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Abstract: Assimilation of cloud properties in the convective scale ensemble data assimilation system
is one of the prime topics of research in recent years. Satellites can retrieve cloud properties that
are important sources of information of the cloud and atmospheric state. The Advance Baseline
Imager (ABI) aboard the GOES-16 geostationary satellite brings an opportunity for retrieving high
spatiotemporal resolution cloud properties, including cloud water path over continental United States.
This study investigates the potential impacts of assimilating adaptively thinned GOES-16 cloud water
path (CWP) observations that are assimilated by the ensemble-based Warn-on-Forecast System and
the impact on subsequent weather forecasts. In this study, for CWP assimilation, multiple algorithms
have been developed and tested using the adaptive-based thinning method. Three severe weather
events are considered that occurred on 19 July 2019, 7 May and 21 June 2020. The superobbing
procedure used for CWP data smoothed from 5 to 15 km or more depending on thinning algorithm.
The overall performance of adaptively thinned CWP assimilation in the Warn-on-Forecast system
is assessed using an object-based verification method. On average, more than 60% of the data was
reduced and therefore not used in the assimilation system. Results suggest that assimilating less than
40% of CWP superobbing data into the Warn-on-Forecast system is of similar forecast quality to those
obtained from assimilating all available CWP observations. The results of this study can be used on
the benefits of cloud assimilation to improve numerical simulation.

Keywords: ensemble data assimilation; cloud water path; GOES-16; GSI-EnKF; short-range
prediction; superobbing satellite data

1. Introduction

Earth system forecasting analysis systems rely on ensemble data assimilation (EDA)
methods to convert observations into corrections for Earth system model variables [1-5].
EDA methods were developed as computationally feasible to solve the nonlinear filtering
problem [3]. This led to sequential ensemble Kalman filter (EnKF) methods to improve
assimilation error characteristics and decreased computational cost [6-14]. EnKF methods
can implement large models and observation sets with less effort. For a given model,
executing an EnKF system requires only an observation operator that maps from model
space to observation space. The relative simplicity of implementing EnKF has led to a rapid
increase in the number of EDA applications. However, EnKF algorithms are challenged by
nonlinear relations between model state variables and observations, nonlinear model error
and by errors in the observing system [15,16]. The deficiency of EnKF includes low prior
variance and a spurious correlation between variables. The two important algorithms are
required for better performance of the EnKF system including the localization of the obser-
vation impact and covariance inflation [17,18]. An adaptive covariance inflation algorithm
has been used to inflate the spread of the state vector to maintain the ensemble spread.

In recent years, EDA of the cloud water path (CWP) from high-resolution geostationary
satellite in the convective scale numerical models is one of the prime research topics.
Satellite retrieved cloud components are valuable sources of information because of the
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complex nonlinear physical processes associated with cloud development [19-21]. Many
studies have discussed the cloud analysis system and their use to create a more accurate
initial state [22,23]. There are two ways to assimilate cloud properties from satellite data,
direct and indirect. In direct assimilation, radiative transfer model (RTM) is used as a
forward model to generate simulated value into the satellite radiance in observation space.
The well-known operationally using RTM models are the Community Radiative Transfer
Model (CRTM) [24] and the Radiative Transfer for TOVS (RTTOV) [25]. The advantage
of a direct method is to avoid uncertainties in the retrieval algorithms that depend on
satellite [26]. In general, the direct assimilation method performs well in clear-sky situations,
but this may be very resource-intensive depending on resolution and the number of spectral
bands being assimilated [27-31]. The assimilation of satellite data under clear skies has
been extensively researched and is now well established. However, assimilation of satellite
data in the presence of cloud is a highly nonlinear problem and a variety of strategies are
being investigated to address this issue [32,33]. The area where clouds and precipitation
occur has a significant impact on how accurately the weather prediction system predicts
the future. The difficulty associated with cloudy radiance assimilation is the uncertainty
of hydrometeors simulation in numerical weather prediction and the inaccuracy of the
RTM [34,35].

The second approach to assimilating the cloud properly is to use satellite retrieved
products in the data assimilation system. Assimilating retrieved cloud products is more
friendly because of the simplicity of the observation operator, data reliability and largely
untapped source of information [36,37]. Several research groups are actively working on
indirect assimilation of cloudy properties for initializing hydrometeors [19,38-41]. The
satellite cloud products are retrieved from visible and infrared spectral bands. The retrieved
cloud products are cloud liquid water path (LWP) and cloud ice water path IWP). The
cloud water path (CWP) represents the LWP and IWP together for simplicity. Many studies
discuss the importance of assimilating retrieved CWP for severe weather prediction [41,42].
Assimilating satellite retrieved CWP provides a potential solution to convective initiation
and can improve precipitation forecast for severe weather events [41]. The primary draw-
back to using retrieval cloud products is the difficulty in estimating uncertainties inherent
in that retrieval.

Further, all assimilation systems need good and valuable observation that can im-
prove the forecast skill. During the assimilation process, it is important to understand the
importance of assimilated observation and how each of the assimilated observations affect
analysis and forecasts skill [43,44]. This process includes fine-tuning the data assimilation
system including observation error, quality control and observation thinning [45]. In addi-
tion, EDA is a highly computationally intensive process, it is important to include those
observations that will improve the assimilation system in order to reduce the computing
load during assimilation process. When incorporating dense satellite observation into the
lower resolution data assimilation system, the observation thinning is important [46,47].
Satellite data thinning methods and the importance of reducing the assimilating observa-
tion are discussed in many studies [48-50]. One of the essential roles of data thinning is
to avoid the difficulty of explicitly treating observation error correlation in an assimila-
tion system [50,51]. Too many observations in the data assimilation system might lead to
sub-optimal states since the assimilation system ignores observation correlation. Before
assimilation, thinning and superobbing are the two common techniques used for reducing
the number of observations and the correlation between observation errors [52,53]. These
two methods are static in nature, and it is unknown how much thinning is ideal for various
model resolution.

This study assesses the impact of assimilating GOES-16 satellite retrieved CWP with
adaptive thinning that are assimilated by the ensemble-based GSI-EnKF system. Since
assimilation of hydrometeors is particularly important, it is important to investigate in-
novative approaches to optimize the number of CWP observations for the assimilation
system. Multiple sensitivity experiments for three convective high-impact weather events
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that occurred on 19 July 2019, 7 May and 21 June 2020 have been performed. The ob-
servation increment statistics are computed using observation and the simulated value
(model background) at the observed location for quality assessment and impact on the
mesoscale environment within the model. Following the introduction, Section 2 of this
paper describes the satellite retrieved CWP products, the assimilation and forecast system,
and the overall experiment design. Results from this adaptively thinned application of a
revised GOES-16 CWP on composite reflectivity (dBZ) and 2-5 km updraft helicity (UH)
forecasts are provided in Section 3. Finally, the summary with discussion and conclusion
are offered in Section 4.

2. Observation, Assimilation and Forecast System
2.1. GOES-16 Cloud Water Path

Over the continental United States, the Advanced Baseline Imager (ABI) aboard the
GOES-16 satellites generate high spatiotemporal resolution satellite-retrieved CWP. The
GOES-R series of geostationary satellites is a collaborative development and acquisition
effort between NOAA and NASA. The GOES-16 having 16 spectral bands provides continu-
ous imaginary and atmospheric measurements at various time intervals. More information
about the GOES-16 ABI and its spectral bands can be found in [54,55].

Cloud properties are retrieved from the 1 and 2 km GOES-16 imager radiances for
cloudy pixels using the multispectral retrieval algorithm [56]. The satellite-retrieved CWP
is obtained using the Satellite Cloud and Radiation Property Retrieval System (SatCORPS).
The NASA Langley research center developed the retrieved algorithm [57]. The daytime
CWP data are retrieved using channel (2, 7) having wavelength of 0.64 um (visible band)
and 2.25 pm (infrared band). For daytime CWP data, the visible infrared solar-infrared split-
window technique (VISST) is used by the Clouds Algorithm Working Group. The CWP
observations are used to determine cloud optical and microphysical properties (COMP).
The COMP measures include water/ice cloud optical depth (COD), cloud particle size
(CPS), LWP and IWP for all cloudy pixels. This is only for the cloud top particle size, which
can be seen from passive remote sensors. The LWP is the cloud water path associated
with only liquid-phase clouds, and the IWP includes the CWPs that have ice and mixed-
phase clouds. LWP and IWP (in g m~2) measure the total water mass in a cloud column
and are derived from COD and CPS. The distribution of COD and CPS describes the
radiative properties of a cloud and characterizes the effects of the clouds on solar energy
and Earth’s radiative budget [58]. CPS represents the ratio from the distribution volume
of the cloud particles over its cross-area and is an effective parameter for size distribution.
Cloud thickness is estimated with a parameterization based on COD, CWP and cloud
temperature. Daytime CWP data were only collected from 0.64 um and 2.25 pm spectral
bands assimilated in this study. Assimilation of nighttime CWP data is not addressed in
this work. The nighttime CWP data are retrieved using the Shortwave-infrared infrared
Split-window Technique (SIST) algorithm. A separate study is needed to understand the
error characteristics and biases to assimilated nighttime CWP observation.

2.2. Ensemble Data Assimilation and Model Configuration

Tremendous efforts have been devoted to convective-scale EDA using in situ, radar
and satellite observation on the NOAA’s ensemble-based Warn-on-Forecast project [59-62].
The Warn-on-Forecast system has developed a probabilistic, convective-scale, EDA and
forecasting system. The system uses to improve short-term forecasts of high-impact weather
events. All observations were assimilated using the Grid-point Statistical Interpolation
(GSI) and Ensemble Kalman Filter (EnKF) data assimilation techniques (GSI-EnKF). The
EnKF method used in this study to assimilate observations is called an ensemble square
root filter (EnSRF) [63]. Observations are assimilated serially with the assumption that
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errors in observation are uncorrelated. During each observation assimilation at each time,
the ensemble members and mean are updated using the following equations,
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where B is the reduced-gain factor, K is the Kalman gain, ° is the observation, H is
the observation operator, N is the number of ensemble members (N = 36 in this study),
n is an index for a particular ensemble member, x represents the entire model state, x
represents a particular model field at a grid point, superscript a indicates a posterior
estimate, superscript b indicates a prior estimate, an overbar indicates an ensemble mean,
o is the observation-error standard deviation, W is a localization factor. The fifth-order
piecewise rational function of Gaspari-Cohn distribution has been used to reduce the
spurious correlation between remotely located variables [64].

The Warn-on-Forecast system uses the advanced research version of the Weather
Research and Forecasting Model (WRF3.9) at 3 km grid spacing similar to the real-time
version (https://wof.nssl.noaa.gov/configuration.php (accessed on 22 November 2022)).
All types of observations (Table 1) are assimilated using GSI as an observation operator and
EnKF analysis system [65] at 15 min intervals from 1800 UTC until 0300 UTC the next day.
The initial and boundary conditions are provided by the High-Resolution Rapid Refresh
ensemble (HRRRE) as part of the real-time experiment in 2019 and 2020. Multiphysics
options were applied to HRRRE members to initialize 36 ensemble members. The Warn-on-
Forecast system produced 18-member short-term, real-time, probabilistic forecasts every
half-hour from 1900 to 0300 UTC on the day of the event. Cloud microphysics processes
are handled by WRF NSSL two-moment scheme [66]. To maintain ensemble spread, the
spatially and temporally varying adaptive inflation [67] is applied to the prior ensemble
estimate at the outset of each assimilation step. To help initiate convection near high-
reflectivity regions, smooth and random additive noise is introduced to the model variables
of each ensemble member to maintain ensemble spread [68]. Table 1 lists the assimilated
observation type, covariance localizations and the related observation errors used in this
study. During the observation preprocess, the high-resolution radar observations are
resampled to a 5 km grid using the Cressman scheme [69]. Multiple studies discuss the
importance of radar data in accurately predicting matured convection and the related
high-impact supercell [59,70]. It should be noted that during convective initialization,
assimilation of radar data is not captured in the nonprecipitation phase of clouds [71];
hence, for convective initialization, assimilation CWP data assimilation plays an important
role. For mature convection, and from the finding by [72], assimilation of all available CWP
observations degraded the forecast skill in the analysis. So, in the high reflectivity region
(>40 dBZ), CWP data are not assimilated. This thinning method is applied when both CWP
and radar reflectivity is assimilated and are now in real-time operational setup.
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Table 1. List of the assimilated observation type, observation error and the covariance localization
used by the Warn-on-Forecast system.

. . . . Horizontal Covariance Vertical Covariance
Observation Type Variables Observation Error ~ Unit Localization (km) Localization (SH)
Satellite kg

(GOES-16) CWP 0.025-0.25 -2 36 0.9
Reflectivit 7. dBZ 1 .

Radar eflectivity 0 8 0.8

Radial velocity 3.0 ms~! 18 0.8

Temperature 1.75 K 60-460 0.85

Dewpoint 2.0 K 60-460 0.85

Mesonet Pressure 1.0 hPa 60-460 0.85

Zonal (u-) wind 1.75 ms! 60-460 0.85

Meridional (v-) wind 1.75 ms~! 60-460 0.85

The covariance localizations for CWP were set to 36 km and 0.9 scale height (SH) hori-
zontally and vertically. These localization parameters are similar to those used by [63,64].
Further details of ensemble configuration, different observation types and observation
errors used are available in the previous papers [62]. A parallax correction is applied to
correct geolocation errors for all clouds. The CWP retrieval errors are calculated based on
the uncertainty characteristics of the derived algorithm (high confidence; clear-sky to low
confidence; cloudy-sky). For CWP > 2.5 kg m~2, retrieval error is higher (0.25 kg m~?2) be-
cause of the high expected uncertainty of thick cloud [41,73]. For CWP = 0 or CWP < 0.025,
the retrieval error is 0.025 kg m 2 since the high confidence exits over the clear-sky areas
(Table 2).

Table 2. CWP observation errors used in this study.

CWP (kg m—2) Error (kg m—2)
>2.5 0.25
1.0-2.5 0.15
0.5-1.0 0.10
0.2-0.5 0.075
0.025-0.2 0.05
<0.025 0.025

2.3. CWP Assimilation Techniques

Before assimilation, CWP observations optimize using an adaptive technique. Our
technique removed observations that minimally impacted analyses and forecasts or added
noise to the model state [62]. In addition, from the preliminary experiment, it has been
observed that CWP observations are most likely to reduce hydrometer spread in areas
where QCLOUD and QICE variance is significant. To accomplish this, first separately
calculated the ensemble standard deviation (ESD) of column-maximum model mixing
ratios of cloud liquid water (QCLOUD) and cloud ice (QICE). To minimize the effects of
noise in the variance fields, the average ensemble column-maximum QCLOUD and QICE
ESD was also computed at each grid point within a 15 km x 15 km (5 x 5 grid point)
neighborhood. CWP observations were then only used in the assimilation system if the
ESD of QCLOUD or QICE within each 15 km grid box exceeded predefined threshold
values (0.05, 0.2 and 0.4 gm kg~!). Thus, superobbing procedure smoothed the CWP data
that was converted from 5 km to 15 km resolution and uses only those observations at each
grid point where the ensemble variances of QCLOUD and QICE are higher than predefined
threshold values. Thus, CWP observation was assimilated only if the 36-member ESD of
model-simulated QCLOUD or QICE within 15 km boxes exceeded the threshold values.
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These three threshold values (0.05, 0.2 and 0.4 gm kg~ !) distinguished three separate
experiments named QCLD-0.05, QCLD-0.2 and QCLD-0.4, respectively, for QCLOUD and
QICE-0.05, QICE-0.2 and QICE-0.4 for QICE. This adaptive-based CWP thinning method
and the threshold values are similar to that proposed by [74] to assimilate radar radial
velocity by reducing the effects of noise in the variance of column-maximum updraft speed.
It should be noted that the variance threshold value depends on many factors. This includes
ensemble size, model resolution, model physics, observation error and weather conditions.
The first set of CWP data assimilation experiments included a total of seven experiments
for the 19 July 2019 weather event. Six of these experiments used adaptive-based CWP data
thinning methods with the three ESD threshold values for each model-simulated QCLOUD
and QICE. The remaining experiment included all CWP data without any filtering (CWP-
ALL). To calculate model-simulated CWP at the observed location, a forward operator is
used to integrate the model hydrometeor mixing ratios of cloud liquid water, cloud ice,
rain, graupel and snow. For further details, including CWP assimilation technique, the
forward operator and CWP observation error, the reader is referred to [72,73].

3. Result
3.1. 19 July 2019 Event

The 19 July 2019 event included 7 tornado, 27 severe hail and 72 high wind reports
over the study domain (Figure 1b, Table 3). In this event, a large convection complex was
moving rapidly from Minnesota to Wisconsin. A few reports of tornadoes and severe
winds had already occurred along the storm path. Table 3 shows the Storm Prediction
Center reports of tornadoes, high winds and severe hail within the simulation domain of
each event. To determine the optimal configuration adaptive-based CWP thinning method
and ESD threshold values with QCLOUD and QICE, we first performed six sensitivity
experiments using this method (QCLD-0.05, QCLD-0.2, QCLD-0.4, QICE-0.05, QICE-0.2,
QICE-0.4) with data from the 19 July 2019 weather event. Figure 1 shows the observed
MRMS composite reflectivity and the spatial distribution of assimilated CWP observations
at 2100 UTC using different data thinning methods over the study domain. Our results
indicate that the percentage of assimilated CWP observations is proportional to the ESD
of model simulated QCLOUD and QICE (Table 4). For example, only 56% of CWP were
assimilated in QCLD-0.4 experiment, whereas that percentage decreased to 22% in QCLD-
0.05 experiment. The assimilated percentage of observations was calculated as the ratio of
the number of assimilated thinned CWP to the total number of available CWP assimilated.
On average, more than 60% of CWP data are not assimilated in the Warn-on-Forecast system.

Table 3. Total number of tornado, hail (diameter more than 1.0 inch; severe hail) and high-wind
reports between the time 1500 and 0500 UTC the following day and within the simulated domain.

Event Tornadoes Hail Wind
19 ]uly 2019 7 27 72
7 May 2020 0 79 76
21 June 2020 6 49 81

Table 4. Percentage of CWP observations assimilated and total number of objects (reflectivity and
rotation) accumulated over all the ensemble members and 3 h forecast times for all experiments and
for 19 July 2019 event.

. Observation .
Experiments Assimilated (%) dBZ Rotation
QCLD-0.05 21.7 29,409 23,099
QCLD-0.2 39.0 29,325 22,924

QCLD-0.4 56.4 33,654 22,261
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Table 4. Cont.

. Observation .
Experiments Assimilated (%) dBZ Rotation
QICE-0.05 21.5 29,234 22,250
QICE-0.2 27.64 28,769 22,752
QICE-0.4 39.7 27,639 21,566
CWP-ALL 100.0 29,234 22,818

VALID: 19 JULY 2019 at 2100 UTC

Cloud Water Path (Kg m -2)

.| CWP (@oLB-04) [T

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

N

i
\ cwwamcgé 05)

20 30 40 50 60 70
MRMS Composite Reflectivity (dBZ)

Figure 1. (a) The composite reflectivity (dBZ) from the NSSL Multi-Radar Multi-Sensor (MRMS)
product for 19 July, 2019 event at 2100 UTC. (b) Location of tornado (triangle), severe hail (circle)
and wind (triangle) reports over the simulated domain and (c—i) spatial distribution of 2100 UTC
assimilated all available CWP (CWP-ALL) and assimilated thinning CWP after applying adaptive-
based data thinning methods.

Figure 2a shows the number of assimilated CWP during each 15 min assimilation cycle
and from 1800 UTC one day to 0300 UTC the following day. The number of observations
gradually decreases from 1800 to 1900 UTC, and from 1900 UTC to 2300 UTC, the number of
assimilated observations is consistent across all the experiments. However, the number of
observations increased again after 2300 UTC because the cloud information varies from each
assimilation cycle. No CWP observations were assimilated after 0100 UTC because only
daytime CWP data were assimilated. The average number of assimilated CWP observations
when using the adaptive-based data thinning method was less than half what it was for the
CWP-ALL experiment. We used all six adaptive-based data thinning methods (Figure 2b,c),
as well as the CWP-ALL method, to calculate the observation increment (innovation, O-B)
statistics for each 15 min assimilated cycle from 1800 UTC on 19 July 2019 until 0300 UTC
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the following day. “Innovation” was defined as the difference between the observation and
ensemble means either prior (forecast) or posterior (analysis) to the weather analysis. This
measure was used to correct the model fields, which produces a more accurate analysis for
the next forecast cycle. Prior bias (O-B) for CWP observations in all experiments ranged
from 0 to 1 kg m~2, and this value decreased by more than 50% after assimilation (O-A).
The positive value for prior bias indicates that the model background has systematic biases
and likely underestimates results. We also noted that the values of O-B and O-A followed
a similar path in all six adaptive-based data thinning methods we studied as well as the
CWP-ALL approach (Figure 2). Similar patterns of positive bias were also observed for the
other two weather events (Table 5). Average prior biases (O-B) in the CWP-TH experiment
were 0.47 and 0.31 kg m 2 for the 7 May 2020 and 21 June 2020 weather events, respectively.
These biases are all positive, as with the CWP-ALL experiment in which the average prior
biases were 0.37 and 0.35 kg m 2 for these weather events (Table 5). In terms of posterior
bias (O-A), all three events perform better to reduce the error. Thus, despite using less than
60% of the observations used by CWP-ALL, the CWP-TH approach has a similar effect on
the assimilation system.

1
12,500 — ALLCWP
= ---- QCLD-0.05
5 10,000 — QICE-0.05
3 ---- QCLD-0.2
2 7500 — QICE-0.2
O 5000 Y QCLD-0.4
Py QICE-0.4
£ 2500
l%zOO 19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00
~ 1.0 —— ALLCWP
3 b. —— QCLD-0.05
> —s— QCLD-0.2
¥ 0.5 —e— QCLD-0.4
12
g oo
g
3 -0.5
Z
& 1
. 1%:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00
~ 1.0 —e— QICE-0.05
= —— QICE-0.2
S —e— QICE-0.
B 05 QICE-0.4
2}
g oo
=
S
3 -0.5
Z
Z

_11%:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00
TIME (UTC)

Figure 2. (a) Number of CWP observations assimilated in GSI-EnKF based Warn-on-Forecast system
for 19 July 2019 event. The solid black line is the total number of all available CWP observations
assimilated. The thin lines represent assimilated CWP observation using different adaptive-based
data thinning methods. (b,c) Mean prior and posterior innovations (O-B, O-A) for thinned CWP
observation and all available CWP at 15 min assimilation cycle for 19 July 2019 event.

Table 5. Mean O-B (prior) and O-A (posterior) biases for three events and two experiments with
thinned CWP and with all CWP.

19 July 2019 7 May 2020 21 June 2020
Experiment
O-B 0-A O-B 0-A O-B 0-A
CWP-TH (kg m~2) 091 0.14 0.47 0.43 0.31 0.22
CWP-ALL (kg m~2) 0.18 0.15 0.37 0.33 0.35 0.27

Simulated radar reflectivity compared with the observed MRMS composite reflectivity
to assess the impact of CWP assimilation for reflectivity forecast. Forecasts initialized at
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2100 UTC showed that all seven experiments generated accurate one hour forecasts of the
eastward-moving convection in Minnesota (Figure 3). All the thinned CWP experiments
performed slightly better in comparison to CWP-ALL, as it accurately forecast storm in-
tensity and storm location. In addition to that, we assessed the overall performance of
assimilating CWP using an object verification method [75,76]. To quantify the forecast
performance of the composite reflectively and the updraft helicity, the categorical perfor-
mance diagrams [77,78] are computed and aggregated over 3 h forecasts from 1900 UTC to
0300 UTC. Performance diagrams were first used to summarize the impact of assimilated
CWP on reflectivity and 2-5 km UH (Figure 4) forecasts at 1 h and 2 h forecast times. For
the 19 July 2019 event, the statistics were computed using all forecasts initiated from 1900 to
0300 UTC for all eight experiments tested using the 19 July 2019 event. Table 4 lists the
total number of reflectivity and rotation objects accumulated in the adaptive-based CWP
assimilation methods. With respect to reflectivity and 2-5 km UH, overall, 1 h to 2 h forecast
skill was similar across the CWP-ALL and all thinned CWP experiments (Figure 4). On
average, QCLD-0.4 (CWP-TH) achieved similar forecast skill as CWP-ALL with respect to
the probability of detection and the success ratio. CWP-TH performed even better with 2 h
forecasts relative to CWP-ALL; the differences were even less for 2-5 km UH verification,
but always in favor of CWP-TH.

. i W IC: 19 JULY 2019
uf
R at 2100 UTC

VALID: 2200 UTC

a. 0BS . | b. cwp-ALL

€. QCLD-0.05 d. QcCLDp-0.2 e. QCLD-0.4

P e P

f. QICE-0.05 8. QICE-0.2 h. QICE-0.4

20 30 40 50 60 70
Ens. Mean Composite Reflectivity (dBZ)

Figure 3. (a) The Multi-Radar/Multi-Sensor System (MRMS) composite reflectivity (dBZ) and (b) the
simulated ensemble mean composite reflectivity after assimilated all available CWP (CWP-ALL) and
(c-h) assimilated adaptive-based thinning CWP.
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Figure 4. Performance diagram at (left) 1 h and (right) 2 h forecast time for (a,b) composite reflectivity
(dBZ) and (c,d) 2-5 km UH forecasts for 19 July 2019 event. The four different colors represent the four
types of forecasts generated using assimilation of all available CWP (CWP-ALL) and adaptive-based
thinned CWP (QCLD-0.05, QCLD-0.2 and QCLD-0.4).

Results show that QCLD-0.4 is the optimal configuration (Table 4). We therefore
validated this method with QCLD-0.4 (hereafter CWP-TH) by studying two more weather
events, 7 May and 21 June 2020. Results from the optimal CWP-TH values are dis-
cussed in the subsequent section along with all assimilated CWP (CWP-ALL) for the
two weather events.

3.2. 7 May and 21 June 2020 Events

An isolated supercell thunderstorm produced a long swath of hail across northern
Texas on 7 May 2020. This storm was one of the most interesting weather events of 2020 for
calculating ice particle size using satellite images [79]. The event was also well-described by
several studies, including “Hail-producing supercell thunderstorm in Texas” [80], “Where
will convective initiation occur?” [81] and “Supercell splits, marches along Texas-Oklahoma
border” [82]. Multiple thunderstorms occurred over the northwest part of Oklahoma
during the evening and night, and numerous hail reports were near southwest Oklahoma.
A total of 79 hail and 76 wind events were reported over the study domain. There were no
reports of tornadoes during this event (Table 3). On 21 June 2020, a higher-end severe storm
affected portions of central Kansas and south-central. Numerous severe storms occurred
mainly across parts of southern Kansas, Nebraska and Oklahoma from early evening into
the night. Damaging winds and isolated large hail occurred across the study domain. The
number of assimilated observations when using CWP-TH was similarly reduced for the
two weather events in the year 2020 (Table 6). Precisely, only 39% and 31% of observations
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were assimilated with CWP-TH relative to CWP-ALL for the 7 May 2020 and 21 June
2020 weather events. Figure 5 shows the observed MRMS composite reflectivity and the
spatial distribution of assimilated CWP observations with and without adaptive-base data
thinning methods over the study domain and for the two events.

Table 6. Percentage of CWP observations assimilated and the summary of total number of reflectivity
and rotation objects accumulated over all the ensemble member and 180 min forecast times for all
experiments and for 19 July 2019 event.

Observation

Event Experiment Assimilated (Count) dBZ Rotation
CWP-TH 61,332 68,742 41,785
7 May 2020 CWP-ALL 406,804 67,849 42,289
CWP-TH 111,299 151,085 62,746
21 June 2020 CWP-ALL 386,996 137,577 57,617
MRMS OBS CWP-TH CWP-ALL
9 , 3 — T T
P EEnass
S [T
Q [
e | -
] pr
& N ¥
N ™
2] 9117 o E
= 11X <2
" e 5
(=¥
o d. S5
D aumz! 0 g
= . —
S [ EES
s |-SF "
ISR
2 A —
Z 1
e ]
=
x
20 30 40 50 60 70

Figure 5. The Multi-Radar/Multi-Sensor System (MRMS) composite reflectivity (dBZ) for
(a) 7 May 2020 event at 2300 UTC and (d) 21 June 2020 at 2100 UTC. Spatial distribution of as-
similated all available CWP (CWP-ALL) and assimilated thinning CWP (CWP-TH) after applying
adaptive-based data thinning methods for the (b,c) 7 May 2020 events and (e,f) 21 June 2020.

To validate the performance of CWP-TH and CWP-ALL, two more weather events,
7 May and 21 June 2020 are considered. Hourly reflectivity forecasts initialized at 0000 UTC
on 8 May 2020 are generated for CWP-TH and CWP-ALL experiments. Both the CWP-TH
and CWP-ALL experiments generate similar forecasts including the eastward-moving
convection in northern Texas (Figure 6) and produced few false alarms over the west part of
the Oklahoma region. No significant differences were observed among the two experiments
for forecasts initialized at 2300 UTC on 21 June 2020 (Figure 7). Both the CWP-TH and
CWP-ALL experiments correctly forecast the evolution of convective cells over Kansas.
Qualitatively, both approaches improved forecasts of convection.
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IC: 8 MAY 2020 at 0000 UTC
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Figure 6. (a—f) Hourly composite reflectivity forecast >45 dBZ from CWP-TH and CWP-ALL ini-
tiated at 0000 UTC 8 May 2020 for each experiment. Background plot shows MRMS composite
reflectivity valid at the forecast time. Darker grays indicate more members generate convection at a

particular location.
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Figure 7. (a—f) Same as Figure 6. However, for hourly reflectivity forecast initialized at 2300 UTC
21 June 2020.

An object-based verification method used to further assess the overall performance of
both CWP-TH and CWP-ALL assimilation experiments. The total number of reflectivity
and rotation objects accumulated in the CWP-TH and CWP-ALL experiments and for each
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individual weather event are calculated. The CWP-TH experiment generated a higher
number of reflectivity objects as compared to CWP-ALL for both events (Table 6). In case
of rotation objects, CWP-ALL generated a higher object on 7 May 2020 but less on the
21 May 2020 event. This is presumably because CWP-ALL experiments generated higher
biases of reflectivity and, consequently, a higher number of reflectivity objects, and hence
more convection. On average, CWP-TH generated a higher number of reflectivity objects
across two weather events.

On 7 May 2020, for the 1 h and 2 h reflectivity forecast (Figure 8a,b) both CWP-
TH and CWP-ALL experiments performed best. Overall forecast skill was higher and
remained stable throughout the forecast period, showing POD values of >0.7. CSI values
were between 0.4 and 0.6, and the success ratio was between 0.5 and 0.7, at 1 h and
2 h forecast times. On 21 June 2020, the POD of CWP-TH experiment was higher (>0.7)
for 1 h reflectivity forecast, which reduced to 0.5 (Figure 8c,d). This may be because
CWP-TH produce higher biases for reflectivity forecasts. Overall, both CWP-TH and CWP-
ALL performed poorly at 1 h and 2 h forecast times, while the differences between the
experiments were generally small at 2 h forecast. Among the 1 h 2-5 km UH forecasts
for 7 May and 21 June 2020, CWP-TH performed better (Figure 9). While the differences
between the CWP-TH and CWP-ALL experiments were generally small for 2 h forecast. In
addition, the forecast performance is poor for 2 h forecasts and for both experiments.
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Figure 8. (a—d) Performance diagram at 1 h and 2 h forecast time for composite reflectivity (dBZ)
forecasts for two events. The two different colors in all the panels represent the two types of forecasts
thinned CWP (CWP-TH) and all CWP (CWP-ALL).
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Figure 9. (a—d) Same as Figure 8, but for 2-5 km updraft helicity (UH).

4. Summary

The unique contribution made by this study is to discuss the importance of assimilating
adaptive-based thinned retrieved CWP data into the Warn-on-Forecast system. A multiple
sensitivity experiment was performed for three case studies from 2019 and 2020 to assess
how altering the CWP observations assimilated by the Warn-on-Forecast system affected
forecast quality. On average, more than 60% of the CWP data thinned out; these data were
not used in the assimilation system after applying the thinning approach (CWP-TH). Less
than 40% of CWP observations were assimilated in the CWP-TH approach. The CWP-TH
approach had a similar effect, and in a few cases, improvement was observed in 1h and 2 h
reflectivity and UH forecasts, compared to the CWP-ALL experiments.

Our study is limited to three convective high-impact severe weather events, one from
the year 2019 and the two from year 2020. Additional cases are required to understand how
general the improvements from assimilating adaptive thinned CWP are and what potential
disadvantages it may have compared to assimilating full CWP data sets alone for various
environments. In addition, it is important to identify the seasonal variation of the impact
of adaptively thinned methods including multiple assimilation systems. The impacts of
thinned CWP observations can vary depending on ensemble size, model resolution, cloud
interaction, observation error and weather conditions. For better utilization of good and
high impact observation on the high-resolution limited model forecasts, additional studies
on the impact of adaptive thinning methods are needed using various assimilation and
forecast systems. The satellite retrieved CWP is usually associated with relatively large
uncertainty because this quantity is derived from cloud optical depth (COD) and cloud top
effective radius (CER) based on the adiabatic assumption. There are many error sources
that come with uncertainties related to assumptions inherent in physical retrievals and that
will make the CWP inaccurate. The greater error of the retrieval algorithm comes from
the uncertainties of the model input variable, which includes temperature pressure and
hydrometeors. It should be noted that the CWP observation error can vary depending on
the methods used to retrieve CWDP, the time of day and the spectral channels used. The
daytime CWP observation errors used in this study are the functions of the CWP value.
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For nighttime CWP observation error and to assimilate, a separate investigation is needed
and is left for future work.

A previous study by [62] highlighted that applying adaptive thinning methods is essen-
tial for GOES-16 all-sky radiance data optimization and improving severe weather forecast
skills. Future investigations will combine all-sky radiance and CWP with appropriate data
thinning and bias correction to utilize all the available and more accurate information.
Satellite data thinning is essential because too many observations over a similar location
might lead to sub-optimal states by the assimilated observation. The method may further
improve the analysis and forecast skills and is left for future work. Further studies using
machine-learning methods (artificial intelligence, deep learning) [83,84] are essential to
accurately derive and assimilate bias-corrected cloud properties in the assimilation system.
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