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Abstract: Stratospheric dynamics are strongly affected by the absorption/emission of radiation in
the Earth’s atmosphere and Rossby waves that propagate upward from the troposphere, perturbing
the zonal flow. Reduced order models of stratospheric wave–zonal interactions, which parameterize
these effects, have been used to study interannual variability in stratospheric zonal winds and sudden
stratospheric warming (SSW) events. These models are most sensitive to two main parameters: Λ,
forcing the mean radiative zonal wind gradient, and h, a perturbation parameter representing the
effect of Rossby waves. We take one such reduced order model with 20 years of ECMWF atmospheric
reanalysis data and estimate Λ and h using both a particle filter and an ensemble smoother to
investigate if the highly-simplified model can accurately reproduce the averaged reanalysis data
and which parameter properties may be required to do so. We find that by allowing additional
complexity via an unparameterized Λ(t), the model output can closely match the reanalysis data
while maintaining behavior consistent with the dynamical properties of the reduced-order model.
Furthermore, our analysis shows physical signatures in the parameter estimates around known SSW
events. This work provides a data-driven examination of these important parameters representing
fundamental stratospheric processes through the lens and tractability of a reduced order model,
shown to be physically representative of the relevant atmospheric dynamics.

Keywords: particle filter; ensemble smoother; sudden stratospheric warming; bistability; reanalysis
data; dynamical systems; synoptic-scale meteorology

1. Introduction
1.1. General Background

Stratospheric polar circulation in the northern hemisphere, often referred to as the po-
lar vortex, is a counterclockwise cyclonic circulation resulting from the strong temperature
difference between the polar and subtropical regions that forms during the autumn and
winter as solar radiation in the Arctic diminishes. This cyclonic circulation extends from the
surface to the upper part of the stratosphere, often referred to separately as the tropospheric
(near the surface) and stratospheric (near the top of the stratosphere) polar vortex. Changes
in the stratospheric polar vortex can have strong effects on the tropospheric vortex and
thus it plays a significant role in winter weather conditions in the northern hemisphere.

For decades, models of stratospheric circulation have sought to explain and predict
variability in wintertime polar vortex dynamics via mechanistic and/or phenomenological
processes [1–5]. A well-studied method of stratospheric modeling uses a quasi-geostrophic
β-plane channel model to study wave–mean zonal flow interactions. An early model
of this type by Holton and Mass [6] and its many extensions depend highly on two
fundamental processes:
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1. The interaction with waves propagating up from the troposphere;
2. Differential radiative heating.

Furthermore, such models have shown to exhibit mathematical properties consistent
with atmospheric realizations including multiple stable or metastable equilibria associated
with atmospheric blocking in the presence of external forcing

The two physical factors above are known to radically influence the polar vortex and
are included as important control parameters in these models. First, the weakening of the
polar vortex can be caused by large amplitude Rossby waves, also known as planetary
waves, which propagate upward from the ground and interfere with the zonal wind in
the stratosphere. Rossby waves are caused by topography as well as land–sea contrasts
and can be hard to measure directly. Another factor that influences the polar vortex is
the vertical gradient of radiative zonal wind. This is associated with solar forcing and is
largest when there is high differential heating. Indeed, it is the changes in the differential
heating throughout the seasons that lead to the annual formation and breakdown of the
polar vortex in the fall and spring, respectively.

A sudden stratospheric warming (SSW) event can also lead to a breakdown in the polar
vortex, which can cause severe weather at lower latitudes. An SSW event can be generically
categorized by a rapid warming of the stratosphere near the pole, which leads to a decrease
in differential heating weakening and even collapsing the cyclonic circulation of the polar
vortex. Two theories have been proposed to explain the occurrence of SSWs that correspond
with the control parameters of the reduced order models. First, enhanced planetary waves
are known to transfer momentum and heat from the troposphere to the stratosphere,
which alters the large-scale circulation [7,8]. Alternatively, it is understood that the vertical
shear in the stratosphere is key to controlling upward propagation of waves through the
lower boundary. Therefore, for smaller latitudinal temperature gradients, waves are more
disruptive to zonal stratospheric flow [8,9].

Reconstructions of global weather patterns are routinely done by marrying available
historical data to large-scale global circulation models through data assimilation (DA).
Having a time record of global observations is key for advancement, however, they are
irregular in space, time, and quality. By combining data and model, a complete picture of a
global weather pattern time series can be formed. An example of such a reanalysis can be
found through the European Center for Medium-Range Weather Forecasts (ECMWF) [10].
These datasets can aid scientists working to understand geophysical processes and changing
climate conditions and develop new tools to improve predictions.

While large reanalysis datasets provide a plethora of information about the Earth
system, they are extremely complex and lack the tractability of reduced order models.
These models highlight the most important physical processes at play and can provide
strong conceptual understanding, often leading to new ideas. By considering only the
most influential processes, one can build a simplified model of stratospheric dynamics
that maintains a mechanistic understanding of the system while ignoring or averaging
components less relevant to large-scale and long-term behavior. In this work, we aim to
leverage the complex information available in a large reanalysis dataset via DA to provide
estimates and assess the dynamics of important, physically-based parameters in the context
of a reduced order model.

1.2. Data Assimilation and Reduced-Order Models

Data assimilation has extremely useful applications in reduced order modeling. In
particular, it can give a sense of suitability of the simplified model to the observed data as
well as to estimate important parameters representing the physical characteristics. DA also
allows for simultaneous estimation of model parameters via a number of methods (for an
overview, see Ref. [11]). Assimilating reanalysis data with a reduced order model therefore
provides a convenient way to assess the model and estimate the values and relevance of
essential parameters controlling the system.
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There are a great number of DA algorithms adapted to address a variety of situations.
One of the most general is the particle filter, also known as the bootstrap filter. This is an
ensemble-based, recursive algorithm that uses resampling and Bayes’ Theorem to derive
an empirical distribution that is asymptotically equivalent to the true distribution. This
algorithm is more general than the better known Kalman filter as it does not assume
linearity of the system nor normality of distributions [12].

We also explore the use of an Ensemble Smoother with Multiple Data Assimilation
(ESMDA), updating the parameters that result in bias in the solution. This method allows
for the estimation of time-dependent parameters since fitting their values at a given time
can be adjusted to predict data at later times. Consequently, we are updating the param-
eters in the past to remove the bias in the solution before it happens. Some examples of
iterative ensemble smoothers can be found in Refs. [13,14], in the geosciences in Ref. [15],
or petroleum reservoir modeling in Ref. [16]. The simplicity of the chosen reduced order
model makes this analysis possible as we are able to initialize large ensembles at a low
computational cost. It also serves as a baseline in complexity with more detailed versions
of the model available for further studies on higher order dynamics.

1.3. Our Main Focus

In this work, multiple data assimilation schemes were applied to a reduced order
model of the polar vortex published by Ruzmaikin et al. in 2003 [17]. A highly reduced
version of the original Holton and Mass model [6], this model is a nonlinear system of
ordinary differential equations that exhibits bistability for certain parameter ranges [17]. Its
dynamics are closely tied to parameters related to radiative forcing due to differential heat-
ing, Λ, and interactions with large-amplitude Rossby waves propagating upwards from
the troposphere, h. The bistability of this model is relevant to meteorological phenomena
including multiple stable states associated with atmospheric blocking events. This moti-
vates the use of the particle filter, as we expect bimodal ensemble distributions. However,
the particle filter ultimately fails to accurately describe the reanalysis data, so we turn to
ESMDA, as it allows for added complexity through time-varying parameter estimations.

Through this work, we aim to assess the ability of this reduced order model to represent
real world variability and, if it can, what it takes to do so. We find that when the controlling
parameters are allowed to sufficiently vary in time, this reduced order model can produce
mean zonal winds that closely match the reanalysis data. We also find that parameter
regimes exist where the estimated parameters exhibit behavior that can be viewed as
physically consistent with what one might expect during SSW events. We also comment on
where we see the model possibly falling short. Thus, we are able to provide insights into
patterns and trends in physically-based parameters using the simplicity of a reduced-order
model while ensuring its applicability through assimilating reanalysis data.

1.4. Outline of the Paper

The paper is structured as follows. In Section 2 we discuss the materials and methods.
We present the Ruzmaikin model in Section 2.1, the ECMWF data used in Section 2.2,
and our data assimilation analysis methods in Section 2.3. In Section 3, we discuss our
results: first using the particle filter in Section 3.1, then with ESMDA in Section 3.2. With the
particle filter, we consider hyperparameter estimation and examine ECMWF data assimila-
tion. With ESMDA, we deliberate on the parameters that we are estimating, the calibration
of our runs with twin experiments, and different scenarios for estimating control param-
eters Λ(t) and h(t). Then, in Section 3.3 we explore our ESMDA analysis results in the
context of historical atmospheric conditions, including around SSW events and trends
over the 20-year period. Finally, Section 4 is dedicated to discussing our approach and
concluding remarks.
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2. Materials and Methods
2.1. Ruzmaikin Model

Considering the two driving forces highlighted above, Ruzmaikin et al., [17], devel-
oped a simple dynamical model composed of three ordinary differential equations (ODEs)
that describe an atmospheric system localized as one point in the stratosphere. The “Ruz-
maikin model” is a highly truncated version of the Holton and Mass 1976 model (the
“HM76” model) of stratospheric wave-zonal flow interactions. It is obtained by considering
only one longitudinal and one latitudinal mode of the HM76 model and fixing the vertical
level to 25 km log-pressure height using finite differences. Details on the derivation of
the model can be found in Appendix A. Although such a one-dimensional model can-
not realistically describe the complicated stratospheric dynamics, it captures the essential
mechanism of interactions between planetary waves, radiative forcing, and the zonal wind.

The Ruzmaikin model appears in the final form of three ODEs with state variables,
X, Y, and U, where X and Y represent the real and imaginary parts of the streamfunction,
respectively, and U represents mean zonal wind velocity. The system of ODE’s is given by

Ẋ = −X/τ1 − rY + sUY− ξh + δw ḣ (1)

Ẏ = −Y/τ1 + rX− sUX + ζhU (2)

U̇ = −(U −UR)/τ2 − ηhY− δΛΛ̇. (3)

Two control parameters are used in HM76 as well as the Ruzmaikin model, and all
other parameters are fixed at their typical atmospheric values (Table A1). The first control
parameter is the vertical gradient of the mean radiative zonal wind, Λ(t) = dUR/dz, where
it is assumed that UR(z, t) = UR(0, t) + Λ(t)z. In addition, using standard notations found
in Ref. [18] in log-pressure coordinates, dUR/dz is also related to the gradient of radiative
equilibrium temperature T̄ with respect to latitude y [19] through the relation,

f0
dUR
dz

= − R
H

dT̄
dy

. (4)

In this case, Λ(t) is a time-dependent parameter accounting for both the seasonal
variability and the 11-year solar cycle variability of solar radiation. Specifically, Λ is
assumed to take the form

Λ(t) = Λ0 + Λa sin
(

2πt
1 year

)
+ ϵΛ0 sin2

(
πt

11 year

)
. (5)

In Section 3.2 we will allow Λ(t) to be far more dynamic and show that this is necessary
for the model to capture the reanalysis data. This may imply that unresolved physics need
to be included in this parameter for it to be more representative of reality.

The other control parameter characterizes the initial planetary wave amplitude and is
denoted by h. Specifically, it is equivalent to the perturbation at the ground level, related to
the wave streamfunction, Ψ, by h(t) = Ψ(0, t) f0/g. While several works have explored
various time or spatially-dependent parameterizations of h in similar models [6,20,21],
Ruzmaikin et al. fixes h as constant. Sensitivity analysis confirms that the model is most
sensitive to the two parameters h and Λ [22].

Further analysis of the influence of Λ and h (considered independently as constants)
on equilibrium solutions show the existence of pitchfork bifurcations leading to bistability
(Ref. [17], Figures 2 and 3). For instance, with relatively small values of h corresponding to
low amplitude Rossby waves, there is a single equilibrium of relatively large mean zonal
wind (Ue ≈ 35 m/s). For very large values of h, corresponding to high amplitude Rossby
waves, there is a single equilibrium of low mean zonal wind (Ue ≈ 21 m/s). However,
between these two extremes there is an area of bistability, for which both strong and weak
polar vortices are achievable for the same value of h. Similarly, varying a constant Λ also
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leads to a bifurcation of equilibrium values of zonal wind (Ref. [17], Figure 2). Note again
the region of bistability for Λ ⪆ 0.75 m/s/km when h = 68 m is fixed.

2.2. ECMWF Data

Twenty years (1999 to 2018) of zonal wind data were obtained from the European
Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis-Interim (or “ERA-
Interim”), a global atmospheric reanalysis available from 1979. The reanalysis is based
on a 2006 release of the ECWMF’s Integrated Forecast System (IFS). The data assimilation
system of ERA-Interim uses a 4-dimensional variational analysis (4D-Var) with a 12-h
analysis window. More details of the ERA-Interim archive can be found in Ref. [23] and
Ref. [24], Section 6.2.

The zonal wind of the Ruzmaikin model (variable U in Equations (1)–(3)) is equivalent
to “U component of wind” provided by ECMWF Reanalysis-Interim archive. This data
is available at the 1◦ × 1◦ horizontal, 10 mb vertical (in the upper stratosphere), and four
times daily resolution. Thus, we average according to the assumptions of the Ruzmaikin
model: the vertical level is fixed at 25 km log-pressure height, and the latitudinal channel
is centered at 60◦ N. First, daily mean zonal wind data is obtained by averaging over the
four given wind data values per day. Thus, the processed dataset provides zonal wind
“observations” as daily averages of the wind from 1 January 1999 to 31 December 2018.
Next, daily averaged data from the pressure levels of 20 mb and 30 mb are interpolated to
25 km log-pressure height by linear approximation in the log-pressure vertical coordinate.
Finally, as the Ruzmaikin model is confined to a latitudinal channel centered at 60◦ N
with a meridional extent of 60◦ latitude, daily means of zonal wind interpolated to 25 km
log-pressure height are then averaged over a latitudinal window centered at 60◦ N with a
meridional extent of 20◦ latitude. Note that we also tested larger meridional window sizes,
but these results are excluded, as the greater amount of averaging generally produced
lower wind speeds and muted winter “peaks,” as seen in Figure 1b.

We note that there is evidence of bistability in the ECMWF data, evidenced in Figure 1.
Indeed, in Figure 1a, we see examples of two dates with representative behaviors of the
polar vortex. On one hand, the jet may have high winds that are centered around the
north pole. However, when the jet is destabilized, it rotates at lower speeds, and can be
off-centered. These multiple winter states are also evident in the full-averaged data in
Figure 1b. In particular with smaller meridional averaging windows, winter peak winds
are either high (∼35–45 m/s) or low (∼20–30 m/s). Thus, it is our purpose to understand
how the bistability of the reduced-order model relates to the bistability of the ERA-Interim
data via data assimilation.

(a)

Figure 1. Cont.
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(b)

Figure 1. Averaged ECMWF ERA−Interim data.

2.3. Data Assimilation
2.3.1. Particle Filter

The first DA method explored is the particle filter. This method is desirable because it
allows for nonlinear dynamics and requires no distributional assumptions. In particular,
due to the bistability of the system, we expect an ensemble of state variables to exhibit
bimodality, thereby violating the normality assumption of the more common Kalman filter.

A detailed description of the mathematical and algorithmic framework behind the
particle filter as well as its implementation in this context can be found in Appendix B.
Essentially, the particle filter uses recursion and Bayes’s rule (6) to approximate the distri-
bution of the state vector at discrete time k, denoted xk, given the set of all observations, yi,
up to and including time k,

p(xk|y1, . . . , yk) =
p(yk|xk)p(xk|y1, . . . , yk−1)

p(yk|y1, . . . , yk−1)
. (6)

Lacking an analytical solution in the general case, one can instead use an iterative
process of simulation and resampling to approximate the desired distribution. Indeed, each
time an observation yk, is obtained, if an ensemble (of size nens) of forecasted state vectors
{x∗k (i) : i = 1, . . . , nens} is resampled according to the normalized probabilities

qi =
p(yk|x∗k (i))

∑nens
j=1 p(yk|x∗k (j))

, (7)

then the updated ensemble {xk(i) : i = 1, . . . , nens} is distributed as p(xk|y1, . . . , yk) [25].
Parameter estimation is easily realized by appending the state vector xk of the dynam-

ical model with the parameters of interest. In this case,

xk =
(
X Y U h Λ0 Λa

)T , (8)
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where Λ0 and Λa are coefficients of the prescribed form for Λ(t) in Equation (5). The ob-
served variable, the mean zonal wind speed, is yk = U(k). Note that we also tested the
particle filter with xk =

(
X Y U h

)T , and xk =
(
X Y U Λ0 Λa

)T , but generally
the fits were inferior, and the results are omitted.

This algorithm was implemented in MATLAB via adaptations to a publicly available
particle filter tutorial [26].

As it is also of interest how the bistability of the model manifests as bimodality within
the particle filter, and the Sarle Bimodality Coefficient (BC) is computed for each experiment.
The formula for the bimodality coefficient is given by

BC =
m2

3 + 1

m4 + 3 · (n−1)2

(n−2)(n−3)

, (9)

where m3 is the skewness of the sample, and m4 is the excess kurtosis. BC is in the range
of 0 (perfectly unimodal) to 1 (perfectly bimodal). The bimodality coefficient of a uniform
distribution is BCUnif = 5/9 and used as a benchmark, for values of BC above BCUnif
indicate bimodality of the distribution. It has been assessed in a number of studies and
determined a good indicator of bimodality, although it can suffer from “false positives”
particularly in the case of highly skewed distributions [27,28].

2.3.2. ESMDA

The next method of DA used in this paper is ESMDA. Ensemble smoother techniques
can be derived by assuming a perfect forward model

y = g(x). (10)

In general, x is a vector containing the realization of model parameters, and y consists
of the uniquely predicted measurements. We want to find the set of model parameters x
that produce the observed data.

Assume that the observations d are perturbed stochastically from the truth

d← y + e, (11)

where e represent errors from our model. This can be formulated as a Bayesian problem

f (x | d) ∝ f (d | g(x)) f (x). (12)

This defines the so-called smoothing problem. Our current approach is to use ensemble
methods to approximately solve this equation. In order to do so, we seek to minimize the
cost function below iteratively

J(xn+1
j )=(xn+1

j −xn
j )

T(Cn
xx)
−1(xn+1

j −xn
j )+

(
g(xn+1

j )−d−
√

an+1en
j

)T
(an+1Cdd)

−1
(

g(xn+1
j )−d−

√
an+1en

j

)
, (13)

where
Nmda

∑
n=1

1
an = 1.

We proceed as follows: we initially sample parameters xj,0 ∼ N(x f , Cxx) and generate
an ensemble of predicted observations yj,0 = g(xj,0). We then use this ensemble to con-
struct covariance matrices C̃n

yy and C̃n
xy. We continue by perturbing observations, one for

each member
dn

j = d + en
j , en

j ∼ N(0, an+1Cdd). (14)
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We now update each member according to

xn+1
j = xn

j + C̃n
xy

(
C̃n

yy + an+1Cdd

)−1
(dn

j − yn
j ). (15)

We finally forecast with the updated parameters using

yn+1
j = g(xn+1

j ),

and repeat to Nmda − 1 steps. For simplicity, we summarize the ensemble methods
used below

• We start by sampling a large ensemble of realizations of the prior uncertain parameters,
given their prescribed first-guess values and standard deviations;

• We then integrate the ensemble of model realizations forward in time to produce a
prior ensemble prediction, which also characterizes the uncertainty;

• We compute the posterior ensemble of parameters by making use of the misfit between
prediction and observations, and the correlations between the input parameters and
the predicted measurements;

• Ultimately, we compute the posterior ensemble prediction by a forward ensemble
integration. The posterior ensemble is then the “optimal” model prediction with the
ensemble spread representing the uncertainty.

More about ESMDA can be found in Ref. [29] and recent work using parameter
estimation and ESMDA can be found in Ref. [30]. The code we used to preform the ESMDA
analysis is modified from code developed by Dr. Geir Evensen to perform ESMDA analysis
with a SEIR epedimic model [31].

2.3.3. Twin Model Analysis

This section describes the process through which the DA methods were tuned, as-
sessed, and used to provide insights into key stratospheric circulation drivers. We deter-
mine appropriate values through twin model experiments in which data from a known
“truth” is assimilated. This is an important first test of the data assimilation system that
has been widely implemented over several decades and disciplines [28,32–34]. For the
particle filter, twin model experiments were used to determine appropriate ranges for
hyperparameters including assimilation period (number of days between observations
and associated updates), observation error, and ensemble size. In the context of ESMDA
identical twin experiments were used to assess the influence of decorrelation lengths.

First, identical twin model experiments were employed, using synthetic data from
simulating the underlying model (Equations (1)–(3) with fixed h = 68 m, and Λ as in
(5) with Λ0 = 0.75 m/s/km and Λa = 2.25 m/s/km, and ϵ = 0.3. Mean-zero Gaussian
noise with variance σ2

obs was added to the variable U and then assimilated as the observed
data. The data assimilation schemes were then applied with varying combinations of
hyperparameters and statistics computed to compare the ensemble distribution to the
known truth. We took the mean of the ensemble members as the assimilation analysis and
compared it to the truth via the root mean squared error (RMSE)

RMSE =

√√√√ 1
N

N

∑
t=1

(
Uens(t)−Utruth(t)

)2. (16)

Note that for the particle filter analysis, RMSE is computed on the dimensionalized
values and only over the last 10 years of assimilation, thereby considering the first 10 years
as a spin-up before the analysis. In a similar way we assessed the recovery of known
parameters h, Λ0, and Λa under various hyperparameters using RMSE.

Fraternal twin model experiments were used to assess the DA scheme’s ability to
recover data that comes from a model different than that being implemented in the algo-
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rithm, under various hyperparameters. Here, the ERA-Interim reanalysis wind speed data
is smoothed and considered the “truth” against which to compare the analysis mean of
ensemble distribution. The RMSE is again calculated to measure goodness of fit.

3. Results
3.1. Particle Filter
3.1.1. Identical Twin Model Experiments

As described in Section 2.3.3, identical twin experiments were run on other hyperpa-
rameters including observation error, ensemble size, and assimilation period. Comparing
RMSE for varying ensemble size, nens, shows a common pattern of decreasing until some
critical size, after which increases in ensemble size no longer improve the estimation.
Thus, it is sufficient and efficient to choose an ensemble size that is just larger than the
value at which RMSE ceases to decrease. The ensemble size is fixed at nens = 300 for
subsequent analyses.

Assimilation period refers to the length of time between consecutive observations of
the system/updates of the ensemble. RMSE behaves intuitively for the fixed assimilation
period and variable observation error and is demonstrated in (vertical slices of) Figure 2.
Indeed, when the observations are very accurate (small σ2

obs) the particle filter is more
successful at estimating the truth (small RMSE). However, as the observation error increases,
so does the measure of error of the ensemble average. Note that the observation error
corresponds to the non-dimensionalized wind speed data, which has a maximum of 1.08.

(a) (b)

(c) (d)

Figure 2. Cont.
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(e) (f)

Figure 2. (a–d) RMSEs for combinations of assimilation period and observation error when the state
vector and control parameters h and Λ are estimated simultaneously using synthetic data from the
Ruzmaikin model. (e) Bimodality as measured by the percentage of timepoints with sufficiently
large Sarle statistic. (f) An example of a bimodal ensemble distribution with a Sarle statistic value of
BC = 0.728, with σ2

obs = 0.1 and assimilation period of 3 weeks.

The relationship between RMSE and assimilation period, however, is a bit more nu-
anced, particularly for parameter estimation (for a fixed observation error, this corresponds
to the horizontal slices in Figure 2). For state variable U, corresponding to zonal wind
speed, it appears that the decreased number of observations yields to less accurate state
estimations, particularly for large observation errors. However, this is not universally true,
and even using just 2% of the available observations with an assimilation period of 50 days
can still lead to nearly as good wind speed estimations when σ2

obs is small.
On the other hand, accuracy of parameter recovery appears to increase with increasing

assimilation periods for h, Λ0 and Λa. Indeed, Figure 2 shows that for a fixed observa-
tion error, RMSE of parameter estimates generally decreases with a longer time between
observations/updates. This pattern is most prominent for estimation of h.

3.1.2. ECMWF Data Assimilation

It is now of interest to investigate the use of the particle filter to gain an understanding
of stratospheric dynamics when “real-world” observations are used. To this end, fraternal
twin experiments are conducted, where the “truth” is a smoothed version of the observed
ECMWF mean zonal wind data described in Section 2.2. Gaussian white noise is added to
be used as observations and the success of the particle filter at uncovering the smoothed
data can be assessed. Thus, these experiments will investigate the ability of the model as
well as the particle filter to produce an analysis similar to what is observed.

Results for varying assimilation periods and observation errors are shown in Figure 3.
We not only show RMSE for state variable U (Figure 3a), but also estimates of parameters h,
Λ0, and Λa (Figure 3b–d). We note similarities in the RMSE profiles in these experiments
with the identical twin experiments (Figure 2). However, the effects of increased assimila-
tion periods on RMSE are no longer as apparent as in the twin model experiments. Now,
to achieve the lowest RMSE for windspeeds, it is best to assimilate all the data, making
daily updates. However, using our insights from the identical twin experiments, we expect
that a reasonable value of h should be chosen from results with assimilation periods longer
than one month (Figure 2b). Thus, Figure 3b may suggest an initial Rossby wave amplitude
h between 60 and 120 m. These values lie within the region of bistability of the Ruzmaikin
model (when Λ = 1 m/s/km is fixed). Similarly, by comparing Figure 2c,d with Figure 3c,d
we estimate Λ0 ≈ 0.1 m/s/km and Λa ≈ 1.2 m/s/km, which are significantly smaller than
the values fixed in Ruzmaikin’s model of 0.75 m/s/km and 2.25 m/s/km, respectively.
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(a) (b)

(c) (d)

Figure 3. (a) RMSE for mean zonal wind using the particle filter with ECMWF reanalysis data.
(b–d) Estimates for h and the coefficients of Λ obtained by time-averaging the ensemble mean over
the last year of analysis.

3.1.3. Particle Filter Summary

An exploration of the particle filter was initially motivated by the expected bimodality
of the zonal winds ensemble due to the bistability of the underlying model. We found
that significant bimodality of the ensemble is achieved only for longer assimilation periods
(Figure 2e), also corresponding to improved parameter estimates in identical twin experi-
ments (Figure 2b). With short assimilation periods, frequent updates of the state variable U
do not allow for the ensemble to spread out and sample both stable branches of the (h, U)
bifurcation diagram. Further, it results in inferior parameter estimation, as the effects of the
parameters are suppressed, with the analysis being driven by the observations and updates
of U.

Applying these ideas to the ECMWF reanalysis data, we obtain estimates for h within
the region of bistability when we utilize longer assimilation periods. For short assimilation
periods, h is estimated as unrealistically small, again from the assimilation analysis being
driven by the daily state updates, requiring tropospheric perturbations to play a less
important role. However, even with updated parameter estimates, important phenomena
including spikes in winter winds, are largely missed in our data assimilation. Thus, we find
that a constant h is insufficient to capture the complex dynamics of the ECMWF reanalysis
data, as its effects are being suppressed for short assimilation periods, and are unable to
match the data for longer assimilation periods.

With this in mind, we turn to ESMDA, which avoids bias from updates to the state
variables while also allowing for more flexibility in the parameter estimations, including
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a time-dependent h(t) and unparameterized Λ(t). In this way, we allow for complexity
to be added to the reduced order model such that it may better capture the higher-order
dynamics represented in the ECMWF reanalysis data. Although it does not explicitly
reveal which higher order terms or physical processes may be missing, their effects may
be amalgamated into the existing parameters, thereby increasing the scope of processes
described by h and Λ.

3.2. ESMDA Analysis
3.2.1. Free Parameters

Here we discuss the parameters we are able to estimate using the ESMDA scheme
outlined in Section 2.3.2. We have several distinct scenarios to investigate with our parame-
ter estimation. First, when Λ(t) is parameterized as in Equation (5) with Λ0, Λa, ϵ, and h
constant and unknown. Second, when h is constant and unknown but Λ(t), is replaced
with an unparameterized vector, Λ(t) ∈ RN , where N is the number of days over which
we have reanalysis data. Third, when Λ(t) is as in the first case but h is replaced with a
vector, h(t) ∈ RN , for a time dependent perturbation parameter and fourth, when both
Λ(t) ∈ RN and h(t) ∈ RN so that they are both time dependent.

For each of the scenarios above we also estimate the initial conditions for X, Y, and U.
In the cases where we allow for time-dependent Λ or h, we also have the choice of a
decorrelation time τλ and τh. These parameters control how the vectors Λ(t) and h(t)
are sampled. The initial sampling of these parameters is done by randomly sampling
amplitudes and phases of sine and cosine terms penalizing shorter wavelengths according
to a negative exponential and the decorrelation time described in Ref. [35,36]. The longer
the decorrelation time, the more the shorter wavelengths are penalized in the sampling.
As a result, the longer the decorrelation time, the smoother the time continuous priors
for Λ(t) and h(t) will be. The decorrelation lengths are not estimated by the ESMDA
analysis but are specified beforehand. In essence, when the decorrelation length is long,
the randomly sampled 1-D prior curves—1000 of them in our case—for Λ(t) and h(t) vary
slowly in time, which has the effect of an analysis curve that also varies slowly in time.
In the case that the decorrelation length is small, the randomly sampled priors vary rapidly
in time, allowing for an analysis curve that also does the same.

For the first case outlined above, we introduce an additional two shift parameters
that will be estimated by the ESMDA analysis: cΛa and cϵ. These parameters shift the sine
functions in Equation (5) to align with the data. That is, Λ(t) becomes,

Λ(t) = Λ0 + Λa sin
(

2π(t− cΛa)

1 year

)
+ ϵΛ0 sin2

(
π(t− cϵ)

11 year

)
. (17)

We also have the freedom to assign observation errors to the reanalysis data. For the
experiments reported on below, we set the standard deviation of the error in the winds as
σU = 10 m/s. We found in the identical twin model experiments, described below, that a
larger observation error provided better estimates of Λ(t) than with very low observation
errors. A relatively large observation error also allows for parameter estimates to not
be overly biased and to avoid spurious overfitting. We also found that RMSE ceases to
improve for ensembles larger than about 1000 members, which is what we use for all
ESMDA experiments in conjunction with 32 ESMDA steps.

3.2.2. Identical Twin Model Experiments

To evaluate the ESMDA scheme we first run a series of twin model experiments
where our observational data is produced directly from our low order model. For this
example we generate observational values of U using a fixed perturbation of h = 68 m
and a Λ(t) parameterized, as in Equation (5) with ϵ = 0.3 and Λ0, Λa, as prescribed in
Ref. [17]. For these experiments we assume no prior structure on Λ(t) or h(t) and run
ESMDA experiments across the chosen combinations of τλ = {1.5, 1, 1/2, 1/4, 1/12, 1/24}
yr and τh = {1.5, 1, 1/2, 1/4, 1/12, 1/24} yr. We use these same values for each of the other
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experiments when applicable. The values highlighted in this paper represent a subset of
the values chosen for our experiments. We highlight values where changes in the analysis
results are more apparent. We also avoid an extremely fine grained exploration of the
decorellation length parameter space due to the computational cost. For simplicity, we
denote these values in the manuscript with the closest integer number of days that they
represent, specifically 547, 365, 182, 91, 30, and 15 days.

The results are summarized in Figure 4 where we show the root mean squared error
(RMSE) for both U(t) and Λ(t) as well as the time-averaged value of h(t), for which a
good analysis should return a value close to h = 68 m. The summary results show that
the best values for τλ are 547 and 365 days, while the results do not depend as much
on τh, evidenced by the very similar values of RMSE for U(t) and Λ(t) for fixed values
of τλ. It is also important to note that the lowest values of RMSE for U(t) correspond
to the lowest values of RMSE for Λ(t) and the best average values of h(t), despite only
being conditioned on U(t). This establishes, at least for these twin model experiments,
some level of uniqueness in the analysis solution and a low risk of spurious parameter
estimations that still produce good fits. For these experiments, we would expect that the
longer decorrelation lengths for Λ(t) would produce better results, considering that the
period of Λ(t) that produced the data is one year. As will be discussed later, this is not the
case when assimilating the reanalysis data, which may suggest more variation in the real
Earth system.

(a) RMSE U (b) RMSE Λ(t) (c) Mean h(t)

Figure 4. Summary statistics of ESMDA identical twin experiments for varying decorrelation lengths.

In Figure 5 we show three examples of the analyses we obtain for both Λ(t) and U(t)
as well as the (Λ, U) phase space with the equilibrium solutions of the autonomous version
of the system in Ref. [17]. The best fits for both Λ(t) and U(t) occur when τλ = 547, which
produces a phase space very similar to that in Ref. [17] for the same parameters used to
generate the truth run. As τλ decreases, increased variation in Λ(t) is observable, which
translates into the phase space. The higher values of τλ also provide time-averaged values
for h(t) closest to the true value of h = 68 m.

While we only show the case where both Λ(t) and h(t) are free and time-dependent,
other runs where h was kept constant but estimated with the ESMDA scheme show similar
behavior typically obtaining analyses with h ≈ 68 m for longer τλ. Truth run cases where h
was set to 68 m and only Λ(t) was estimated were also carried out. In this case, there was
no significant improvement in the analyses when allowing both parameters to be free.

These twin model experiments establish three important points. First, the ESMDA
scheme can successfully estimate parameters despite the high dimensionality resulting
from time-dependent Λ(t) and h(t). Second, the best results as measured by the RMSE
between analysis mean zonal wind and the true wind corresponds to the most accurate
estimations of Λ(t) and h(t) rather than spurious parameter values that happen to produce
good mean zonal wind analyses. Third, the decorrelation lengths have a strong effect on
the quality of the analysis and must be considered. To that end, we range over the same
values for the decorrelation lengths for all experiments using the ECMWF reanalysis data
when a parameter is chosen to be time-dependent.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Example model outputs from the ESMDA identical twin experiments, each with τh = 91.
(a–c) show the model analysis Λ(t) (red) versus the known, true Λ(t) (black), while (d–f) show these
curves for mean zonal wind speed U(t). (g–i) Model output (blue) translated into Λ−U phase space
superimposed on the bifurcation diagram for Λ. Note that the bifurcation diagrams only showcases
the stable equilibrium branches (orange), and this is repeated in subsequent figures. Decorrelation
lengths for Λ are set at (a,d,g): τλ = 547, (b,e,h): τλ = 182, and (c,f,i): τλ = 15.

3.2.3. Parameterized Λ(t) and Free h(t)

In this section we explore whether or not only a time-dependent h(t) can account
for the variability observed in the ECMWF reanalysis data. In the reduced order models
described in Refs. [17,21,37], recall that the perturbation parameter h is used to represent
the effects of Rossby waves on the polar vortex. In these studies, a low value for h implies
weaker Rossby waves and thus higher mean zonal winds while a large value of h gives
rise to larger perturbations and lower mean zonal winds. In the autonomous version of the
system in analyzed in Ref. [17], there is a region of bistability between values of h ≈ 25 m
and h ≈ 150 m. We may expect to see (h, U) values close to the equilibrium branches
shown in Ref. [17], Figure 3, in the phase space after assimilation of the ECMWF data.
However, this is not what we typically see. The reason for this is that the mean zonal winds
are typically much smaller in the data than those coming from the chosen parameters in
the reduced order models.
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Indeed, the bifurcation diagram for h in Ref. [17], Figure 3, results from fixing Λ = 1
m/s/km. However, as fixed Λ decreases, the region of bistability shrinks, until the stable
branches converge to a single stable equilibrium around approximately Λ ≈ 0.5 m/s/km, also
reflected in Ref. [17], Figure 1. In our fit, Λ varies seasonally and is close to zero or negative
during the summer.

Here, we take Λ(t) as in Equation (17) but allow Λ0, Λa, and ϵ to be free parameters
estimated by ESMDA as well as the shift parameters, cΛa and cϵ. Analysis results are shown
in Figure 6. We find, as in the particle filter experiments, that the amplitude of Λ(t) is much
lower than the idealized cases explored in the various reduced order models. This can be
observed in Figure 6e, where we see the phase space concentrated around Λ = 0. In all the
assimilations for this case, recovery of the peaks in mean zonal wind was not achievable
even when h(t) had a very low decorrelation length to allow for more variability, which
for this case corresponds to the lowest RMSE, shown in Figure 6a where we also note that
the the variance of U decreases with the increasing τλ, as one might expect. In Figure 6b
we see that the variance in h(t) is correlated to the mean value with typically increasing
variance as τh increases. In this case, when h(t) is allowed to vary quickly in time, smaller
changes are needed to cause variation in U while an h(t) that cannot vary rapidly in time
tends to need larger amplitude changes to affect U. The analysis curve can be compared to
the observation in Figure 6d where we see good agreement in the troughs but a missing of
the peaks. The resulting Λ(t) from the fit parameters, estimated h(t), and U are shown in
Figure 6c. The example of assimilation results corresponds to τh = 15, chosen because it
provides the lowest RMSE value with mean zonal winds.

(a) (b)

(c) (d) (e)

Figure 6. Results from ESMDA fraternal twin experiments for Λ(t) parameterized by estimated
Λ0, Λa, and ϵ and h(t) free. (a) RMSE (blue) and variance (orange) of model analysis U(t), while
(b) shows variance (blue) and mean (orange) of h(t), each for varying values of τh. (c) Model output
for normalized variables U, h, and Λ. (d) Comparison of estimated wind speeds (red) and observed
wind speeds (black). (e) Λ−U phase space of model output (blue) superimposed on the bifurcation
diagram for Λ (orange). (c–e) Model output is from the lowest RMSE experiment (τh = 15).
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Due to the relatively small estimated amplitude of Λ and the inability to capture
wintertime windspeeds, we also explored enforcing larger values for Λa. However, these
assimilation experiments produced higher RMSE values by a factor of two, overshot the
summertime troughs, and still failed to “jump” to the upper branch of the bifurcation
diagram. The full results of this endeavor are presented in Appendix C.

3.2.4. Free Λ(t) and Constant h

In the previous section, we observed that a time-dependent perturbation parameter
h(t) alone was insufficient to allow the Ruzmaikin model to accurately capture the ECMWF
reanalysis data. In this section, we describe the results of our ESMDA experiments where
we take h to be constant and estimate an unparameterized Λ(t) ∈ RN . We note that taking
a constant h still allows for perturbations to the system and the estimation of a constant h is
still informative in examining how well a reduced order model can represent realistic data.
In general, we find that with only a time-dependent Λ(t) estimated by the ESMDA scheme
we achieve very good fits to the reanalysis data with the best fits occurring for lower values
of τλ. This is in contrast to our truth runs where longer decorrelation lengths produced the
best fits. However for those runs the prescribed Λ(t) was slowly changing and correlated
over long times, being represented by a sine wave with a period of 1 year. The fact that the
lowest RMSE values occur for smaller τλ suggests that more variability in Λ(t) is needed
to account for some of the rapid changes in the reanalysis data. We show summary results
for these experiments in Figure 7 where we see a general trend of increasing RMSE in U(t)
with decreasing variance in Λ(t).

(a) (b)

Figure 7. Results from ESMDA fraternal twin experiments for Λ(t) free and h(t) constant. (a) RMSE
(blue) and variance (orange) of model analysis U(t), while (b) shows the variance (blue) and mean
(orange) of Λ(t), each for varying values of τλ.

In Figure 8 we show the results of the ESMDA parameter estimation for τλ = [547, 182, 15]
days. All show relatively good agreement with the reanalysis data with the smaller values of τλ

providing the best fit to the extremes of mean zonal winds in the data Figure 8d–f. In Figure 8a–c
corresponding to τλ = 30, 182 and 547 respectively, we see a general trend of diminishing peaks
and deeper troughs in Λ(t) as τλ decreases. This trend also emerges in Figure 7b as the mean
of Λ(t) sharply decreases after τλ = 91. Interestingly it is for these cases that the peaks of the
mean zonal wind are best captured despite the generally lower values of Λ(t). This may have
to do with the ability of a more rapid and dynamic recovery in Λ(t) after a large dip permitted
when τλ is small. We also find that relatively low values of h are estimated with h ≈ 35 m in
these cases. This is likely due to the generally lower mean zonal winds represented in the data
as opposed to the idealized cases examined in Ref. [17].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Example model results for Λ(t) free and h constant. (a–c) Model output for normalized
variables U (red) and Λ (black). (d–f) Comparison of model estimated wind speeds (red) with the
observed wind speeds (black). (g–i) Λ−U phase space of model output (blue) superimposed on the
bifurcation diagram for Λ (orange). Decorrelation lengths for Λ are set at (a,d,g): τλ = 547, (b,e,h):
τλ = 182, and (c,f,i): τλ = 30.

In Figure 8g–i, we show the (Λ(t), U(t)) phase space with the equilibrium solutions
of the autonomous system in Ref. [17]. The phase space orbits the equilibrium solutions
with the most time spent on the lower branch and some jumps to the upper stable branch.
The fact that the phase space is so similar to the idealized time-dependent case in Ref. [17]
and Figure 5g–i demonstrates that the parameters required to accurately match the reanaly-
sis data are not overly dynamically different from the idealized case. This also suggests
that the reduced order model captures the most important physics of the real system.

3.2.5. Free Λ(t) and h(t)

Here, we allow both parameters to be free, as in the identical twin model experiments.
As in the twin model case, we typically find that RMSE for the mean zonal wind is not
very dependent on τh but strongly dependent on τλ as can be seen in Figure 9a. Unlike the
identical twin model case, the lowest values for mean zonal RMSE occur for lower values
of τλ, and this suggests that more variability in Λ(t) is required to match the ECMWF
reanalysis data. As might be expected as τλ decreases the variance in both Λ(t) and U(t)
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increase, shown in Figure 9b,c. In Figure 9d we see the that variance in h(t) decreases as
τλ decreases, suggesting that the model is most sensitive to Λ(t). It is for the cases that
h(t) varies less and Λ(t) varies more we achieve the lowest values in RMSE for the mean
zonal wind. In all cases we are able to capture the peaks fairly well and extremely well for
small τλ.

(a) RMSE U (b) U Variance

(c) Λ(t) Variance (d) h(t) Variance
Figure 9. Summary statistics for ESMDA fraternal twin experiments with free Λ(t) and h(t) and
varying decorrelation lengths.

In Figure 10 we show three examples from these experiments for a fixed τh as the
results were not sensitive to that parameter. It is is also notable how similar these results
are to those in the previous section where h was fixed. A visual inspection between
Figures 8 and 10 shows this with nearly identical results and extremely similar phase spaces.

In Figure 10a–c we see that the estimated h(t) takes on a wider range of values when
τλ is large than when τλ is small. Allowing h to be time-dependent does provide slightly
smaller RMSE values—but not by much. As Λ(t) is allowed to be more dynamic it appears
that h(t) needs to do “less work” for a good data match.

3.3. Analysis Around SSW Events

As part of our analysis on how representative reduced order models of the polar vortex
can be, we compare our analysis curves to a list of known sudden stratospheric warming
(SSW) events taken from Ref. [38]. To do this, we take snapshots of the analysis curves 28 days
before and after the specified SSW event looking at Λ(t), h(t), and U(t). We show snapshots
of Λ(t) and h(t) for six cases, specifically with τh = 365 and τλ = 547, 182, and 15 as well
as with τh = 15 and the same list of τλ above for three different SSW events and with more
dates shown in Appendix D. We would expect to see a sudden drop in Λ(t) either from
normal waves from below propagating up into the upper layers, causing winds to slow and
stratospheric temperatures to increase, or a rapid reduction in the thermal gradient between
the lower and upper latitudes in the stratosphere (Equation (4))—or perhaps a combination of
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both. We might also expect to see a rapid increase in h(t), which would correspond to more
normal waves propagating up into the upper layers. In all of these cases, we would expect the
event to be followed by a drop in mean zonal winds with a slow or very little recovery in the
28 days after the event. In general, this behavior is in line with timelines for and definitions of
various events dubbed SSW events [39].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Example model results with both Λ(t) and h(t) free and τh = 365. (a–c) Model output
for normalized variables U (red), h (blue), and Λ (black). (d–f) Comparison of model estimated
wind speeds (red) with the observed wind speeds (black). (g–i) Λ − U phase space of model
output superimposed on the bifurcation diagram for Λ. Decorrelation lengths for Λ are set at (a,d,g):
τλ = 547, (b,e,h): τλ = 182, and (c,f,i): τλ = 15.

In general, a rapid decrease in Λ(t) is what we observe throughout all of our exper-
iments where it is estimated completely by the ESMDA scheme. The described pattern
is most noticeable for shorter τλ but does persist for longer decorrelation lengths while
not being sensitive to τh. However, the expected rapid increase in h(t) is only a persistent
phenomena when τh = 15 days and is almost nonexistent for the longer decorrelation
lengths. Nevertheless, we note that as long as h(t) is not zero, normal wave perturbations
are considered to be occurring.

In Figure 11, we show examples of these snapshots for three selected dates with
τλ = 547, 182, and 15 and τh = 365. For the majority of the SSW events examined, Λ(t)
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exhibits a convex shape with a minimum near the listed date of the SSW and a recovery
thereafter. With τh = 365 in this case we see very little change in h(t) due to the long
decorellation length constraining the variability of the h(t) prior samples. In this case Λ(t)
is doing most of the forcing in the model. The mean zonal wind exhibits a delayed decrease
with no significant recovery in the 28-day period following the listed SSW date. When τλ is
small enough the Λ(t) becomes less smooth and more dynamic but still exhibits the same
general pattern. We also see that for smaller τλ the minimum value of Λ(t) becomes more
extreme for the majority of cases. This is because for small decorrelation lengths the priors
for Λ(t) are not tied to values far in the past or future and can respond quickly to rapid
changes in the data.
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Figure 11. Examples of model output around known SSW events for U (orange), Λ (blue), and h
(red), each with τh = 365. Decorrelation lengths for Λ are set at (a–c): τλ = 547, (d–f): τλ = 182, and
(g–i): τλ = 15.

In Figure 12 we show snapshots for the same dates and values of τλ but with τh = 15.
With τh = 15 the ensemble of priors used in the ESMDA scheme all have more variability
allowing for a more variable analysis curve. In this case we see a very similar pattern as
previously for Λ(t) but a much more variable response for h(t). We see a typical pattern of
at least a rapid increase in h(t) right before the SSW event, perhaps most strikingly with
the Feburary 2018 SSW. We show the snapshots for all dates listed in Ref. [38] with τh = 15
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in Figure A3 (for τλ = 547), Figure A4 (for τλ = 182), and Figure A5 (for τλ = 15). It is
noteworthy that the general pattern observed in these snapshots only emerges for shorter
τλ on the 24 March 2010, SSW event. This may be related to the proximity of the previous
SSW event on 9 February 2010 just 43 days before and its proximity to the end of winter.
As in Ref. [40], no day within 20 days of a previous SSW should be considered a separate
event and the final warming must also take place before 30 April. The February 2007
event is also unusual in that the general pattern emerges only for shorter τλ and exhibits a
somewhat rapid recovery in the mean zonal wind. This may be attributable to a noticeably
higher average mean zonal wind that year around the event [41]. A strong latitudinal
thermal gradient, associated with a strong vortex, may allow for a faster recovery of the
wind speed. We would also like to highlight that the magnitude in the change of h(t) around
these events is larger when τλ is longer. This again is because when the decorrelation length
for Λ(t) is long the priors sampled for the ESMDA scheme will have less variability and
can therefore do “less work” in forcing the system, while if the decorrelation length is small
for h(t) its priors will be more variable and can do “more work” when forcing the system.
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Figure 12. Examples of model output around known SSW events for U (orange), Λ (blue), and h
(red), each with τh = 15. Decorrelation lengths for Λ are set at (a–c): τλ = 547, (d–f): τλ = 182, and
(g–i): τλ = 15.
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The generally accepted cause of an SSW event is due to atmospheric waves that
originate in the troposphere, which propagate upward, weakening the stratospheric jet.
In this analysis, when τh is small enough we do see rapid increases in h(t), which would
correspond to increased perturbation due to waves. However, we are still able to capture
the decrease in winds and match the data well when τh is longer and this behavior is not
present, although because h ̸= 0, perturbation is still present. As mentioned in earlier
sections, we were only able to match the reanalysis data well when Λ(t) is estimated by the
ESMDA scheme, and this holds true for the SSW events. This perhaps suggests that more
complexity is needed in this model to be able to produce the kinds of variability we see in
the reanalysis data. While the scope of this paper is simply to evaluate if this reduced order
model can produce observed variability and what it takes to do so, it would be interesting
to explore modified versions of the model. In particular, taking the vertical wind shear to
be a function of both time and h, as Λ(t, h) could be the aim of future work. Nonetheless,
these results are interesting as they show that the ESMDA estimated reduced order model
parameters respond appropriately to real physical events. That is, despite the generality
added by free and unparameterized Λ(t) and h(t), the recovered parameters are in line
with what may be expected to emerge during an SSW event.

Finally, we comment on some trends observed in the analysis data. We computed
1 year, 2 year, and 5 year moving averages and variances for the analysis Λ(t) and U(t). In
general, there was a noticeable upward trend for both, which becomes more pronounced
for the longer windows. While these trends are not definitive, they may suggest shifts in
the behavior of the polar vortex over the 20-year dataset considered. We show an example
of these trends in Figure 13.

(a) 1 year window (b) 2 year window (c) 5 year window

(d) 1 year window (e) 2 year window (f) 5 year window

Figure 13. Mean (blue) and variance (orange) of (a–c): Λ(t) and (d–f): U(t) over several different
moving windows, 1 year, 2 years, and 5 years.

4. Conclusions and Discussion

In this manuscript, we demonstrated that reduced order models of stratospheric
wave–zonal interactions, in particular the Ruzmaikin model (2003) in conjunction with data
assimilation schemes, can be used to produce model output closely matches with averaged
ERA-Interim reanalysis data. We employed a 20-year dataset of atmospheric reanalysis data
sourced from the ECMWF for the purpose of understanding the behavior and influence of
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physically-based control parameters of the low order model in the context of real-world
phenomena. Initially, we applied a particle filter due to the assumed bimodality of the
ensemble associated with bistability of the model and of the winter polar vortex. Yet, this
method ultimately failed to capture several relevant features of the data, and subsequently,
we utilized ESMDA techniques to allow for added complexity of parameters.

When using the particle filter, we determined the influence of hyperparameters
through identical twin model experiments. We confirmed that lower observation error
results in better estimation of state variables and parameters. However, the effects of longer
assimilation periods was initially surprising, as we found that assimilating less data can
actually improve parameter estimation. One reason this may be the case is that the ODE
model is given more time to “feel” the influence of the parameter updates. With short
assimilation periods, the parameters show much larger variances, which may come from
over-fitting the data.

We used fraternal twin experiments to determine how well the reduced order model
could recover ECMWF reanalysis data using the particle filter algorithm. We noted simi-
larities in the RMSE profiles with the identical twin experiments. However, even with the
updated parameter estimates, important phenomena related to the winter polar vortex
are largely missed in our data assimilation. Thus, ESMDA was employed to explore the
applicability of the Ruzmaikin model when h and Λ are allowed to be fully free to vary
with respect to time, rather than being prescribed in a fixed form.

We had several distinct scenarios to investigate using ESMDA. First, when Λ(t) is
parameterized as in Equation (5) with Λ0, Λa, ϵ, and h constant and unknown. Second,
when h is constant and unknown but Λ(t) is unparameterized and free. Third, when
Λ(t) is as in the first case but h is replaced with an unparameterized, free vector, h(t) for
a time-dependent perturbation parameter and fourth, when both Λ(t)and h(t)are both
time-dependent and unparameterized. In the cases where we allowed for time-dependent
Λ or h, we also had the choice of a decorrelation time τλ and τh.

To evaluate the ESMDA scheme, we conducted a series of identical twin model experi-
ments, as in the case of the particle filter, where observational data was produced directly
from the low order model. Overall, using ESMDA, we concluded that a free Λ(t) and h(t)
and sampling the space of reasonable decorrelation lengths provided an improvement
in data fitting, with the best results coming from relatively long decorrelation lengths
for h. Furthermore, the recovered parameters that closely matched the reanalysis data
was in line with the idealized situations considered in Ref. [17] with the time-dependent
(Λ(t), U(t)) phase space orbiting the stable equilbrium branches of an even further simpli-
fied autonomous version of the reduced order model.

We also examined our analysis curves around some known SSW events, finding a
general pattern in Λ(t), h(t), and U(t) consistent with expectations for such an event.
However, we note that a rapid increase in h(t), corresponding to abnormal normal wave
propagation, was not absolutely necessary to capture the SSW in terms of a drop in Λ(t)
and U(t). This could mean that there is room for added complexity in the model, perhaps
adding a dependence on h to Λ. Data-driven methods could be used to investigate this
and may be the aim of future work. We also noticed a general increasing trend in the
moving averages and variances of Λ(t) and U(t), which may be a result of increasing
tropospheric and decreasing stratospheric temperatures resulting from increased CO2
levels in the atmosphere. It has been understood that increases in global CO2 lead to
increases in tropospheric temperatures and decreases in stratospheric temperatures as
a warmer surface pushes the edge of the stratosphere higher [42]. Evidence of such a
signature of increasing CO2 levels has been observed in data [43]. A cooler stratosphere
may cause stronger temperature gradients, leading to generally higher mean zonal winds
and more variability.
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Appendix A

In this section, we go through the derivation of the reduced order model by
Ruzmaikin et al. [17] from the original Holton and Mass model [6].

The HM76 model is a quasi-geostrophic β-plane channel model, which is similar to
the one used by Geisler (1974) to study the essential dynamics of sudden stratospheric
warming. Holton and Mass modified Geisler’s model by adding a sine jet meridional
variation to reflect the mean zonal flow’s dependence on latitude, while Geisler assumed a
zonal flow that is independent of latitude. This sine jet profile roughly models the observed
polar night jet in the Northern Hemisphere and is associated with vertical forcing from
planetary waves. HM76 assumes that the main driving forces of mean zonal circulation
are differential radiative heating and horizontal eddy heat fluxes caused by vertically
propagating planetary waves. The mean zonal wind ū and the geostrophic streamfunction
of a wave ψ′ are assumed to take the following forms by Holton and Mass (1976):

ū(y, z, t) = U(z, t) sin ℓy,

ψ′(x, y, z, t) = Re
[
Ψ(z, t)eikx

]
ez/2H sin ℓy,

(A1)

where k, ℓ are wavenumbers for x, y the standard azimuthal and latitudinal coordinates.
Here f0 is the Coriolis parameter at 60◦ N ( f0 = 1.26× 10−4s−2) and H is a mean scale
height (H = 7 km). Notice that the variable Ψ is complex valued. Holton and Mass also
further assumed that the wave fields are governed by the linearized quasi-geostrophic
potential vorticity equation in log pressure coordinates:(

∂

∂t
+ ū

∂

∂x

)
q′ + β′

∂ψ′

∂x
+

f 2
0
ρ

∂

∂z

(
αρ

N2
∂ψ′

∂z

)
= 0, (A2)

where

q′ = ∇2ψ′ +
f 2
0
ρ

∂

∂z

(
ρ

N2
∂ψ′

∂z

)
(A3)

represents the perturbation potential vorticity and

β′ = β− ∂2ū
∂y2 −

f 2
0
ρ

∂

∂z

(
ρ

N2
∂ū
∂z

)
(A4)

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-interim
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represents the gradient of the basic state potential vorticity. Here, β is the meridional
derivative of the Coriolis parameter at 60◦ N, which is 1.14× 10−11 s−1m−1, N2 is the
buoyancy parameter fixed at N2 = 4 × 10−4 s−2, ρ = ρ0 × exp(−z/H) is a standard
density, and α = α(z) is a Newtonian cooling rate coefficient.

The prognostic equation of the mean zonal flow is given by Ref. [6]:

∂

∂t

[
∂2ū
∂y2 +

f 2
0

N2
1
ρ

∂

∂z

(
ρ

∂ū
∂z

)]
= −

f 2
0

N2
1
ρ

∂

∂z

[
αρ

∂(ū− uR)

∂z

]
+

f 2
0

N2
∂2

∂y2

[
1
ρ

∂

∂z

(
ρv′

∂ψ′

∂z

)]
, (A5)

where v′ = ∂ψ′/∂x and ū is the mean zonal flow obtained by averaging over x. The flow is
assumed to be confined to a β-channel centered at 60◦N with meridional extent L of 60◦

latitude. We substitute the assumed form of solutions (Equation A1) into Equations (A2)
and (A5). Then, the linearized quasi-geostrophic potential vorticity equation and mean-flow
equation become, respectively(

∂

∂t
+ ikϵU

)[
−(k2 + ℓ2) +

f 2
0

N2

(
∂2

∂z2 −
1

4H2

)]
Ψ + β′eikΨ

+
f 2
0

N2

(
∂

∂z
− 1

2H

)[
α

(
∂

∂z
+

1
2H

)]
= 0,

(A6)

1
ϵ

∂β′e
∂t

=
f 2
0

N2

(
∂

∂z
− 1

H

)[
α

(
∂U
∂z
− dUR

dz

)]
+

1
2

kℓ2ϵ
f 2
0

N2 ez/HIm
[

Ψ∗
∂2Ψ
∂z2

]
, (A7)

where

β′e = β + ℓ2ϵU − ϵ
f 2
0

N2

(
∂2U
∂z2 −

1
H

∂U
∂z

)
. (A8)

A constant ϵ = 8/(3π) is derived from the truncation of nonlinear term sin2 ℓy
using Fourier time series. With the specific localization of the β-channel, ℓ = 3/a =
4.71 × 10−7 m−1 and k = 2/(a cos π/3) = 6.28 × 10−7 m−1 where a is the radius of
the earth. For the boundary conditions, [6] assumes zero normal flow across the lateral
boundaries, which requires that ψ′ and v′ vanish at the side boundary y = 0, L. The
upper and bottom boundaries are chosen at zB = 10 km (tropopause) and zT = 80 km
(mesopause), respectively. Further, Ref. [6] assumes that pertubation and zonal mean flow
vanish at the upper boundary and specifies the lower boundary conditions by setting
ū = ūB(y) and ψ′ = ψB(y, t).

Yoden then developed a simplified version of Ref. [6] in 1987 and 1990. Ref. [37]
simplified Ref. [6] by using central finite differencing for Ψ and U, thus reducing (A6) and
(A7) to 81 nonlinear ordinary differential equations. Ref. [37] changes the bottom boundary
to 0 km instead of the tropopause and specifies the bottom and top boundary conditions as

Ψ(zT , t) = 0
∂U
∂z
|z=zT =

dUR
dz
|z=zT

Ψ(0, t) = ghB(t)/ f0

U(0, t) = UR(0),

(A9)

where hB plays the same role as h(t) in Ref. [6] but is assumed to be constant in Yoden’s
studies. For the radiative equilibrium UR, Ref. [37] uses the same simple linear model
suggested by Ref. [44]:

UR(z, t) = URB + Λ(t)z (A10)

where Yoden fixed URB to 10 m s−1 and Λ at 2 m s−1/km. Hence, dUR/dz is assumed to
be constant by Ref. [37].
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Ref. [21] is identical to the form of Ref. [37] but assumes time dependency in dUR/dz
by adding an annual component with the following form:

dUR
dz

(t) = 0.75− 2.25 cos
(

2πt
365

)
, (A11)

where t is expressed in day. Ref. [21] illustrates the seasonal variation of the stratospheric
circulation by adapting the periodic radiative heating.

Ref. [17] further simplified Refs. [21,37] by using finite differences in just a single layer.
They considered j = 0, 1, 2 in the finite difference scheme and used variables defined at the
middle height zT/2 with ∆z = zT/2 (zT is assumed to be 50 km here). Boundary conditions
are taken into account at the top and bottom. This produces the approximation:

∂Ψ
∂z

=
Ψ2 −Ψ0

2∆z
= − gh

f0zT
,

∂2Ψ
∂z2 =

Ψ2 − 2Ψ1 + Ψ0

∆z2 = −8Ψ
z2

T
+

4gh
f0z2

T
,

∂U
∂z

=
U2 −U0

2∆z
=

U1 −UR(0) + ΛzT/2
zT

,

∂2U
∂z2 =

U2 − 2U1 + U0

∆z2 = −4(U1 −UR(0)−ΛzT/2)
z2

T
.

(A12)

This reduction of Yoden’s 81 ordinary differential equations removes the vertical
dependence. We rewrite Ψ = X(t) + iY(t) and substitute (A12) back into the linearized
quasi-geostrophic potential vorticity equation and zonal wind prediction equation. Then,
the Ruzmaikin model appears in the final form of three ordinary differential equations:

Ẋ = −X/τ1 − rY + sUY− ξΨ0 + δwΨ̇0,

Ẏ = −Y/τ1 − rX + sUX + ζΨ0U,

U̇ = −(U −UR)/τ2 − ηΨ0Y− δΛΛ̇,

(A13)

where UR = UR(zT/2) = UR(0)−ΛzT/2. The appendix of Ref. [17] gives the derivation
of all other fixed parameters, reported in Table A1.

Table A1. Coefficients of the Ruzmaikin model (1)–(3), which are dimensionless unless other-
wise noted.

Parameter Value

τ1 122.6276
r 0.6286
s 1.9638
ξ 1.7488

δw 70.8437
ζ 240.5361

UR 0.4748
τ2 30.3713
η 9.131× 104

δΛ 4.9115× 10−4

Λ0 0.75 m/s/km
δΛa 2.25 m/s/km

ϵ 0–0.3
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Appendix B

This section reviews the mathematical formulation underlying the particle filter. Nota-
tion and outline borrowed from Ref. [12]. Then, the functions and variables are defined in
the context of the model and data described in Sections 2.1 and 2.2, respectively.

Let xk ∈ Rn be the state vector which evolves according to the system model

xk+1 = fk(xk, wk) (A14)

where fk : Rn × Rm → Rn and wk ∈ Rm is a zero-mean, white-noise sequence inde-
pendent of x. Let yk ∈ Rp represent observations which are related to xk through the
observation equation

yk = hk(xk, vk) (A15)

where hk : Rp ×Rr → Rp is the observation operator and vk ∈ Rr is another zero mean,
white-noise sequence with known distribution independent of xk and wk.

The goal of the particle filter is to construct the density of xk given all preceding obser-
vations Dk = {yi : i = 1, . . . , k}. This is done via recursion and Bayes’ rule, which states

p(xk|Dk) =
p(yk|xk)p(xk|Dk−1)

p(yk|Dk−1)
. (A16)

Note that each term in this equation can be written as a function of known variables.
Indeed, the denominator is

p(yk|Dk−1) =
∫

p(yk|xk)p(xk|Dk−1)dxk (A17)

where the first term in the integrand (and numerator of (6)) can be written as

p(yk|xk) =
∫

δ(yk − hk(xk, vk))p(vk)dvk. (A18)

The remaining term in the numerator of (6) can be decomposed similarly,

p(xk|Dk−1) =
∫

p(xk|xk−1)p(xk−1|Dk−1)dxk−1 (A19)

again writing the first term in the integrand as

p(xk|xk−1) =
∫

δ(xk − fk−1(xk−1, wk−1))p(wk−1)dwk−1. (A20)

Thus, Bayes’ rule can be rewritten in terms of known quantities and the recursively
defined p(xk−1|Dk−1). Analytical solutions to this problem are available for the constrained
case for linear fk, hk and Gaussian distributions. For more general applications, including
the one considered here, the following numerical algorithm is utilized instead.

Consider a set of random samples {xk−1(i) : i = 1, . . . N} of known distribution
p(xk−1|Dk−1). The prediction step involves calculating

x∗k (i) = fk−1(xk−1(i), wk−1(i)) (A21)

where wk−1(i) is sampled from the known distribution p(wk−1). Clearly, {x∗k (i)} is dis-
tributed as p(xk|Dk−1).

An update is then preformed by resampling N times with replacement according to
the discrete distribution where the weight for the i−th ensemble member is given by

qi =
p(yk|x∗k (i))

∑N
j=1 p(yk|x∗k (j))

, (A22)



Meteorology 2024, 3 28

to get {xk(i) : i = 1, . . . , N}, which is distributed as p(xk|Dk) according to Ref. [25].
In the application to stratospheric zonal winds studied here, we have the following

particle filter functions and distributions. The state vector is

xk =
(
X Y U h Λ0 Λa

)T , (A23)

which evolves according to the dynamical model, fk, given by numerically solving (using
ode4 [45] in MATLAB 2022a) the system of ODEs (1)–(3) and evolving X, Y, and U according
to the solution, and adding model error, wk ∼ N(0, Σmodel). The observed variable is
yk = U, related to state vector by the observation equation

yk = xT
k e3 + vk (A24)

where e3 =
(
0 0 1 0 0 0

)T , and the observation error is assumed to mean-zero
Gaussian noise, vk ∼ N(0, σ2

obs).
The covariance matrix of model error, Σmodel, is diagonal with elements set to 0.1%

of the maximum values for each state variable X, Y, and U. This was determined by
running the Ruzmaikin model with perturbations of varying magnitude between timesteps.
Ultimately, we chose the largest variance that allows for some “switching” between high
and low stable equilibrium wind speeds without totally disrupting the model. Note that
this also agrees fairly well with the method described in Ref. [34], of using the variance-
covariance matrix to estimate “natural” variation in a free run to use as an estimate of
model variance.

Appendix C

Here, we further explore the ESMDA scheme applied to a parameterized Λ(t) as in
Equation (17) and a free h(t) ∈ RN . In Section 3.2.3, hereafter referred to as “case 1”, recall
that we were unable to hit the winter peaks using estimated Λ0, Λa, ϵ, and shift parameters.
Thus, we try to constrain these parameters to enforce larger values of Λ, so that it may
enter the region of bistability.

In Figure A1, we fix the parameters in Equation (17) except for the shift parameters
and set them to the values in Ref. [17] (case 2). We do this to enforce a larger amplitude
for Λ(t) and examine if a time dependent h is enough in this case to produce an analysis
consistent with the ECMWF data and the peaks represented in it. We note larger values in
RMSE than in case 1 shown in Figure A1a, however the inverse relationship between the
RMSE and variance of U in case one is no longer present. In Figure A1b, we can see that for
the lowest RMSE results the average value of h(t) is highest, and higher than those in case
1. This results from the larger amplitude of Λ(t) being enforced, h will generally need to be
higher to drive the resulting higher mean zonal winds down. In Figure A1d we see that
we are still unable to capture the peaks despite the larger amplitude of Λ(t) evidenced in
Figure A1e. In addition, the troughs are overshot, likely resulting from the large values of h
required to bring down mean zonal wind amplitudes. In Figure A1c we show normalized
Λ(t), U(t), and h(t) for the case where τh = 91, again corresponding to the lowest RMSE
for mean zonal wind.
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(a) (b)

(c) (d) (e)

Figure A1. Results from ESMDA fraternal twin experiments for Λ(t) parameterized by Λ0 = 0.75,
Λa = 2.25 m/s/km, and ϵ = 0.3 fixed and h(t) free. (a) RMSE (blue) and variance (orange) of model
analysis U(t) while (b) shows the variance (blue) and mean (orange) of h(t), each for varying values
of τh. (c) Model output for variables normalized U (red), h (blue), and Λ (black). (d) Comparison of
model estimated wind speeds (red) with the observed wind speeds (black). (e) Λ−U phase space of
model output (blue) superimposed on the bifurcation diagram for Λ (orange). (c–e) Model output is
from the lowest RMSE experiment (τh = 91).

Finally, using the results shown in Figure A2 we again use the ESMDA scheme to
estimate Λ0, Λa, and ϵ, as well as the shift parameters, but provide a minimum value for
Λa to be that set in Ref. [17]. This is done to sample larger amplitudes in an attempt to
find an h(t), which can allow for a close match of the data while capturing the peaks. The
results are similar to the previous case with the lowest RMSE occurring for τh = 547. The
estimated amplitudes are indeed larger, which can be seen in Figure A2e, however we are
still unable to capture the peaks and the troughs are also overshot as in case 2, shown in
Figure A2a. We also see larger average values for h(t), Figure A2b, than cases 1 or 2, owing
to the larger amplitudes in Λ(t).
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(a) (b)

(c) (d) (e)

Figure A2. Results from ESMDA fraternal twin experiments with Λ(t) parameterized by Λ0 and
ϵ free, Λa ≥ 2.25 m/s/km, and h(t) free. (a) RMSE (blue) and variance (orange) of model analysis
U(t) while (b) shows the variance (blue) and mean (orange) of h(t), each for varying values of τh.
(c) Model output for variables normalized U (red), h (blue), and Λ (black). (d) Comparison of model
estimated wind speeds (red) with the observed wind speeds (black). (e) Λ−U phase space of model
output (blue) superimposed on the bifurcation diagram for Λ (orange). (c–e) Model output is from
the lowest RMSE experiment (τh = 547).

Appendix D

Here, we show the full results of ESMDA analysis behavior around SSW events for
varying decorrelation lengths.
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Figure A3. (a–n) Λ (blue), U (orange), and h (red) around known SSW events with τλ = 547, τh = 15.
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Figure A4. (a–n) Λ (blue), U (orange), and h (red) around known SSW events with τλ = 182, τh = 15.
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Figure A5. (a–n) Λ (blue), U (orange), and h (red) around known SSW events with τλ = 15, τh = 15.
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