Figure 12). 

Figure 11. Dynamics of the Lvf·Hh molecular aqueous solution’s dispersive properties under me-
chanical impact (MI) on the substance powder: (a) intensity of DLS scattering by size groups in the
nano- and submicron range; (b) changes in the polydispersity index value (PDI) in aqueous-solution
unloading of substance samples as a function of MI time.

The Z-Average—the intensity-weighted mean hydrodynamic size of the ensemble
collection of particles and colloidal stability expressed in terms of zeta potential values—
shows a jump-like, periodic, and antibate relationship. The particle aggregation in Lvf·Hh
molecular systems during the MI promotes a reduction in the absolute value of ζ-potential
with agglomeration probability. A sharp rise in the Z-Average amplitude is observed at
t > 9 min with a peak at t = 12 min, produced by MI, which corresponds to the region of
plastic deformation (see Figure 10) and SB hardening under TRbCh action (Figure 12).
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Figure 12. Changes in the aqueous Lvf·Hh solution’s properties when the substance is exposed to
mechanical impact (MI) according to the DLS method: (a) Z-Average (nm); (b) ζ-Potential (mV).

Under conditions of high-intensity MI, the mass-produced defects and impurity atoms
displaced from lattice junctions via the diffusion of intrinsic inter-node atoms to dislocations
form “enriched” regions that determine the changes in SB properties—«dynamic strain
aging» (DSA). It is shown [31] that the energy diagram representing the migration “relief”
of defects and impurities also has a discontinuous periodic relationship with time “τ” shift
per lattice period, with maxima and minima. The minima in the diagram corresponds to a
decrease in the activation energy of the thermally activated jump to the dislocation nucleus,
which is what allows the material to undergo DSA.
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3.2. Fourier-Transform Infrared Spectroscopy Analysis

In this research, the capability of attenuated total reflectance Fourier-transform in-
frared spectroscopy (ATR-FTIR) combined with pattern recognition methods based on
a mathematical model of the convolution of a two-dimensional scattering pattern into a
descriptor (2D-LS) was evaluated to identify the unloading of Lvf·Hh substance samples
with different MI times in the range from 0 to 21 min.

Figure 13 shows the vibrational spectra of Lvf·Hh samples before and after the per-
formed MI in the complete and fragmented regions from 4000 to 500 cm−1 wavenumbers,
reflecting the features of the ongoing changes in the levofloxacin structure from the per-
spective of quantum-mechanical concepts. The FT-IR spectra of the original sample Lvf·Hh
(black curve) show quantum transitions corresponding to the excitation of the vibrational
motion of the molecule in the anharmonic oscillator model [32].

The characteristics of the original Lvf·Hh sample are the high-frequency valence
vibrations of O-H (in H2O and R-COOH); oscillations of N-R and C-H (in aromatic and
aliphatic carbon groups); the group oscillations of C=O, C=C, C-N in the midrange from
1800 дo 1300 cm−1, as well as an intense narrow band of scissor bending O-H oscillations in
H2O. In the fingerprint region, the frequencies at which the bands appear are characteristic
of C-F, C-O-C (the ester group) and C-N (the piperazine cycle) (Table 2).

Table 2. The main transmittance bands in the FT-IR spectrum of unloading of Lvf·Hh substance
samples with different MI times in the range from 0 to 21 min.

Frequency Range, cm−1 Group Compound Class Appearance/Comments

3400–3450 O-H stretching H2O medium

~3250 O-H stretching carboxylic acid strong, intramolecular
H-bonded

3000–2800 N-R stretching amine medium

3000–2840 C-H stretching alkane medium

1720–1706 C=O stretching carboxylic acid strong

1685–1666 C=O stretching conjugated ketone strong

1650–1580 N-H bending amine medium

~1650 O-H bending H2O strong

1606–1550 C=C stretching quinolone strong

1465–1450 C-H bending methyl medium

1342–1266 C-N stretching aromatic amine strong

1045–1000 C-F stretching fluoro compound strong

1275–1200 C-O stretching alkyl aryl ether strong

~1000 C-N stretching piperazine strong

880 ± 20 C-H bending alkane substituted strong

Covalent bonds deformed via high-intensity MI exhibit hyper- or hypochromic effects
(increase/decrease in absorption intensity), a bathochromic shift of the maximum, and
the degeneration of the vibrations, which is expressed as a complete band loss at a given
frequency [33]. The start of the MI impact extends to the tensile bonds in the linear elastic
region (see Figure 10), which is accompanied by an increase in absorption and band
intensity across the frequency range. The dynamic observation of the O-H oscillation
band at 3240 cm−1 for Lvf·Hh before and after the MI produced shows spiking, periodic
fluctuations in the maximum intensity (Figure 14), similar to the results of dispersive
analysis via SLS and DLS (see Figures 8b and 11b).
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Figure 13. FT-IR spectrum of unloading of Lvf·Hh substance samples with milling times from 0 to 
21 min and different wavenumber range (cm−1): (a) full range; (b) 3400–3150; (c) 3000–2750; (d) 1700–
1220; (e) 900–500. 
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Figure 13. FT-IR spectrum of unloading of Lvf·Hh substance samples with milling times from 0
to 21 min and different wavenumber range (cm−1): (a) full range; (b) 3400–3150; (c) 3000–2750;
(d) 1700–1220; (e) 900–500.
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Figure 14. Variability in the height of the maximum transmittance characteristic of the O-H band at 
3240 cm‒1. 

When MI is heavily stressed, transitions between the vibrational levels of the ground 
electronic state of the molecule are disrupted and excessively deformed, creating highly 
reactive bonds. 

3.3. 2D Light Scattering Method 
The macro- and microstructure of a powdered substance depends on both the phys-

ico-chemical nature of the SB and the way it is exposed—the sample preparation. The 
speckle structure visualized as a result of the mutual interference of coherent waves of 
dynamic backscattering is characterized by a set of analytical signal intensities depending 
on the microrelief of the surface and near-surface layers, the object shape and the distri-
bution of scatterers inside the material [34]. The 2D-LS measurements were carried out for 
60 s in 1 s increments with a number of N = 20 repetitions. The results of the measurements 
revealed differences in the nature of the samples under investigation. The results of the 
correlation method in the form of 2D multisample diagrams (similar to the “fingerprint” 
in molecular biology) clearly illustrate the topology of 2D-LS for the unloading of Lvf·Hh 
substance samples with different MI times, as presented in Figure 15. 

Figure 14. Variability in the height of the maximum transmittance characteristic of the O-H band at
3240 cm−1.

When MI is heavily stressed, transitions between the vibrational levels of the ground
electronic state of the molecule are disrupted and excessively deformed, creating highly
reactive bonds.

3.3. 2D Light Scattering Method

The macro- and microstructure of a powdered substance depends on both the physico-
chemical nature of the SB and the way it is exposed—the sample preparation. The speckle
structure visualized as a result of the mutual interference of coherent waves of dynamic
backscattering is characterized by a set of analytical signal intensities depending on the
microrelief of the surface and near-surface layers, the object shape and the distribution of
scatterers inside the material [34]. The 2D-LS measurements were carried out for 60 s in 1 s
increments with a number of N = 20 repetitions. The results of the measurements revealed
differences in the nature of the samples under investigation. The results of the correlation
method in the form of 2D multisample diagrams (similar to the “fingerprint” in molecular
biology) clearly illustrate the topology of 2D-LS for the unloading of Lvf·Hh substance
samples with different MI times, as presented in Figure 15.

The multi-descriptor set is unique for each sample. The blue highlighted area of the
diagram represents the “fingerprint” of the native substance of Lvf·Hh (MI at t = 0 min),
demonstrating an efficient separation of the chemometric descriptors and acting as a
“chemometric reference sample” (ChRS). When comparing experimental samples with
ChRS, a diagnostic rule is used: a sample is considered authentic if two conditions are
fulfilled: at least 6 descriptors out of 10 differ from ChRS; the difference is no more than 15%.

The analysis of the “fingerprint” diagram did not reveal any samples identical to the
original substance, the biggest difference being for the unloading of the Lvf·Hh substance
sample with MI at t = 9 min and 21 min. During the fine grinding of the substance, reaching
the limit of dispersion, tribochemical transformations occur, which result in the formation of
intermediate non-equilibrium states, the deformation of SB, and changes in light scattering
properties, which all plateau at an upper limit of MI.

The results are in good agreement with IR-Fourier spectroscopy—IR curves corre-
sponding to light transmission for samples at MI t = 9 min and 21 min have a maximum
upper position approaching T = 100% throughout the high-frequency wavenumber region.
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3.4. Study of Dissolution Kinetics in Water by the LALLS Method

According to Fick’s law and the Nernst–Schukarev dissolution equation, the heteroge-
neous SB dissolution process is limited by diffusion, adsorption, and desorption:

dC/dt = kS (Csaturated − Ct), (2)

k = DS/δV (3)

Here, dC/dt is the dissolution rate; k—rate constant; S —surface SB; D—diffusion
coefficient; Csaturated и Ct—concentration of saturated solution and solution at the time
of dissolution t; δ—diffusion layer thickness; V—solution volume.

As the values of D, S, δ, and V are constant, the dissolution rate k is a constant
too. However, the constant, S, can be violated by changes in solubility, dissolution rate,
temperature (effect on the diffusion coefficient), and by changes in dispersibility affecting
the SB surface area. The diffusion layer thickness δ remains constant if the stirring rate of
the solution remains unchanged. To describe the differentiation of samples’ properties and
estimate the “response effect” on the MI produced (in the range from 0 to 21 min) with
respect to Lvf·Hh samples, the studies were carried out using an original approach based
on the determination of the SB dissolution rate via low-angle laser light scattering (LALLS)
using the time-varying particle laser light scattering indicatrix in heterogeneous solutions
(Figure 16).

Figure 16a shows an exponential decrease over time in laser obscuration, a depen-
dent variable (LO = 1 − I/I0 100%). However, the dissolution rate of Lvf·Hh substances
treated with MI in the range from 3 to 21 min are several times faster than those of na-
tive Lvf·Hh substances (red curve). The observed phenomena can be explained by using
Equations (2) and (3) of Nernst–Schukarev: a long-term intensive mechanical action on a
substance powder leads to a variation in the SB surface area (S) and the heating of the
powder occurs with a definite time of temperature relaxation, hence leading to a change in
D and, consequently, to changes in the dissolution rate constants of substance loading.

The dissolution rate (k·102, s−1) was estimated from the b coefficient of the straight line
equation y = a + bx. Figure 16b shows significant differences in the values of the dissolution
rate constants of the substance substrate from the native substance (Table 3).
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Figure 16. The dissolution of Lvf·Hh substance samples with different MI: (a) laser obscuration
values’ dependence on dissolution time; (b) dissolution rate constants of unloading of different
Lvf·Hh substance samples.

Table 3. Tribochemical, Arrhenius, and water dissolution parameters of unloading of Lvf·Hh sub-
stance samples with different MI times.

Milling Time,
min

T, K
(Reaction Mill Bowl)

Dissolution
Time, s K·102, s−1 Ea, kJ·mol−1

0 297 200 2.7 -
3 327 50 8.4 30
6 328 30 9.0 32
9 336 40 5.1 14

12 333 40 20.0 46
15 329 30 7.5 26
18 332 90 5.7 17
21 333 60 6.7 10

To determine the limiting stage and the dissolution area—diffusion or kinetic—the
activation energy of the dissolution process is calculated for each stage of unloading a
sample of the substance from the milling vessel, accompanied by a change in temperature
(see Figure 10).

k = A0 exp
(
− Ea

RT

)
, (4)

Here, A0 is the pre-exponential factor; Ea is the activation energy; R is the universal
gas constant; T is the temperature (K).

Turning to decimal logarithms, we obtain the equation for different temperatures:

logki =
Ea

2303 RT
1
Ti

+ lgA0, (5)

Here, ki is the rate constant of the dissolution process at the temperature Ti.
Subtracting the two equations at different temperatures, we obtain:

Ea =
2303 RT1T2

T2 − T1
·lgk2

k1
, (6)

The calculated values of Ea as well as the increase in the dissolution rate at MI t > 3 min
indicate, presumably, a diffusion reaction region: under conditions of an increasing reaction
rate between a solvent and dissolving substance (see Figure 16a, Table 3), the solvent
diffusion rate to the SB surface is the limiting stage [35].
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3.5. Biological Activity Studies Using the Spirotox as Well as Molecular Computer
Docking Methods

Figure 17 shows the survival rate of the cell biosensor—ciliated protozoan Sp. ambiguum
in aqueous solutions of Lvf·Hh substances treated with different MI times in the range
from 0 to 21 min.
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Figure 17. The dependency of Sp. ambiguum on the Lvf·Hh sample’s nature as a result of being
subjected to high-intensity mechanical impact.

The lowest lifetime corresponds to the native substance solution—cell death is detected
in the first 20 s of incubation and is accompanied by motor convulsions. The jump-like
appearance of the τ,L-milling time dependence with periodic maxima and minima of the
cell survival time is noteworthy. The longest lifetime corresponds to the sample with
t = 6 min MI, which corresponds to the “stress–strain curve” deviating from the straight
line, i.e., the transition from the elastic to plastic deformation of the substance (see Figure 10).
However, the survival rate of batch samples subjected to high-intensity mechanical action
is several times higher than that of the native substance solution. This fact may indicate a
decrease in the toxicity of mechanoactivated substance powders, which is consistent with
the literature data on the loss of the pharmaceutical activity and toxicity of drug molecules
due to the loss of important functional groups, such as decarboxylation [36].

The application of the molecular modeling of protein and ligand surface coupling on
the model of DNA-Gyrase II resulted in a positive solution, namely, the detection of an
Lvf compound in the empirically confirmed binding site of levoloxacin, a fluoroquinolone
group with an antibacterial effect, with the active site of DNA-Gyrase II.

The performed structural calculations for the determination of the “pose”, i.e., the
subsequent “docking” of a drug molecule with the surface of topoisomerase, allowed for
the detection of those amino acid residues in the active site of the enzyme, which form
intermolecular bonds with levofloxacin. Thus, interaction between an aspartic acid residue
in position 87 and a fragment of levofloxacin methyl piperazine was detected (Figure 18).

A mutation in the asparginic acid site has a significant effect on the affinity of fluoro-
quinolones to DNA-gyrase II [37]. In the future, this fact will make it possible to predict the
binding sites of target proteins to the molecules of drug compounds that have undergone
certain reactions in solutions or solid-phase transformations.

The dependence of cell biosensor lifetime on temperature is presented in Figure 19
for samples of “extreme” points—solutions prepared from native and mechanoactivated
powders at t = 21 min. From the kinetic point of view, the low-molecular-weight ligand
actually catalyzes cell death, accelerating it up to the laboratory-determined time [38].
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Figure 19. Relationship of Sp. ambiguum lifetime as a function of temperature for the Lvf·Hh samples
with MI times 0 (before McAct) and 21 min (after McAct).

The existence of an intermediate state in the ligand–receptor interaction means that cell
death must take place when this stage is activated and energy is expended (see Figure 7).
From this, it can be assumed that the value of Ea, estimated using the height of the barrier
at the transition to the product—dead cell stage—represents a quantitative criterion for
the toxicity of the ligand. Linearization in Arrhenius coordinates ln(1/tL) = f (1/T) (see
Equation (4)) made it possible to calculate the values Ea (Table 4).

Table 4. The calculated obsEa values of ligand-induced Sp. ambiguum death process in water solutions
of unloading of Lvf·Hh substance samples with different MI times (n = 3).

Milling Time, min obsEa ± SD, kJ·mol−1

0 56 ± 5
21 138 ± 23
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The Arrhenius kinetic study results regarding cell death in a toxicant medium using
the Spirotox method under McAct conditions show a 2.5-fold decrease in the toxicity of
the sample solution with t = 21 MI compared to the native substance (not subjected to MI).
The reason for the decrease in the MI toxicity of the Lvf·Hh sample solution at 21 min
may lie in structure modification and hence the properties of this sample consisting in
the disappearance of the transmission band at 3250 cm−1 in the FTIR spectra of the test
sample (see Figure 13). This may indicate the absence of -OH-group absorption in the
mechanoactivated powder molecules due to decarboxylation.

4. Discussion

The studies and observations of changes in the physico-chemical and biological prop-
erties of the powdered drug substance of the fluoroquinolone group as a result of MI and
non-thermal processes have demonstrated intriguing “response effects”. Changes in the
solid that underwent high-intensity MI were accompanied by a sequential transformation
of linear deformation (elastic energy) into a plastic one and local energy accumulation in
submicroscopic areas with the formation of a “triboplasm” followed by its dissipation into
the SB volume. Everything stated above is accompanied by dislocation dynamics anomalies
within the deformational aging SB. The anomalies observed in the dynamic change in the
properties of the analyzed disperse systems, such as particle size; bulk concentration in the
micron, submicron, and nano range; the polydispersity and electrokinetic stability index;
specific surface area; variability in the vibration spectrum and two-dimensional scattering
from the SB surface as well as the cell biosensor survival take on a stable jump-change
with damping. The phenomena of discontinuous changes in the dynamic properties of the
system under study—mechanoactivated levofloxacin powder—are argued for using the
adopted model of the dynamic impurity subsystem (DIS) with anomalous behavior of the
SB plastic zone [39]. It turns out that the energy pattern of the simplest one-dimensional
impurity migration pattern near the dislocation core with periodic transitions between
the nuclear states and the crystal volume, with the resulting energy minimum as the
most energy-efficient location of the impurity relative to the dislocation, is similar to our
observed results in the evolution of SB properties using the example of the levofloxacin
powder substance.

The results obtained are interesting not only from the point of view of studying the
non-thermal transformation MA mechanism, but also from the point of view of practical
application. A drug substance, having undergone high-intensity MI and changed its
properties up to refinement, can open new horizons in its application, and in particular, in
the repositioning of its pharmacokinetic and pharmacodynamic properties [40].
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Abbreviations

MCh mechanochemistry
MAct mechanoactivation
IUPAC international union of pure and applied chemistry
SMComplex supramolecular complex
DLS dynamic light scattering
SB solid body
obsEa observed activation energy
TrbCh tribochemical
Lvf·Hh levofloxacin hemihydrate
FQs fluoroquinolones
SLS static light scattering
VC volumetric concentration
HS hydrodynamic size
ZP zeta potential
PdI polydispersity index
NPs nanoparticles
QSAR quantitative structure activity relationship
FTIR Fourier-transform IR spectroscopy
MI mechanic impact
DPh dispersion phenomenon
LALLS low-angle laser light scattering
OM optical microscopy
IR infra-red
DSA dynamic strain aging
2D-LS two-dimensional dynamic backscattering
ChRS chemometric reference sample
DIS dynamic impurity subsystem selectivity index
SLS static light scattering
Spirotox test Spirostomum ambiguum acute toxicity test
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