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Highlights:

What are the main findings?

• Laboratory SAG mill acoustics are sensitive to different feed size fractions.
• Supervised classification models and acoustic emissions were suitable for predicting different

feed size fractions in laboratory SAG mills.

What is the implication of the main finding?

• SAG mill acoustics can serve as online proxy tool for providing more insight into different feed
size fractions in the mill.

• The practical implication of the study could be beneficial to SAG mill operators by predicting a
sudden change in feed size in real-time.

Abstract: The harsh and hostile internal environment of semi-autogenous (SAG) mills renders real-
time monitoring of some critical variables practically unmeasured. Typically, feed size fractions are
known to cause mill fluctuations and impede the consistent processing behaviour of ores. There
is, therefore, the need for continuous monitoring of mill parameters for optimal operation. In this
paper, an acoustic-based sensing method is employed to estimate, in real time, a snapshot of the
different feed size fractions presented to a laboratory-scale SAG mill. Employing the MATLAB 2020b
programme, the mill acoustic signal is processed using various transform techniques such as power
spectral density estimate (PSDE) by Welch’s method, discrete wavelet transform (DWT), wavelet
packet transform (WPT), empirical mode decomposition (EMD), and variational mode decomposition
(VMD). Different fractional bandpowers are obtained from the PSDE spectrum, while the statistical
root mean square values are further extracted from DWT, WPT, EMD, and VMD as feature vectors.
The features are used as input features in different machine-learning classification algorithms for
different mill feed size fractions predictions. The various transform techniques and feed size fraction
predictions are evaluated using the various performance indicators obtained from the confusion
matrix such as accuracy, precision, sensitivity and F1 score. The study showed that the acoustic signal
feature extraction techniques used in conjunction with the Support Vector Machine (SVM), linear
discriminant analysis (LDA), and ensemble with subclass discriminant machine learning algorithms
demonstrated improved performance for predicting feed size variations.

Keywords: semi-autogenous mill; acoustic sensing; supervised machine learning classification
algorithms; feature extraction; mill feed size fraction
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1. Introduction

The operations of AG/SAG mills are known to be sensitive to the changes in feed
particle size distributions presented to the mill [1]. The variation of feed particle size
significantly affects the overall process control, product quality, and economic performance
of the mill [2–4]. Poor product quality from the AG/SAG mill poses significant challenges
to downstream processes such as flotation, pre-treatment, leaching and dewatering [5–10].
As high-grade and easy-to-access ores (surface mining ores) continue to decline, miners
have turned to deep pits for ores, which have a high degree of ore hardness. The changes
in the ore hardness, coupled with sophisticated mining methods, subsequently define the
feed size ranges introduced into the AG/SAG mill. The internal workings of an AG/SAG
mill are difficult to visualise and capture in real time because the shell of the mill is opaque,
and the grinding environment is aggressive [11–14]. Several methods have been adopted
to understand and control the feed particle size distribution before feeding the SAG mill
aimed at improving process stability [3]. These methods have demonstrated some level
of success, but more advanced approaches are still required to improve control efficiency.
Real-time monitoring of the feed size variations in the mill could be an important tool to
optimize mill performance [14].

Advanced control techniques are an exciting development by which mining companies
can improve and optimise SAG mill grinding performances via real-time monitoring
technology [15]. In addition, the measurement of vibration-acoustic emission signals has
emerged as a promising tool to understand the state of the mill (AG/SAG mill and ball
mills) [16–28]. Notwithstanding, more accurate and precise prediction is a topical subject
and of great interest to mineral processing engineers for monitoring mill parameters (e.g.,
feed size distribution) as a pathway to mitigate mill disturbances. The development of
such methods can be employed in comminution to provide mill operators with quick
decision-making information; for example, in the event of sudden fluctuations in feed size
distribution due to failure of upstream measures such as crusher wear and screen damage.

The advent of machine-learning algorithms (supervised and non-supervised learning)
has gained frontline attention in many areas, including AG/SAG mills as they offer several
advantages in solving complex problems [29–31]. Common machine-learning (supervised
learning) algorithms employed in this quest include the Support Vector Machine (SVM),
Decision Tree (DT), Random Forest (RF), and Artificial Neural Networks (ANN) [32].
Machine learning, in combination with vibration or acoustic emissions, has been reported
as an innovative and successful approach for handling complex and dynamic systems such
as AG/SAG mills [30]. In a study by Nayak et al. (2020), the prediction of the fill level
of a ball mill was performed using different transforms deduced from vibration signals
and the ANN algorithm. The outcome of the study showed that features derived from
fast Fourier transform (FFT) and ANN algorithm were the most suitable for predicting
different fill levels in a ball mill. Another study by Li et al. (2021) used mill acoustic
emissions generated from DEM simulations and the ANN model to predict the particle
flow dynamics, such as particle size distribution, the mill filling level (throughput), and the
energy distribution of a ball mill [33]. Spencer and Sharp (2006) employed the principal
component analysis (PCA) and hierarchical clustering (unsupervised machine learning)
together with AG/SAG mill surface vibration to develop robust models for mill charge,
feed and charge size, pulp density, and feed rate [14]. Zeng and Forssberg (1994) used
ball mill vibration-acoustic signal and PCA to develop multiple regression models for
monitoring process variables, such as feed rate, pulp density feed size, product size, and
power draw [34]. According to the study’s findings, the product size and power draw
are largely linked to the vibration signal, while the other parameters are to the acoustic
signal. Furthermore, Zeng and Forssberg (1996) used PCA in conjunction with vibration
signals to investigate the breakage characteristics of mono-size feed particles in a hydraulic
press machine [23]. However, studies on the conjoint use of machine-learning techniques
and acoustic sensing for predicting different feed size distributions in an AG/SAG mill
are limited.
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The current study seeks to combine mill acoustic emission responses and supervised
machine learning (classification algorithms) to predict different feed size fractions inside
AG/SAG mill operations in real time. The acoustic emission responses of nine different
feed size distributions in a purpose-built laboratory AG/SAG mill were measured using
an acoustic sensor. Different acoustic signal processing techniques or transforms, such
as power spectral density estimate (PSDE), discrete wavelet transform (DWT), wavelet
packet transform (WPT), empirical mode decomposition (EMD), and variational mode
decomposition (VMD), coupled with the statistical root mean square (RMS), were sub-
jected to six standard classification algorithms. The following key research questions were
addressed accordingly:

(a) Which statistical features can best describe acoustic signal variations?
(b) What is the response of varying AG/SAG mill feed size fractions in terms of

acoustic emission?
(c) What are the performances of the various extraction techniques used in the study for

predicting different feed size distributions inside the laboratory-scale AG/SAG mill?
(d) Which signal extraction technique and classification can best predict different feed

size fractions within the mill?
(e) What is the overall practical overview of the study?

2. Experimental Method
2.1. Feed Size Variations, Grinding Studies, and Acoustic Measurements

The iron ore sample used in the study was classified into different fractions as shown
in Table 1 (photographs of the feed size fractions are provided in the Supplementary
Document). Grinding was performed for the different mill feed size fractions using
a laboratory-based AG/SAG mill (30 cm diameter to 15 cm length) connected to an
acoustic sensor system [microphone and preamplifier (PreSonus—AudioBox iOne)] and
a laptop computer. The microphone was positioned ~21 cm away from the toe section of
the mill, as this is the region of the mill where significant acoustic emission intensities
are produced [17]. Previous investigations published by the same authors provide a
summary of the experimental setup [26]. A preliminary test was carried out with no
load (empty mill) for one minute at different mill speeds of 40 rpm, 50 rpm, and 60 rpm,
corresponding to 51.6, 64.5, and 77.4 critical speeds, respectively. In the actual study,
the mill was operated with a charge made up of 2 kg of ore (~10 vol.%), steel balls (~8
vol.%), and 860 mL of water (~70 wt.% solids). The speed of the mill, unless otherwise
specified, was constant at 58 rpm (~75% critical speed), and the grinding time was 5 min
for each test. The acoustic sensor was used to record the mill acoustic signal during
grinding (including the preliminary study) at a sampling frequency of 44.1 kHz [16]. The
preliminary investigation was required to obtain acoustic sensed data (less varied signal)
in order to select the appropriate statistical features from the acoustic signals. During
grinding, the signal behaviour was visualised on the Audacity software platform, which
was installed on the laptop computer. After each test, the acoustic signal is stored as
a .wave file and exported to MATLAB platform for analysis. The grinding tests were
performed in a controlled laboratory (quiet environment) to attenuate the interferences of
any source of environmental noise. The mineralogical and chemical composition of the
sample (XRF and XRD), as well as the mill and sensor specifications and experimental
conditions, are reported in the supplementary document.
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2.2. Acoustic Signal Data Collection and Pre-Processing

The acoustic emissions recorded from the mill fed with different size fractions of
ore were analysed using the MATLAB R2020b software (Statistics and Machine Learning
Toolbox—Classification Learner App). The first 30 s of acoustic data (1,323,000 sample
points) were sampled from the entire 5 min of grinding time for the analysis, focusing on
the acoustic response (sensitivity) of the different feed size fractions before disintegrating
over time. The sampled sensed acoustic data provided enough information to represent
each feed size fraction while reducing computational time. The signal was pre-processed
by cropping out the pre-trigger and post-trigger signals, as well as by removing the back-
ground noise interference using the finite impulse response filter (FIR) [25]. Furthermore,
the Savitzky–Golay filtering technique (also known as digital smoothing polynomial or
least square smoothing filter) was applied to smoothen and improve signal quality [35].
This filtering technique was selected among other simple techniques, such as the moving
average filter, because it has an extensive application and is preferred when the best poly-
nomial order and frame length are estimated [35]. It tends to reduce or smooth out the
noise of a signal while preserving the information of the original signal, such as shape,
amplitude, peak height, width, and high-frequency components [35–37]. Figure 1 illustrates
the step-by-step approach for processing the mill acoustic emission signals.
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Figure 1. A step-by-step procedure for the signal pre-processing (A) raw acoustic emission
(B) removal of pre-and-post signals, where A and B are the pre-signal and post-signal, respec-
tively. The red short dashes vertical lines represent the pre-and-post cut-off parts of the signal (C) FIR
filter development and (D) Savitzky–Golay filtering technique.
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Table 1. Feed particle size fractions and classification.

Class Feed Size Fractions (mm)

1 −2 + 0.85

2 −4 + 2

3 −6.7 + 4

4 −8 + 6.7

5 −9.5 + 8

6 −13.2 + 9.5

7 −16 + 13.2

8 −19 + 16

9 −26.5 + 19

3. Preliminary Statistical Feature Extraction

To ascertain the most suitable statistical feature for the signal transforms, eight different
statistical features, including root mean square (RMS), mean absolute value (MAV), the
maximum (Max), standard deviation (SD), variance (Var), spectral skewness (SS), spectral
kurtosis (SKur), and peak factor (PF) were considered as shown in Table 2 [38–40].

Table 2. Statistical feature selections.

Statistical Features Equations Number

Root mean square (RMS) RMS =

√
1

∆T

∆t∫
0

AE2(t)dt (1)

Mean absolute value (MAV) MAV = 1
N

N
∑

i=1
|Xi − µ|2 (2)

Maximum (Max) The maximum peak or value
of a given acoustic signal -

Standard deviation (SD) SD =

√
1
N

N
∑

i=1
(Xi − µ)2 (3)

Variance (Var) Var = 1
N

N
∑

i=1
(Xi − µ)2 (4)

Skewness (SS) SS = 1
N

∑N
i=1(Xi−µ)3

SD3
(5)

Kurtosis (SKur) SKur = 1
N

∑N
i=1(Xi−µ)4

SD4
(6)

Peak factor (PF) PF = Max
RMS (7)

Where AE is the acoustic emission signal, N is the number of discretise AE data set within ∆T, ∆T is the integral
time constant, t is the set time, i indicates the data values in the set under consideration, X is the data values, and
µ is the mean value of the data set.

These features were first applied to the mill acoustic signal recorded from an empty
mill revolution at 40 rpm, 50 rpm, and 60 rpm in the preliminary study. It was identified
that the acoustic emission level intensity of an empty mill (no load), revolving at differ-
ent speeds, has less variation in acoustic intensity characteristics (more stationary) [18].
The acoustic signal (10 s) corresponding to every speed was selected and sectioned into
10 frames containing 44,100 data points. Each feature was estimated for the different frames
(10 times) and compared using the coefficient of variation (CoV). CoV is the relative vari-
ability of data expressed as the ratio of standard deviation to the arithmetic mean [41].
The acceptance criterion for estimating the performance of the features was set to 5% of
the CoV.
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4. Feature Extraction Techniques for Mill Feed Size Acoustic Estimation

The recorded signals from the sensor during the grinding experiment were initially
presented as time–amplitude domain acoustic signals. In this study, different transforms
were applied to the time–amplitude domain acoustic signal to extract features as input
feature vectors for modelling. The different transforms employed include power spectral
density (PSDE), discrete wavelet transform (DWT), wavelet packet transform (WPT), em-
pirical mode decomposition (EMD), and variational mode decomposition (VMD) [11]. In
the PSDE analysis, the total spectrum was sub-divided into 11 bands, and the bandpowers
were estimated as input features for the machine learning [14]. In addition, the root mean
square values were also deduced from the DWT, WPT, EMD, and VMD as statistical input
feature vectors for the modelling process.

4.1. Power Spectral Density Estimate (PSDE)

The time–amplitude domain signal is transformed into power spectral density es-
timate (PSDE) using the Welch’s method. PSDE is the power measurement variation
within a signal, measured as a function of frequency [42]. Applying Welch’s method,
the mill acoustic signal, denoted by x[n], is partitioned into a number of frames (seg-
ments) by multiplying a specified window function (Hanning), which is represented in
Equations (8)–(11) [17,24,43–45].

Windowed mill signal:

Xm[n] = w[n]X[n + (m− 1)R], n = 0, 1, 2, . . . , N − 1, m = 1, 2, . . . , M (8)

where N is the window length, R is the window size, M is the frame number, and the
N-point discrete Fourier transform (DFT) of the windowed mill signal, represented by
Xm[k], is expressed as:

Xm[k] = ∑N−1
n=0 xm[n]e−j2πk/N ; k = 0, 1, . . . , N − 1 (9)

Here, let Sm[k] be the PSDE of the windowed mill signals derived from the peri-
odogram technique, as follows:

Sm[k] =
1
N
|Xm[k]|2; k = 0, 1, . . . , N − 1 (10)

The Welch PSDE (improved averaged periodogram), given by S[k], is deduced by
finding the average of the periodograms over frames as:

S[k] =
1
M ∑M−1

m=0 Sm[k]; k = 0, 1, . . . , N − 1 (11)

The criteria for computational parameters used in this work can be found in [25]. A
quantitative approach was developed to quantify the total energy (bandpower) within a
frequency spectrum. The frequency spectrum from 0–22 kHz was divided into 11 frequency
bands of 2 kHz. The bandpower in each frequency band was computed and used as input
features for the classification model.
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4.2. Discrete Wavelet Transform (DWT)

Wavelet transform (WT) is used to extract information from a transient or non-
stationary signal in both time and frequency [11,46]. WT can be classified into two types:
the continuous wavelet transform (CWT), and the discrete wavelet transform (DWT). The
CWT of a signal is defined as the integration of the product of the original signal x(t) and
the son wavelet over a period, given in the expression as shown in Equation (12) [46–48]:

CWT(a, b) =
∫ +∞

−∞
x(t)ψa,b(t)dt =

1√
a

∫ +∞

−∞
x(t)ψ

(
t− b

a

)
dt (12)

where a is the scalar factor, b is the translation factor, ψa.b(t) is the son wavelet, and ψ(t) is
the mother wavelet.

For the DWT, the original signal is subjected to a low-pass filter and high-pass filter
to obtain outputs of the low-frequency component (approximation coefficient) and high-
frequency component (detail coefficient), respectively. The DWT of a given continuous
signal x(t) is expressed in Equations (13) and (14) [46,49]:

DWT(a, b) =
∫ +∞

−∞
x(t)ψa,b(t)dt (13)

ψ(a,b)(t) =
1√
2j

ψ

(
t− 2jk

2j

)
(14)

where ψa,b defines the bases of wavelet functions, deduced from translated and dilated of
the mother wavelet using the dilation a (2j) and translation b (2jk) parameters, respectively.

In this paper, DWT was considered for analysis using the fourth-order Daubechies
(Db4) wavelet function [50]. The original acoustic signal was first decomposed into low-
frequency components (approximation) and high-frequency components (detail). The
low-frequency component sub-band was further decomposed into approximation and
detail sub-bands. The procedure was repeated multiple times until the eighth stage for a
fine-scale analysis. The detail components, including cD1, cD2, cD3, cD4, cD5, cD6, cD7,
cD8, and the eight-decomposition level approximation component cA8, were selected.
Following that, the RMS values were determined and used as input feature vectors to the
machine-learning algorithms to estimate the feed particle size inside the AG/SAG mill.

4.3. Wavelet Packet Transform (WPT)

The framework of the wavelet packet transform (WPT) is similar to DWT and provides
a better frequency resolution [48]. In DWT, the decompositions are iteratively focused
on the low-frequency components (approximation coefficient), whereas in the WPT, the
decomposition is simultaneously applied to both the low-frequency component (approxi-
mation coefficient) and high-frequency component (detail coefficient) sub-bands at every
level [49]. During the decomposition process, any lost information in the low-frequency
component is allocated to the high-frequency component. The Db4 wavelet function was
used to decompose the acoustic signal until the fourth-level wavelet packet decomposition
(four-layer structure). In all, 16 wavelet packet coefficients were obtained. The RMS values
were ascertained for all the coefficients or sub-bands and used as input vectors in the
machine-learning modelling.
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4.4. Empirical Mode Decomposition (EMD)

EMD algorithm introduced by Huang et al. (1998) is used for analysing non-stationary
and nonlinear time series signals [51,52]. The algorithm was employed initially to decom-
pose a time-series signal into low-frequency components and high-frequency components
(different resolutions). In the EMD, the low- and high-frequency parts are also referred
to as residual and Intrinsic Mode Functions (IMF), respectively. The low-frequency com-
ponent (residual) is considered a new signal and further decomposed into new low- and
high-frequency components. The procedure is then repeated a given number of times, and
the IMF parts were considered for analysis. Given a time series mill acoustic signal y(t), the
following steps are taken using the EMD [11,52,53]:

1. Determine all the local minima and maxima (extrema) of the given signal y(t).
2. Estimate the lower envelope, emin(t), and upper envelope, emax(t), by interpolation of

the extrema.
3. The local average or mean, r(t) = [emin(t) + emax(t)]/2 of the envelope as the “low-pass”

center, also known as the residual, is computed.
4. Extract the first high-frequency component (IMF), as known as the detail component

as d(t) = y(t) − r(t).
5. Iterate the procedure on the residual r(t) until all the IMFs are acquired.

After the decomposition, the EMD algorithmic method presents the signal y(t) as the
summation of all the IMFs and a final residual [53]:

y(t) = ∑n
i=1hi(t) + rn(t) (15)

where hi(t), i = 1 . . . n are the IMFs and rn(t) is the final residual.
The RMS of all the IMF components (9) were determined and used as input feature

vectors in the machine-learning models.

4.5. Variational Mode Decomposition (VMD)

Similar to the EMD, VMD is a relatively novel and non-recursive decomposition
algorithm, which is used for signal processing. While EMD is susceptible to noise, which can
cause problems in mode mixing, the VMD algorithm has proven to overcome mode mixing
and reduce the noise effect [54,55]. The algorithm is used to decompose non-stationary
signals into multiple modes (IMFs or sub-signals), with limited frequency bandwidths and
center frequency for solving variational problems [54,55]. It employs the variational model
to search for and achieve optimal solutions. In all, the RMS of 10 IMF components were
calculated and used as input feature vectors in the machine-learning models.

5. Machine Learning Classification Models’ Intuition

Machine learning is the process of training a machine to learn and make accurate
predictions, or perform some given task when data are fed into it [29]. All machine-learning
models can broadly be classified into supervised, semi-supervised, unsupervised, and
reinforcement learning. Supervised learning involves developing predictive models from
a series of functions that maps input and output data, whereas unsupervised learning
employs machine-learning algorithms to groups and predicts unlabelled datasets based on
only the input data [56]. Supervised learning can further be grouped into classification and
regression models, whereas unsupervised learning is classified as clustering. In comparison,
the results of supervised machine learning are more accurate and reliable than unsupervised
machine learning [29]. Classification is one of the widely used machine-learning techniques
in data mining, among other techniques [56]. Herein, six different standard classification
techniques were applied, including Decision Tree (DT), discriminant analysis, Naïve Bayes
(NB), Support Vector Machine (SVM), K-Nearest Neighbours (KNN), and ensembles [38,57].
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5.1. Decision Tree

A decision tree (DT) is a type of algorithm that is commonly used in classification
(binary and multi-class) and regression problems. It solves problems using tree represen-
tation, with each tree node corresponding to a class label and attributes represented on
the internal nodes of the trees [29]. The decision tree algorithm becomes more accurate
as the number of nodes increases. The technique builds a comprehensive and simplified
algorithm for the classification process. The algorithm is not particularly powerful on its
own, but when combined with other machine learnings and approaches, it transforms into
a very powerful and useful machine learning for classification.

5.2. Discriminant Analysis

Discriminant analysis (DA), also known as linear discriminant analysis (LDA), is a
technique used for classification and dimensionality reduction. As the name suggests, it
employs a linear separator or decision boundary to distinguish some categories or classes.
The LDA can be applied to both binary and multi-class classification problems. LDA is
based on the assumption that different types of data can be separated linearly by projecting
the data points onto a hyperplane (1D linear plane). In LDA, the data are projected from
higher dimensions to lower dimensions unto a hyperplane in the feature space that is
easily distinguishable [29]. Simply put, features in a large space are projected into a small
subspace. The algorithm uses either inter-class separability (within-group variance) or
between-class separability (between-group variance) to intelligently optimize the suitable
linear plane (projection) to separate different categories of a given data. LDA is a very
simple algorithm that leads to robust, reliable, and easy-to-understand classification results.

5.3. Naïve Bayes

Naïve Bayes (NB) is one of the simplest but most effective types of supervised classifi-
cation algorithms that employs the Bayes theorem [29]. In the Naïve Bayes classification
model, the algorithm assumes that the occurrence of one feature is independent of the other.
The classifier develops models from a given set of data using a conditional probabilistic
approach to learn certain features belonging to a class and make predictions [38]. The
expression for the conditional probability is given in Equation (16) [58,59]:

P(A/B) =
P(B/A)P(A)

P(B)
(16)

where A and B are the events, P(A/B) probability of occurrence of Event A, given that Event
B is true, the P(B/A) probability of occurrence of Event B given that Event A is true, P(A) or
P(B) is the probability of A or B.

The types of Naïve Bayes classifiers include the optimal, gaussian, multinomial,
and Bernoulli.

5.4. Support Vector Machine

The Support Vector Machine (SVM) was developed in the 1960s and improved signifi-
cantly in the 1990s when it began to gain popularity [60]. It is currently regarded as one of
the most effective machine-learning algorithms, with high accuracy and less computational
power. SVM is mostly used in classification objectives, though it can be applied to regres-
sion problems as well. The SVM distinctly classifies the dataset into classes or categories by
searching for the optimum hyperplane or decision boundary (N-dimensional space, where
N is the number of features) [29]. The number of features determines the dimension of the
decision hyperplane. For example, the hyperplane becomes a line when the input features
are two and increases with increasing the number of input features. The decision boundary
is based on the maximum margin concept, which is implemented using support vectors.
The main advantage of the SVM is its ability to handle a wide variety of classification
problems, including high-dimensional and non-linearly separable problems [56].
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5.5. K-Nearest Neighbours

The K-nearest neighbours (KNN) algorithm is one of the simplest and oldest machine-
learning algorithms, developed to solve regression and classification problems. However, it
has found broader application in classification problems. KNN entails selecting a number
of K neighbours (e.g., 5) to determine the K neighbours of a new set of data based on the
nearest distance measure, such as Euclidean, Cityblock, and Chebychev [38]. The Euclidean
distance is usually used in most instances. The number of data points that constitute each
category is determined, and the new data point is assigned to the category with the greatest
number of neighbours. One significant advantage of KNN classification is its robustness
and ability to handle large training datasets effectively [56].

5.6. Ensembles

The motivation of ensemble-based classification is to combine several different indi-
vidual classifiers (often referred to as “weak learners”) into a single super-classifier with
improved generalizability (a more robust and accurate model). In effect, the combined
classifier provides better results than the individual classifiers incorporated in the combined
classifier [61]. Ensembles can be built using either bagging or boosting approach. In the
bagging approach, several different datasets are generated from the original dataset based
on probability distribution (deterministic averaging process) from the original dataset.
The generated datasets are trained independently in parallel with different classifiers (e.g.,
DT, LDA, KNN), and the outputs of the individual classifiers are combined to form the
super-classifier (classification decision). The boosting approach, on the other hand, involves
training the datasets generated from the original sequentially in an adaptive manner and
combining them to form a super-classifier following a deterministic approach.

6. Methodology: Model Development Using Supervised Machine Learning Algorithms

In this study, six standard supervised classification models are employed to make
predictions of nine different feed size ranges in laboratory AG/SAG mill grinding studies.
This makes the problem multi-class classification. Using the MATLAB 2020b classification
learner App, several labelled input data relating to feature extraction techniques (PSDE,
DWT, WPT, EMD, and VMD) were initially fed into the classification algorithms. The
classification learner App is a toolbox in MATLAB that enables users (experts or novices) to
carry out general supervised machine-learning tasks (such as importing pre-processed data,
extracting features, model selection and training, model tuning, etc.) by exploring different
types of classification models without writing any code [62]. This method provided a simple
overview (baseline knowledge) of how multiple classifiers will perform with the various
feature extraction techniques under consideration, as well as a direction for future research.
These reasons, as well as the data size (90 observations) obtained from the study, explain
why this application was used. The applications provide a wide range of classifier options.
However, in this study, a total of six classifiers, as discussed in Section 5, were applicable
and taken into account. Following the training of the model, the optimal classifier can be
assessed with a confusion matrix, receiver operating characteristic curve (ROC), area under
the curve (AUC), and scatter plot.

The learner App allowed a quick analysis of the performance of the selected individual
classification models (with confusion matrix) in the current study, followed by the selection
of the two most appropriate classifiers. A total of 90 observations were used for the
prediction of nine feed size classes. Since the data were carefully extracted, no data pre-
processing stages were performed, and the data were devoid of missing values or outliers.
Furthermore, the data were not subjected to standardization or normalization because they
were essentially within a specific range with no extremities. The dataset was split into
two; 72 observations were used as the training dataset (80%), and 18 observations for the
testing dataset (20%) [38]. The task was to allow the machine to learn and understand
data patterns from the trained dataset to make predictions of real-valued output (feed size
classes) when tested on a new dataset. Since the total observations (90) were not sufficiently
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large, the k-fold cross-validation was used, with the k value set to 5 [38]. In each of the
feature extraction datasets (PSDE, DWT-RMS, WPT-RMS, EMD-RMS, and VMD-RMS),
the best two supervised classification algorithms were used. The objective was to identify
which classification models can make the best prediction in each of the given data. Figure 2
presents the overview of the model development used in this study.
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Classification Model Performance Evaluation Metrics

An evaluation metric converts a confusion matrix into values that can be used to com-
pare the performance of various classification models or techniques [63]. The performance
of the classification models was evaluated using four multifaceted metrics derived from the
confusion matrix. These indicators include accuracy, precision/positive predicted value
(PPV), sensitivity/recall, and F1 score [58,61]. The combination of the indicators provides a
succinct evaluation of the model’s performance. The mathematical computations of the
performance indicators are expressed in Equations (17)–(20) [38,64]:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(17)

Sensitivity or Recall =
TP

(TP + FN)
(18)

Precision =
TP

(TP + FP)
(19)

F1 score =
2 × (Precision × Recall)

(Precison + Recall)
(20)

where TP is True Positive (model results classified as true, and the actual observation was
true), TN is the True Negative (model results classified as false, and the actual observation
was false), FP is False Positive (model results classified as true, but the actual observation
was false), FN is False Negative (model results classified as false, but the actual observation
was true).

7. Results and Discussion
7.1. Statistical Feature Selection

Figure 3 shows the comparative statistical feature selection using the coefficient of
variation (CoV). The selection criteria for the suitable statistical feature selection were set at
5% of the CoV. The feature below the 5% threshold (red short dashes horizontal line) of
the CoV was considered as the relevant feature largely describing the acoustic signal, and
vice versa. It was observed that the RMS, MAV, and SD of all the tested mill acoustic at
40 rpm, 50 rpm, and 60 rpm demonstrated an identical pattern below the set criterion. In
this study, the RMS feature was chosen and combined with DWT, WPT, EMD, and VMD to
generate the various input feature vectors for the model development. The RMS provides
the average energy of the time domain signal [22].

7.2. Confusion Matrix for Feed Size Classification

The confusion matrix (also known as the error matrix) presents the summary of
the performance assessment layout of classification problems (binary and multi-class
classification) [58,63,64]. It is used to demonstrate how many classes (categories) were
predicted correctly as true classes, and vice versa. The columns of the matrix are usually
represented as the predicted classes, and the rows as actual or true classes. The correctly
predicted classes are presented along the diagonal of the table, while the incorrect prediction
is spread outside the diagonals [64]. As shown in Equations (17)–(20), several metrics can
be deduced from a confusion matrix based on the true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) for performance evaluation analysis.
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7.2.1. Model 1 with PSDE

A 9× 9 confusion matrix based on PSDE data, as well as correlation plots for predicting
different feed classes inside an AG/SAG, is shown in Figure 4. The results in Figure 4A,B
show that, out of the six standard classification algorithms, the SVM (quadratic) and
ensemble (subclass discriminant) classification algorithms provided closely related feed size
predictions from the matrix diagonals with a suitable performance. The SVM classification
perfectly predicted the coarse feed size classes from−9.5 + 8 mm to−26.5 + 19 mm and very
good prediction of the relatively finer feed size classes of −2 + 0.85 mm and −4 + 2 mm
with a low error. The model fairly predicted the feed size fractions of −6.7 + 4 mm and
−8 + 6.7 mm. In the case of the ensemble classifier, similar prediction characteristics
were obtained with 100% prediction associated with the coarse feed size classes from
−13.2 + 9.5 mm to −26.5 + 19 mm.
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From the parity plots in Figure 4C,D from the test data, the SVM and ensemble
classifiers demonstrated strong correlations between the predicted and the actual feed size
classes. This was evaluated with the coefficient of correlation (r), indicating ~0.98 and ~0.97
for SVM and ensemble classifiers, respectively. The SVM’s correlation was slightly greater
than the ensemble approach, according to the r values. This was also reflected in their
adjusted R2 values.

It can be inferred from the confusion matrix and parity plots derived from SVM and
ensemble classifiers that the acoustic emission produced by coarse feed size fractions is very
distinct from that produced by somewhat finer feed fractions. As a result, the models can
learn from the trained data and generate more accurate predictions with the tested data.
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7.2.2. Model 2 with DWT–RMS

Figure 5 presents the confusion matrixes and correlation plots for classifying different
feed size classes using DWT–RMS data. Using the input data from DWT–RMS, the linear
discriminant and ensemble (subclass discriminant) classification algorithms were identified
by the confusion matrixes diagonals to demonstrate an improved prediction of the feed
size classes as shown in Figure 5A,B. Both classifiers showed flawless prediction at larger
feed size ranges, from −9.5 + 8 mm to −26.5 + 19 mm, and they fluctuated when feed
size fractions were reduced. To a large extent, the feed size classes below −9.5 + 8 mm
showed an improved prediction and fewer mismatches with discriminant compared to
the ensemble classifier. Specifically, the classification of feed size class −6.7 + 4 mm was
not well predicted using the discriminant, whereas both feed classes of −6.7 + 4 mm and
−8 + 6.7 mm were fairly classified by the ensemble algorithm. This is reflected well in the
correlation plots in Figure 5C,D of the tested results, such that the discriminant classifier
performed marginally better than the ensemble classifier with r values of ~0.99 and ~0.98,
respectively, as well as their adjusted R2 values.
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7.2.3. Model 3 with WPT–RMS

In the confusion matrixes and correlation plots shown in Figure 6, it was shown that the
linear discriminant and ensemble (subclass discriminant) classification algorithms present
better predictions after subjecting the WPT–RMS data to the six standard classification
algorithms. In Figure 6A,B, it could be seen that both classifiers demonstrated close
predictions of the feed size classes with excellent classification. The difference was much
observed for relatively finer feed classes –6.7 + 4 mm and −8 + 6.7 mm. In comparison,
the feed class of −6.7 + 4 mm was poorly predicted with less accuracy and very good
prediction for −8 + 6.7 mm using the linear discriminant analysis, whereas both feed size
classes demonstrated fair predictions with the ensemble classification.
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According to the parity plot derived from the tested results in Figure 6C,D, the perfor-
mance of the linear discriminant analysis was a little lower, with an r value of ~0.95, than
the ensemble classifier, which had an r value of ~0.97. A similar trend was also observed in
their adjusted R2 values.
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7.2.4. Model 4 with EMD–RMS

The confusion matrixes and correlation plots are provided in Figure 7, which shows the
classification models that perform well with data generated from the EMD–RMS extraction
technique. These models include the linear discriminant and ensemble (subclass discrimi-
nant) classifications (subclass discriminant). With the linear discriminant in Figure 7A, the
most correctly predicted feed classes displayed along the matrix diagonal were identified
as −2 + 0.85 mm (finer fraction) and −16 + 13.2 mm (coarser). It was also noted that the
algorithm performed quite well with the coarser feed classes, starting from −9.5 + 8 mm to
−26.5 + 19 mm. Relative to the finer feed size fractions, the performance of the discriminant
classifier was quite poor. In Figure 7B, the ensemble classifier generally performed well in
most of the feed classes predictions. The feed classes of −6.7 + 4 mm and −13.2 + 9.5 mm
were not well-classified. The worst and poorly predicted feed class of the classifier was
noted in −8 + 6.7 mm, which was able to predict one out of the total.
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The strength of the linear discriminant and ensemble models in Figure 7C,D demon-
strate that classifiers have a strong correlation between the actual and predicted feed
size classes using the correlation coefficient (r) and adjusted R2 values. From the cor-
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relation plots, the ensemble classifier was seen to marginally underperform the linear
discriminant analysis.

7.2.5. Model 5 with VMD–RMS

The confusion matrixes of VMD–RMS data for identifying different feed size classes
are shown in Figure 8A,B. Both linear discriminant and ensemble (subclass discriminant)
classification methods displayed close and better performances for predicting different feed
size classes in an AG/SAG mill using an acoustic response out of all the standard classifica-
tion techniques examined. The coarser feed fractions from −9.5 + 8 mm to −26 + 19 mm
were highly predicted and were identified to be the same for both classifiers. The dif-
ferences in the prediction performance lie around the relatively finer feed fractions. The
discriminant algorithm slightly underperformed for feed classes from −2 + 0.85 mm and
−4 + 2 mm, and slightly outperformed feed classes of −6.7 + 4 mm and −8 + 6.7 mm when
compared to the ensemble classifier. The prediction errors were noted to be widely diffused
over the other feed classes.
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The strength of the correlation plots produced from the tested results is shown in
Figure 8C,D for both classifiers. In general, the classifiers have a good match between the
actual and predicted feed size classes. Nevertheless, the ensemble classifier outperformed
the linear discriminant classifier by a small margin.

Given a specific dataset extracted from different feature extraction techniques, the
most suitable classification models were identified as SVM (quadratic), LDA, and ensemble
(subclass discriminant) classifiers. To a greater extent, the layout of the confusion matrixes of
the classed classifiers showed that the feed size fractions are best predicted predominantly
at coarse feed size fractions ranging from −9.5 + 8 mm to −26.5 + 19 mm, followed
by relatively finer feed size fractions −2 + 0.85 mm and −4 + 2 mm. The classification
performance of the feed size fractions of −6.7 + 4 mm and −8 + 6.7 mm is frequently
observed to be underpredicted.

Generally, the confusion matrixes for most of the feature extraction techniques ap-
pear to suggest that acoustic emission of coarse feed size fractions (−9.5 + 8 mm to
−26.5 + 19 mm) are more distinctive from one another, and they are easily identified
and predicted by the classification algorithms. When the feed size distribution reduces
to −8 + 6.7 mm and −6.7 + 4 mm, the mill acoustic response seems to be unclear and
reduced their predictions by most of the classifiers and improved at finer feed size fractions
(−2 + 0.85 mm and −4 + 2 mm).

7.3. Model Evaluation

Table 3 shows multiple model evaluation indicators for all the classification models
applied in the study using Equations (17)–(20). It should be noted that these indicators
are presented as a percentage of 100. The multiple evaluation indicators are necessary to
provide a comprehensive understanding of the models’ performance. In addition, with
the closely related confusion matrixes of the two classification models performed on each
extraction technique dataset, the multiple indicators will provide enough information to
distinguish the performance of one model from the other. The indicators include accuracy,
precision, sensitivity (recall), and F1 score.

Table 3. Classification performance evaluation criteria.

Feature Extraction
Techniques

Suitable Classification
Models

Model Performance Indicators

Accuracy Precision Sensitivity/Recall F1 Score

PSDE
SVM (Quadratic) 88.89 90.25 88.89 89.56

Ensemble
(subspace discriminant) 88.89 89.56 88.89 89.23

DWT-RMS
LDA 88.89 88.95 88.89 88.92

Ensemble
(subspace discriminant) 85.56 85.46 85.56 85.51

WPT-RMS
LDA 84.44 84.14 84.44 84.29

Ensemble
(subspace discriminant) 81.11 80.46 81.11 80.79

EMD-RMS
LDA 54.44 53.60 54.44 54.02

Ensemble
(subspace discriminant) 57.78 55.97 57.78 56.86

VMD-RMS
LDA 83.33 84.21 83.33 83.77

Ensemble
(subspace discriminant) 83.33 83.74 83.33 83.54

Considering the SVM and ensemble classification models on the PSDE feature ex-
traction technique from Table 3, the accuracy and sensitivity metrics recorded the same



Powders 2023, 2 318

value of 88.9%, making it difficult to evaluate which of them has a better performance. The
differences between the two classifiers are noted in the precision and F1 score. The SVM
classifier has a somewhat higher precision and F1 score relative to the ensemble classifier.
These two metrics are reflected very well with the r and adjusted R2 values obtained from
the parity plots in Figure 4C,D. As a result, with acoustic emission data transformed into
PSDE, the SVM classifier appears to be better suited for predicting different feed size
fractions in AG/SAG mills.

Again, from Table 3, it could be seen that the LDA and the ensemble (subclass discrim-
inant) were the most prevailing or common classification models that were suitable for
improved feed size class predictions using the feature extraction obtained from DWT–RMS,
WPT–RMS, EMD–RMS, and VMD–RMS. Notably, all four assessment indicators deduced
from the confusion matrixes in Figures 5A,B and 6A,B demonstrated that the LDA provides
a better classification of the feed size classes than the ensemble (subclass discriminant)
classifier, which was consistent with the coefficient of correlation (r) and adjusted R2 results
in Figures 5C,D and 6C,D. In addition, in the VMD–RMS, the accuracy and sensitivity
metrics recorded the same value of 83.33% for both LDA and ensemble classifiers. The
precision and F1 score values were higher for the LDA when compared to the ensemble
technique. The ensemble classifier, on the other hand, outperformed the LDA using the
EMD–RMS, with all higher metric values favouring the ensemble classifier. However, the
level of predictions using the EMD–RMS technique demonstrated the least performance,
even with the ensemble classifier. From the evaluation metrics, the degree of success was
within the range of 50%. This appears to suggest that the input features derived from the
EMD technique, combined with RMS, were not suitable for classifying multi-class feed size
fractions in the AG/SAG mill.

Generally, from the confusion matrix evaluation metrics, as well as the correlation
coefficient (r) and adjusted R2, the study identified that feature vector representation
from the PSDE method, coupled with the SVM (quadratic) classification algorithm, can
provide the optimum classification of different feed size fractions during AG/SAG mill
grinding operations. This was followed by the ensemble classifier applied to the same
PSDE dataset. The LDA and ensemble (subclass discriminant) were found to be the most
prevalent classification methods for improving feed size fraction predictions within an
AG/SAG mill employing mill acoustic feature extractions, such as PSDE, DWT, WPT, EMD,
and VMD.

8. Conclusions

The study investigated the performance of six standard classifications in predicting
different feed size fractions inside an AG/SAG mill by extracting feature vectors from
the mill acoustic response using five different extraction techniques. The classification
models or algorithms include Decision Tree (DT), Linear Discriminant Analysis (LDA),
Naïve Bayes (NB), Support Vector Machine (SVM), K-Nearest Neighbours (KNN), and
ensembles techniques, while the feature extraction techniques, such as power spectral
density estimate (PSDE), discrete wavelet transform (DWT), wavelet packet transform
(WPT), empirical mode decomposition (EMD), and variational mode decomposition (VMD)
coupled with statistical root mean square (RMS), were used. The performance of the
models was estimated using confusion matrix-derived evaluation metrics, such as accuracy,
precision, sensitivity (recall), and F1 score. The major findings in the study are outlined
as follows:

(a) The root mean square (RMS), mean absolute value (MAV), and standard deviation
(SD) were identified as the most suitable statistical features for representing the mill
acoustic signal with minimal variance.

(b) The mill acoustic emission response is sensitive to different mill feed size fractions,
such that an increase in the mill feed size ranges increases the acoustic emission.
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(c) All feature extraction techniques (PSDE, DWT, WPT, and VMD), except the EMD, were
identified to give improved performance in classifying different feed size distributions
inside AG/SAG mill.

(d) The suitable extraction techniques and their respective classification algorithms for
improved SAG mill feed size prediction are observed as follows: PSDE–SVM, DWT–
LDA, WPT–LDA, EMD-ensemble, and VMD–LDA. The LDA and ensemble classifiers
were noted to provide promising algorithms for improving feed size distribution in
almost all the signal feature extraction techniques. The data extraction with PSDE
combined with SVM classifier demonstrated the best degree of prediction for a sudden
change in feed size fraction inside the SAG mill using the performance evaluation
metrics such as accuracy, precision, sensitivity, and F1 score.

(e) Mill acoustic emission and supervised machine-learning classification models can be
used to provide more insight into the changing feed size distribution of SAG mills.
The study’s findings could be beneficial to the comminution circuit by serving as
a proxy measure for predicting the sudden feed size fluctuations in real time and
assessing the efficiency of upstream processes like crushing and screening. This
can result in faster decision-making and more timely intervention by mill operators.
Though the current work is constrained to (i) A batch sample rather than continuous
feed (blending); and (ii) A small-scale mill rather than an industrial mill, the study
provides directions for future applications in large-scale AG/SAG mills.
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supplementary materials.
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