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Abstract: Crystalline hematite nanoparticles as adsorbents for anionic Congo red dye were prepared
by a hydrothermal process using urea hydrolysis. To examine the effects of coexisting anions in a
solution on the formation of hematite nanoparticles, different iron(III) salts, including iron chloride
hexahydrate, iron nitrate nonahydrate, iron sulfate n-hydrate, ammonium iron sulfate dodecahydrate,
and basic ferric acetate, were employed as iron-ion sources. After the hydrothermal treatment of
the solution, consisting of an iron salt and urea at 423 K for 20 h, a single phase of hematite was
formed from the iron-nitrate solution. The results suggested that the hydrothermal formation of
hematite depended on the stability of iron complexes formed in the starting solution. The average
crystallite size and median diameter of hematite nanoparticles also depended on the coexisting
anions, suggesting that the appropriate selection of the coexisting anions in the starting solution can
allow for control of the crystallite size and particle diameter of hematite nanoparticles. The Congo red
adsorption kinetics and isotherms of the hematite nanoparticles were described by the Elovich model
and Langmuir model, respectively. The adsorption thermodynamics parameters were estimated,
which suggested an exothermic and spontaneous process. The results demonstrated good adsorption
properties for Congo red adsorption.

Keywords: hematite nanoparticle; urea hydrolysis; hydrothermal synthesis; coexisting anion; anionic
dye adsorption

1. Introduction

Elemental iron is an abundant natural resource contained in the earth’s crust and is
conventionally and widely used in many industries as a basic material in metallic iron, steel,
alloys, oxides, and hydroxides because of its low cost, high usability, and nontoxicity [1].
Among iron-containing materials, iron oxides, such as FeO, α-, β-, γ-, and ε-Fe2O3, and
Fe3O4, have simple crystal structures and excellent properties, resulting in many practical
uses in various industrial products, such as colorants, catalysts, and magnetic materials [2,3].
In particular, hematite (α-Fe2O3) fine powder has been traditionally used as a pigment; in
recent years, hematite nanoparticles have been actively studied for advanced applications,
e.g., as anode materials in lithium-ion batteries [4–8], adsorbents for removal of heavy
metals and dyes [8–12], sensors [13–17], and photocatalysts [18–21].

Specific crystallinity and particle size are required for each application of α-Fe2O3
nanoparticles and are achievable through various methods [22,23]. Among them, synthesis
processes using liquid phase reactions via formation of ferric hydroxides as precursors
and/or intermediates, e.g., sol–gel and hydrothermal processes with/without postcalcina-
tion, have been industrially employed due to their simplicity of operation [10,13,17,24,25].
In addition, these methods can be used to control the crystallinity and particle size of prod-
ucts by adjusting reaction conditions, such as temperature, concentration, and additives.
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Accordingly, the liquid-phase processes are advantageous in the industrial production of
α-Fe2O3 nanoparticles.

As an effective method to provide homogeneous metal-oxide nanoparticles, hydrother-
mal treatments of hydroxides as precursors/intermediates formed by urea hydrolysis in an
aqueous phase have attracted much attention; the hydroxide-ion concentration increases
uniformly at temperatures higher than approximately 90 ◦C [26–28], resulting in the forma-
tion of homogeneous hydroxides. Some researchers have employed this method for the
synthesis of α-Fe2O3 nanoparticles [29–31]. In the processes, before urea hydrolysis, ferric
ions can be converted to iron complexes with coexisting anions as ligands in a solution; this
may affect the formation of ferric hydroxide [32,33]. This paper first reports a systematic
study on the effects of coexisting anions on the formation of α-Fe2O3 nanoparticles in a
hydrothermal process with urea hydrolysis. To vary the coexisting anions, iron(III) salts
with different anions were used as the ferric-ion source, and the hydrothermal formation of
homogeneous α-Fe2O3 nanoparticles was investigated.

As an application of α-Fe2O3 nanoparticles, removal of harmful pollutants from
wastewaters by adsorption has been conducted using α-Fe2O3 nanoparticles as adsor-
bents [34,35]. For example, large amounts of wastewaters containing toxic organic dyes,
which can have a serious impact on aquatic flora and fauna as well as human beings, have
been generated in various dye industries such as dye manufacturing, textile dyeing, and
printing, and discharged after proper treatments. Adsorption onto α-Fe2O3 nanoparticles
has often been employed as an effective treatment method to remove the pollutants from
aqueous solutions [10,36–38]. Anionic Congo red dye, which is widely used in not only
the textile and optoelectronics industries but also amyloidosis studies [39], can be toxic
because of its carcinogenic nature due to its degradation products such as benzidine [39,40].
Although Congo-red-containing wastewaters have been purified by various methods (e.g.,
degradation [41–44], flocculation [45,46]), adsorption has been attracting much attention
because of its simplicity and efficiency [47,48]. In recent years, α-Fe2O3-based adsorbents
with controlled structures have been developed for effective removal of Congo red [49,50];
however, few studies on the adsorption properties of pure α-Fe2O3 nanoparticles without
additional functionalization have been reported [51], although they can be simply prepared
under environmentally friendly conditions and are expected to have good adsorption
performance. In particular, the thermodynamic analysis of the adsorption using an ap-
propriate adsorption equilibrium constant [52] is insufficient. Therefore, we studied the
adsorption removal of Congo red dye from aqueous solutions using simply synthesized
α-Fe2O3 nanoparticles, and the adsorption properties were carefully investigated.

2. Materials and Methods
2.1. Hydrothermal Synthesis and Characterization of α-Fe2O3 Nanoparticles

All reagents were used without further purification. As iron(III) ion sources, iron
chloride hexahydrate (FeCl3·6H2O), iron nitrate nonahydrate (Fe(NO3)3·9H2O), iron sul-
fate n-hydrate (Fe2(SO4)3·nH2O, n = 7.3), and ammonium iron sulfate dodecahydrate
(FeNH4(SO4)2·12H2O), purchased from FUJIFILM Wako Pure Chemicals (Osaka, Japan),
and basic ferric acetate (Fe(OH)(CH3COO)2; Kishida Chemical, Osaka, Japan) were used.
In a typical synthesis, 100 mL of a solution containing 5 mmol of iron(III) ions were pre-
pared by dissolving an iron salt in deionized water, and a predetermined amount of urea
((NH2)2CO; FUJIFILM Wako Pure Chemicals, Osaka, Japan) was added to the solution.
The resulting solution was hydrothermally treated at 423 K for 20 h under autogenous
pressure (approximately 0.6 MPa) in a Teflon-lined stainless steel autoclave (custom-made
high-pressure vessel) with a capacity of 500 cm3. The solution occupied approximately 20%
of the vessel capacity. During the hydrothermal treatment, α-Fe2O3 nanoparticles were
formed according to the following possible reactions.

(NH2)2CO + 3H2O→ 2NH4
+ + 2OH− + CO2 (1)

Fe3+ + 3OH− → Fe(OH)3 (2)



Powders 2023, 2 340

Fe(OH)3 → α-FeOOH + H2O (3)

2α-FeOOH→ α-Fe2O3 + H2O (4)
Thus, the overall reaction for the formation of α-Fe2O3 was expressed from

Equation (1) to Equation (4) as follows.

Fe3+ + (3/2)(NH2)2CO + (9/2)H2O→ (1/2)α-Fe2O3 + 3NH4
+ + (3/2)CO2 + (3/2)H2O (5)

The amount of urea in the starting solution was determined to be 37.5 mmol, which
was 5 times the stoichiometric ratio stated in Equation (5). The obtained precipitate was
washed with deionized water several times and dried at 353 K overnight in air. To examine
the effects of coexisting anions on α-Fe2O3 formation, the hydrothermal synthesis was
conducted in the presence of either sodium nitrate (NaNO3) or sodium sulfate (Na2SO4)
purchased from FUJIFILM Wako Pure Chemicals (Osaka, Japan). Furthermore, to confirm
the effects of urea hydrolysis on α-Fe2O3 formation, an ammonia solution (FUJIFILM
Wako Pure Chemicals, Osaka, Japan) was used instead of urea at the same ammonium ion
concentration. In the experiment, 5 mmol of Fe(NO3)3, as the iron source, was dissolved
in 25 mL of deionized water. Then, 75 mL of 1 mol/L ammonia solution were added
dropwise to the Fe(NO3)3 solution under vigorous stirring at room temperature. The
resulting suspension was hydrothermally treated for 20 h at 423 K.

The phase evolution of the samples was measured with an X-ray diffractometer (XRD-
6100, Shimadzu, Kyoto, Japan) using Cu–Kα (30 kV, 30 mA) at 1◦/min. The morphology
and particle size distribution were determined for samples with a single α-Fe2O3 phase by
scanning electron microscopy (JSM-6700F, JEOL, Tokyo, Japan) and dynamic light scattering
(Zetasizer Nano ZS, Malvern Panalytical, Malvern, UK), respectively. The zeta potential
was also measured for the dilute suspensions with different pH values using the same
analyzer (Zetasizer Nano ZS).

2.2. Batch Adsorption Studies for Congo Red

Congo red (Nacalai Tesque, Kyoto, Japan, Figure 1) was used as adsorbate. The α-
Fe2O3 nanoparticles synthesized using Fe(NO3)3·9H2O as the iron source were employed
as the adsorbent. Typically, 10 mg of the adsorbent was added to 10 mL of an aqueous
solution of Congo red with an initial concentration of 100 mg/L (pH = 7.3 without ad-
justment). The suspension was sonicated for 10 min and then kept at 293 K under static
conditions for a predetermined amount of time (described later). After that, the adsorbent
was centrifuged and the absorbance of the supernatant was measured with a spectropho-
tometer (U-2900, Hitachi High-Technologies, Tokyo, Japan) at a wavelength of 498 nm. The
concentration Ct (mg/L) at contact time t (h) was determined based on the absorbance.
The removal efficiency R (%) and the adsorbed amount qt (mg/g) were calculated by
Equations (6) and (7), respectively.

R =
C0 − Ct

C0
× 100 (6)

qt =
(C0 − Ct)V

m
(7)

where C0 (mg/L) is the initial concentration, V (L) is the volume of solution, and m (mg) is
the mass of the adsorbent. The equilibrium adsorption capacity qe (mg/g) was calculated
from the equilibrium concentration Ce (mg/L) obtained after contact for more than 12 h
using Equation (7).

To examine the effect of adsorption conditions on the removal efficiency, the dosage
of adsorbent and the initial pH of aqueous solution were varied between 5 mg and 25 mg
and between 3.3 and 10.7, respectively. The pH was adjusted by using 0.1 mol/L HCl or
0.1 mol/L NaOH. In the adsorption kinetics analysis, the contact time was varied from 1 h
to 168 h under fixed conditions of 10 mg of adsorbent and 10 mL of 100 mg/L solution. For
the adsorption isotherm analysis, the initial concentration was varied between 10 mg/L
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and 100 mg/L. Furthermore, to analyze thermodynamically the adsorption process, the
temperature was changed from 293 K to 313 K.
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3. Results and Discussion
3.1. Hydrothermal Synthesis of α-Fe2O3 Nanoparticles with Urea Hydrolysis
3.1.1. Effects of the Reactants on the α-Fe2O3 Formation

The X-ray diffraction (XRD) patterns of the samples prepared with the different iron
salts are shown in Figure 2. The phase evolution in the hydrothermal process strongly
depended on the iron salts employed, i.e., the anions in solution; however, the pH of
the solutions after hydrothermal treatment was 9.2 ± 0.1 regardless of the iron salts that
were present. When Fe(NO3)3 was used, single-phase crystalline α-Fe2O3 was obtained.
However, samples prepared with the other iron salts contained not only α-Fe2O3 but
also the intermediate α-FeOOH. The results suggested that NO3

− ions promoted α-Fe2O3
formation. The hydrothermal synthesis using Fe(NO3)3 confirmed the complete α-Fe2O3
formation reaction in a relatively short period of time (approximately 2 h), as shown in
Figure 3. In this case, instead of α-FeOOH, 6-line ferrihydrite (Fe5HO8·4H2O) intermedi-
ate [53] was detected at the early stages, which may have contributed toward the rapid
formation of α-Fe2O3. The results revealed that Fe(NO3)3 may be a suitable iron source for
the hydrothermal process with urea hydrolysis.

SEM images and particle size distributions of the samples prepared with urea and the
ammonia solution are shown in Figure 4. While the XRD analysis confirmed that a uniform
α-Fe2O3 phase was also obtained when using the ammonia solution, the particle size of
α-Fe2O3 nanoparticles prepared with urea was relatively uniform compared with the case
using the ammonia solution. The results demonstrated that the hydrothermal process using
urea hydrolysis was effective for the preparation of uniformly sized α-Fe2O3 nanoparticles.

3.1.2. Change in the Crystallite Size and Particle Diameter with Coexisting Anion

To examine the reaction-promoting effect of NO3
− ions, 75 mmol of NaNO3, i.e., five-

times the amount of NO3
− ions contained in the starting Fe(NO3)3 solution, were added

to the starting solutions prepared with the iron salts except for Fe(NO3)3; hydrothermal
treatment was then performed under the same conditions. The XRD patterns of the samples
prepared in the presence of NO3

− ions are shown in Figure 5. When the NaNO3-added
FeCl3 and Fe(OH)(CH3COO)2 solutions were used, a single α-Fe2O3 phase was obtained;
in particular, high-crystalline α-Fe2O3 was formed from the NaNO3-added FeCl3 solution.
In contrast, the addition of NaNO3 to the Fe2(SO4)3 and FeNH4(SO4)2 solutions negligibly
improved the hydrothermal formation of α-Fe2O3.
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However, when the Fe(NO3)3 solution contained 1.5 mmol of Na2SO4, in which the
molar ratio of SO4

2−/NO3
− in the solution was 0.1, the obtained sample comprised mostly

α-FeOOH, as shown in Figure 5, indicating that SO4
2− ions may have considerably reduced

the reaction rate of α-Fe2O3 formation. In particular, the reactivity and stability of inter-
mediate ferric hydroxide may be varied by coexisting SO4

2− ions [32,33]. Accordingly, the
coexisting anions in the solution were found to greatly affect the hydrothermal formation of
α-Fe2O3. NO3

− and SO4
2− ions can especially promote and inhibit the α-Fe2O3 formation

reaction in this process, respectively. In addition, the effects of SO4
2− ions may be stronger

than those of NO3
− ions. The results suggested that the stability of iron complexes in the

solution plays an important role in the hydrothermal formation of α-Fe2O3. However, the
detailed mechanism remains unknown and requires further study.
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The crystallite sizes of samples with a single α-Fe2O3 phase prepared using Fe(NO3)3,
NaNO3-added FeCl3, and NaNO3-added Fe(OH)(CH3COO)2 solutions were calculated
using the Scherrer equation. The average values of crystallite size, which were calculated
using the diffraction intensity peaks observed at 2θ ≈ 24.1◦, 33.2◦, 35.6◦, 40.9◦, 49.5◦, 54.1◦,
62.4◦, and 64.0◦ corresponding to the (012), (104), (110), (113), (024), (116), (214), and (300)
crystal planes of α-Fe2O3, respectively, the crystallinity index CI (%), which is defined by
Equation (8),

CI =
It − Ia

It
× 100 (8)

where It (−) is the total intensity for α-Fe2O3 (110) plane and ferrihydrite (110) plane at
2θ ≈ 35.7◦ and Ia (−) is the intensity for ferrihydrite (113) plane at 2θ ≈ 46.3◦ as amorphous
phase, and the median diameter of number-basis distribution of particle sizes are summa-
rized in Table 1. The SEM images are also shown in Figure 6. Although the crystallinity
index was almost the same (98–99%), the crystallite size and particle diameter varied de-
pending on the coexisting anions in the solution, suggesting that their control is possible by
using the coexisting anions as an operating factor.

Table 1. Average crystallite size, crystallinity index, and median diameter of α-Fe2O3 nanoparticles
obtained after hydrothermal treatment for 20 h.

Starting Material Average Crystallite
Size (nm)

Crystallinity
Index (%)

Median
Diameter (nm)Iron Source Additive

Fe(NO3)3 – 24.1 98.1 53.2
FeCl3 NaNO3 46.8 99.0 125.4

Fe(OH)(CH3COO)2 NaNO3 30.8 98.6 55.5
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3.2. Adsorption Studies of Congo Red

As shown in Figure 7a, the removal efficiency increased with increasing adsorbent
dosage due to an increase in the number of active adsorption sites. In contrast, with a
decrease in pH, the removal efficiency increased (Figure 7b), which was similar to the
results reported in the literature [51]. In particular, when pH ≤ 4.6, the removal efficiency
reached above 80% and the adsorbent showed good adsorption performance. This may be
attributed to electrostatic interaction between the adsorbent and the anionic dye molecules
due to the positive surface potential of adsorbent [51], as seen in the pH dependence of
zeta potential (Figure 7b).

The change in the adsorbed amount qt with contact time is illustrated in Figure 8.
The adsorbed amount rapidly increased in the initial stage and approximately reached
equilibrium after several hours. To analyze the adsorption kinetics, several representative
models, i.e., pseudo-first-order model, pseudo-second-order model, intra-particle diffusion
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model, and Elovich model [54], which are expressed by Equations (9), (10), (11), and (12),
respectively, were applied to the experimental data shown in Figure 7.
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k1 (h−1), k2 (g/(mg·h)), and ki (mg/(g·h0.5)) are the rate constants of the pseudo-first-
order, pseudo-second-order, and intra-particle diffusion models, respectively. c (mg/g) is a
constant. α (mg/(g·h)) and β (g/mg) are the initial sorption rate and the constant related
to the extent of surface coverage and activation energy for chemisorption, respectively.
The nonlinear fitting results using Equations (9)–(12) and the determined parameters,
which were obtained by the Solver function of Microsoft Excel 2016 (Microsoft Corporation,
Redmond, WA, USA), are shown in Figure 8 and Table 2, respectively. The experimental
data fit well with the Elovich model, which suggest chemical adsorption process and the
activation energy increased with adsorption time [55].

Using the relationship between qe and Ce shown in Figure 9, the adsorption isotherm
was analyzed using the Langmuir model, the Freundlich model, and the Temkin model,
which are described by Equations (13), (14), and (15), respectively.

qe =
qmKLCe

1 + KLCe
(13)

qe = KFC1/n
e (14)

qe = qT ln(ATCe) (15)
where qm (mg/g) is the maximum monolayer adsorption capacity and KL (L/mg) is the
Langmuir equilibrium constant. KF (mg/(g·(mg/L)1/n)) and n (−) are the Freundlich
constants related to the adsorption capacity and the intensity of adsorption, respectively.
AT (L/mg) and qT (mg/g) are the adsorption equilibrium constant of solute on solid
surface [56] and the surface capacity for contaminant adsorption per unit binding en-
ergy [57], respectively. As shown in Figure 9 and Table 3, the experimental data were
well-described by the Langmuir model, which suggested the homogeneous monolayer
adsorption. Here, the comparison of the maximum monolayer adsorption capacities with
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some literature values is summarized in Table 4. Although no additional treatments for
enhancing the adsorption performance such as surface modification were performed, our
hematite nanoparticles, which were synthesized by the simple process using inexpensive
raw materials, have relatively good adsorption properties and can be a promising candidate
as an adsorbent for Congo red.
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Figure 8. Adsorption kinetics plots: pseudo-first-order model, pseudo-second-order model, intra-
particle diffusion model, and Elovich model.

Table 2. Values of parameters for adsorption kinetic models.

Kinetic Model Parameter Value

Pseudo-first-order
qe (mg/g) 24.5
k1 (h−1) 1.55

R2 0.902

Pseudo-second-order
qe (mg/g) 25.2

k2 (g/(mg·h)) 0.0928
R2 0.934

Intra-particle diffusion
c (mg/g) 12.9

ki (mg/(g·h0.5)) 1.45
R2 0.607

Elovich
α (mg/(g·h)) 4.55 × 103

β (g/mg) 0.457
R2 0.959

The adsorption process was thermodynamically analyzed using the following
equations [52]:

∆G◦ = −RT ln Ke
◦ (16)

ln Ke
◦ =

∆S◦

R
− ∆H◦

RT
(17)

where ∆G◦ (J/mol), ∆S◦ (J/(mol·K)), and ∆H◦ (J/mol) are the Gibbs free energy, the
standard entropy, and the standard enthalpy, respectively. Ke

◦ (−) is the thermodynamic
equilibrium constant and is obtained by Equation (18) [52].

Ke
◦ = KL Mcad (18)

where KL (L/mg) is the Langmuir equilibrium constant of adsorption, which was deter-
mined from the isotherm data obtained at different temperatures; M (mg/mol) is the
molecular weight of adsorbate; and cad (mol/L) is the standard concentration of adsorbate,
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which is defined as 1 mol/L. The results of linear fitting with Equation (17) are shown in
Figure 10 and Table 5. Although it is difficult to evaluate the adsorption performance of an
adsorbent based on the magnitude of the values of ∆G◦, ∆S◦, and ∆H◦, it is noteworthy
that their values were negative, which indicates that the adsorption process is feasible
and spontaneous, decreases in randomness at the adsorbent/dye interface, and is exother-
mic. In general, when such requirements are satisfied, the adsorption can be favorable.
Therefore, using our α-Fe2O3 nanoparticles as the adsorbent for removal of Congo red is
practically applicable.
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Figure 9. Adsorption isotherm of Congo red dye onto the α-Fe2O3 nanoparticles using the Langmuir
model, the Freundlich model, and the Temkin model.

Table 3. Values of parameters for adsorption isotherm models.

Isotherm Model Parameter Value

Langmuir
qm (mg/g) 23.0
KL (L/mg) 1.86

R2 0.944

Freundlich
KF (mg/(g·(mg/L)1/n)) 13.8

n (−) 7.32
R2 0.885

Temkin
AT (L/mg) 221
qT (mg/g) 2.53

R2 0.926

Table 4. Comparison of the maximum adsorption capacities calculated from Langmuir model.

Adsorbent qm (mg/g) Reference

Porous α-Fe2O3 nanorod 57.2 [51]
Fe3O4@SiO2@Zn–TDPAT 17.7 [58]

MgFeAl LDHs 14.8 [59]
NiFeTi LDHs 30.0 [60]

MnFe2O4 25.8 [61]
Fe–Zn bimetallic nanoparticles 28.6 [62]

α-Fe2O3 nanoparticles 23.0 This work
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◦ against 1/T for estimation of thermodynamics parameters (R2 = 0.928).

Table 5. Thermodynamic parameters for Congo red adsorption on the α-Fe2O3 nanoparticles.

Temperature (K) ∆G◦ (kJ/mol) ∆S◦ (J/(mol·K)) ∆H◦ (kJ/mol)

293 −34.40

−18.0 −39.66
303 −34.22
308 −34.13
313 −34.04

For investigating the reusability of the adsorbent, the regeneration experiment was
performed. After adsorption for more than 12 h under the typical conditions except for
the initial concentration (10 mg/L in this investigation), the spent adsorbent was isolated
from the dye solution and heated at 673 K in air for 2 h [63] as an example. The adsorption–
regeneration was repeated three times under the same conditions. As shown in Figure 11,
relatively large adsorption capacities were observed for the spent adsorbent even after the
regeneration, although it had a tendency to decrease with increasing the cycle number.
The result suggests that the adsorbent is reusable after the conditions for regeneration are
optimized for maintaining the adsorption performance in the recycling.
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4. Conclusions

In the hydrothermal synthesis of crystalline α-Fe2O3 nanoparticles via urea hydrolysis,
the anions contained in the starting solution greatly affected the rate of α-Fe2O3 forma-
tion. In particular, NO3

− ion promoted the formation reaction, which may be due to the
formation of a 6-line ferrihydrite intermediate. This can contribute to the rapid synthe-
sis of α-Fe2O3 nanoparticles. In contrast, when using FeCl3, Fe2(SO4)3, FeNH4(SO4)2, or
Fe(OH)(CH3COO)2 as the iron source, the products contained the intermediate α-FeOOH in
addition to α-Fe2O3. The addition of NaNO3 to the FeCl3 and Fe(OH)(CH3COO)2 solutions
provided a single α-Fe2O3 phase. However, the addition of NaNO3 to the Fe2(SO4)3 and
FeNH4(SO4)2 solutions resulted in no changes in phase evolution. Accordingly, SO4

2− ions
tended to inhibit the reaction, which may be due to the formation of a relatively stable iron
complex. Furthermore, the effects of SO4

2− ions may be stronger than those of NO3
− ions.

The average crystallite size and median diameter of α-Fe2O3 nanoparticles prepared using
the Fe(NO3)3, NaNO3-added FeCl3, and NaNO3-added Fe(OH)(CH3COO)2 solutions also
depended on the coexisting anions. Therefore, selecting the coexisting anions appropriately
can contribute to controlling the growth of α-Fe2O3 nanoparticles.

The α-Fe2O3 nanoparticles prepared with Fe(NO3)3 were used as the adsorbent for
removal of Congo red dye. The adsorption kinetics and isotherm followed the Elovich and
Langmuir models, respectively. The adsorption thermodynamic study revealed that the
adsorption process was feasible and practically applicable. The results demonstrated that
the α-Fe2O3 nanoparticles synthesized by the simple process using the inexpensive raw
materials have relatively good adsorption properties without additional functionalization,
such as surface modification, and are a promising candidate as adsorbents for Congo red.
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