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Abstract: The ongoing yearly rise in worldwide methane (CH4) emissions is mostly due to human
activities. Nevertheless, since over half of these emissions are scattered and have a concentration
of less than 3% (v/v), traditional physical–chemical methods are not very effective in reducing
them. In this context, biotechnologies like biofiltration using methane-consuming bacteria, also
known as methanotrophs, offer a cost-efficient and practical approach to addressing diffuse CH4

emissions. The present review describes recent findings in biofiltration processes as one of the earliest
biotechnologies for treating polluted air. Specifically, impacts of biotic (such as cooperation between
methanotrophs and non-methanotrophic bacteria and fungi) and abiotic factors (such as temperature,
salinity, and moisture) that influence CH4 biofiltration were compiled. Understanding the processes
of methanogenesis and methanotrophy holds significant importance in the development of innovative
agricultural practices and industrial procedures that contribute to a more favourable equilibrium
of greenhouse gases. The integration of advanced genetic analyses can enable holistic approaches
for unravelling the potential of biological systems for methane mitigation. This study pioneers a
holistic approach to unravelling the biopotential of methanotrophs, offering unprecedented avenues
for biotechnological applications.
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1. Introduction

The group of six greenhouse gases (GHG) emissions comprises carbon dioxide (CO2),
methane (CH4), nitrous oxide (N2O), sulfur hexafluoride (SF6), hydrofluorocarbon (HFC),
and perfluorocarbon (PFC) [1], collectively known as carbon dioxide equivalents (CO2e) [2].
Methane, the second most significant GHG, contributes 16% of global GHG emissions
from both human and natural sources and is 21 times more potent per unit as a GHG
compared to CO2 [3]. In 2005, global GHG emissions totalled over 44 gigatons (Gt) of CO2e,
with CH4 accounting for 7 Gt of CO2e [4,5]. Approximately 60% of CH4 emissions arise
from activities like agriculture, coal mining, landfills, natural gas, and oil, while the rest
originate from natural sources [6]. Each GHG has distinct properties regarding infrared
absorption and atmospheric lifespan after emission [7]. Since 1750, GHG concentrations
in the atmosphere have increased from a CO2e level of 280 ppm to 430 ppm, with a pre-
industrial level of 380 ppm [8]. The atmospheric CH4 concentration has risen 2.5-fold over
the past millennium, posing challenges to Earth temperature stability in the 21st century [9].
Currently, methane is emitted at an average rate of 600 teragrams (Tg) per year by both
natural and human sources, with 55% of anthropogenic emissions containing less than
3 vol.% (v/v) methane (CH4) [10,11].

The annual methane production from landfills worldwide was estimated to be ap-
proximately 30 teragrams in 2005, accounting for roughly 5% of the total net methane
production [12]. Methane, being a greenhouse gas, is significantly more harmful to the
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environment, with its impact estimated to be 21–25 times greater than that of CO2, and it
remains in the atmosphere for approximately 12 years [13,14]. Global warming’s indirect
effects are contributing to additional methane emissions, such as the thawing of permafrost,
which releases long-term stored methane [15]. Moreover, the increased plant productiv-
ity resulting from rising atmospheric CO2 levels may stimulate methane production in
wetlands and agriculture due to enhanced production of labile soil carbon [16,17]. The
remaining 40% of methane emissions are of natural origin and primarily emanate from
wetlands and oceans [18,19].

Global political initiatives, including the Paris Agreement, are pushing nations to
curb methane (CH4) emissions as part of efforts to limit temperature increases to 1.5–2 ◦C
above pre-industrial levels [20]. While technologies like combustion can control CH4
emissions from landfills, older or smaller landfills often find traditional methods less fea-
sible, making biofiltration a promising alternative [21]. Biofiltration, one of the earliest
biotechnologies for treating polluted air, was initially used solely to combat odours [22,23].
However, it has since proven reliable in eliminating volatile organic compounds (VOCs)
and volatile inorganic compounds (VICs) in contaminated air [24,25]. Biotechnologies, par-
ticularly through methanotroph activity, offer a cost-effective and eco-friendly alternative to
physical–chemical methods [26]. Among these, biofilters have gained popularity in recent
decades for treating diffuse CH4 emissions [27,28]. A similar approach for older landfills
involves biocovers or soil covers [29,30]. This review summarizes recent information on
methane biofiltration processes, various methanotroph species (both methanotrophic and
non-methanotrophic bacteria and fungi), and key factors such as salinity and temperature
that influence CH4 biofiltration.

2. Methodology

Multiple academic databases were utilised to conduct a comprehensive literature
search, including Web of Knowledge, Scopus, ScienceDirect, Google Scholar, Web of
Science Core Collection by Clarivate Analytics, and ResearchGate. The search focused
on publications from 2000 to 2023. Several keywords were employed to obtain a wide
range of search results. These keywords encompassed various aspects related to methane
emissions, methanotrophs, biofiltration, greenhouse gases, methanotrophic bacteria, non-
methanotrophic bacteria, fungal methane removal, salt-affected soils and methane emis-
sions, methane oxidation activity, phosphogypsum application and GHG emission, micro-
bial CH4 oxidation, temperature, and methane oxidation activity. In addition to the initial
search, the references cited within the obtained publications were collected to ensure a
comprehensive literature review. The chosen keywords were combined using operators
like “OR” and “AND” to refine the search and obtain more precise results. Including
quotation marks around specific terms, such as “methane biofiltration”, ensured accurate
retrieval of relevant records. All the keywords were used in all four databases to maximise
the search coverage and gather a comprehensive collection of literature on the subject.
The keywords and topics that are trending in each specific review section were identified
using Bibliometrix.

To address our research question and achieve our review objective, we conducted a
thorough search for peer-reviewed studies specifically focused on methane biofiltration
processes. Our search was primarily centred on journal articles, excluding grey literature
such as books, book chapters, and conference papers, except in rare cases where they
provided valuable insights. We screened and evaluated titles and abstracts from over
1000 articles, employing a rigorous selection process to identify relevant papers. A key
criterion for inclusion was the presence of quantitative information within the study. We
specifically targeted studies that addressed the following topics: (i) methanotrophic and
non-methanotrophic bacteria and fungal methane removal; and (ii) the impact of abiotic
factors, especially salinity and temperature, on methane biofiltration processes. After
comparing and analysing the remaining articles, we categorised them based on relevant
keywords. Additionally, we summarised the conducted research, critically evaluated the
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content of over 100 studies, extracted essential features, and identified key challenges
that warrant further investigation. By following this rigorous methodology, we aimed to
provide a comprehensive review that synthesises the current state of knowledge, highlights
significant findings, and identifies areas that require additional research attention within
the context of methane biofiltration. The bibliometric analysis of the review sections is
summarised in Figures 1 and 2. We performed data analysis and generated bibliometric
graphs using the Bibliometrix R package (Derviş, 2019).
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3. Biofiltration Processes

Biofiltration is a system that harnesses the power of microbes to efficiently break down
pollutants in a contaminated exhaust stream [31,32]. For example, methane (CH4) present
in an exhaust stream can be transformed into biomass, carbon dioxide, and water through
the action of methanotrophic microbes [33]. Unlike traditional CH4 removal methods,
biofiltration offers several advantages: it is cost-effective to construct and operate, functions
under ambient temperature and pressure conditions, and does not require complex safety
mechanisms due to its non-electrical nature [34,35]. Biofiltration systems are adaptable
to varying input flows and pollutant concentrations, easy to install, and can be made
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mobile, making them suitable for a range of applications [36]. These systems have demon-
strated high efficiency in treating high-flow waste gases with low pollutant concentrations,
typically ≤1% (v/v) in the air [37].

Biofiltration represents an environmentally friendly process devoid of harmful emis-
sions such as nitrogen oxides (NOx), particulate matter, sulfur dioxide (SO2), or carbon
monoxide (CO) in the exhaust gas [38]. Typically, a biofiltration system consists of organic
or inorganic packing materials serving as surfaces for microbial growth [39]. Organic
beds, rich in macronutrients, sustain biomass growth. Biofiltration has a century-long
history of application in treating sewage and other malodourous, waterborne wastes [40],
with European countries employing bioreactors for contaminated air treatment for six
decades [41,42]. Various biofiltration systems have been used for methane elimination,
including conventional biofilters, biotrickling filters, bioscrubbers, membrane bioreactors,
and two-liquid-phase bioreactors [43,44]. While many laboratory-scale biofilter studies
have employed biotrickling filters, where nutrients are continuously introduced at the top
of the unit [45], this paper focuses on conventional biofilters. These are characterised by
the absence of continuous liquid-phase feeding, making them easy to install, mobile, and
cost-effective [46,47].

Biofiltration harnesses the metabolic activity of microorganisms adhered to various
packing materials to effectively treat a broad spectrum of organic and inorganic contami-
nants [48,49]. Within a biofilter, contaminants in the gas phase diffuse into biofilms, which
are thin layers comprising a consortium of microorganisms residing on the packing ma-
terial, where they are consumed by these microorganisms [50]. Biofilters employ diverse
packing materials made from both natural and synthetic sources to provide the necessary
surface area for biofilm formation [51,52]. For the successful commercial application of this
treatment method to remove methane, leveraging the methane-degrading capabilities of
methanotrophs, it is crucial to assess both the engineering and economic viability through
model and pilot tests [53]. Additionally, specific conditions pertinent to methanotrophs,
such as copper concentration, which controls the expression of pMMO and sMMO, must
be considered within the model [54].

Considerable research has been carried out on the biofiltration of volatile organic
compounds (VOCs) and methane (CH4), revealing promising results in terms of removal
efficiency (RE) and elimination capacity (EC) [55]. Moreover, efforts have been dedicated
to exploring variations in operating conditions, such as pollutant inlet load (IL), empty
bed residence time (EBRT), temperature, and the impact of filter bed materials on the
performance of individual VOCs or CH4 biofilters [56,57]. Figure 3 illustrates a typical
schematic of a biofilter used to eliminate either a single pollutant or a mixture of pollu-
tants, and the process of CH4 utilisation involves several intracellular steps, as depicted
in Figure 4. The initial step is the oxidation of CH4 to methanol (CH3OH), a reaction
catalysed by the enzyme CH4 monooxygenase (MMO) [58,59]. Subsequently, methanol is
further oxidised to formaldehyde (HCHO) with the assistance of methanol dehydrogenase
(MDH). Formaldehyde can then serve as a substrate for either a dissimilatory pathway
leading to the production of formate (HCOOH) and ultimately carbon dioxide (CO2) for
energy generation or various assimilatory pathways that result in the synthesis of cellular
components essential for the growth of methanotrophs [60].
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4. Microorganisms
4.1. Methanotrophs

Methanotrophs, the particular bacteria tasked with breaking down methane (CH4),
belong to a subset of methylotrophs, which are bacteria specialised in the decomposition
of compounds containing just one carbon atom [61,62]. Methanotrophs are categorised
into three main types [63]. Type I includes the genera Methylomonas, Methylomicrobium,
Methylobacter, Methylocaldum, Methylophaga, Methylosarcina, Methylothermus, Methylohalobius,
and Methylosphaera. These methanotrophs utilise the ribulose monophosphate pathway for
formaldehyde assimilation and primarily feature cellular membranes composed of fatty
acids with either 16 or occasionally 14 carbon atoms [64].

Type II encompasses Methylocystis, Methylocella, Methylocapsa, and Methylosinus, which
employ the serine pathway for formaldehyde assimilation. These methanotrophs possess
cellular membranes consisting of fatty acids with 18 carbon atoms, arranged around the
cell periphery [65]. Type X, represented by Methylococcus, combines characteristics from
both Type I and Type II methanotrophs. It features fatty acids with 16 carbon atoms and
utilises both the ribulose monophosphate cycle and the serine pathway for formaldehyde
assimilation. The genomic sequence of Methylococcus capsulatus has confirmed the presence
of genes associated with both pathways [66]. Generally, aerobic methanotrophic bacteria are
considered obligate C1 metabolizers, as they are unable to grow on substrates containing
only C–C bonds as the carbon source. However, the genus Methylocella stands out as an
exception to this rule, as it can utilise compounds like acetate, pyruvate, succinate, malate,
and ethanol [67].
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Methanotrophs can be categorised into three types (type I, type II, and type X) based
on various characteristics, including cell morphology, assimilatory pathway, growth tem-
perature, nitrogen fixation capability, and membrane arrangement [68]. Type I methan-
otrophs encompass the genera Methylomonas, Methylomicrobium, Methylobacter, Methylocal-
dum, Methylophaga, Methylosarcina, Methylothermus, Methylohalobius, and Methylosphaera [69].
These methanotrophs utilize the ribulose monophosphate pathway to assimilate formalde-
hyde (an intermediate of methane oxidation) and typically have cellular membranes com-
posed of fatty acids containing 16 or sometimes 14 carbon atoms [70]. Type II methan-
otrophs include the genera Methylocystis, Methylocella, Methylocapsa, and Methylosinus.
These methanotrophs employ the serine pathway for formaldehyde assimilation and typi-
cally feature cellular membranes primarily composed of fatty acids with 18 carbon atoms
arranged around the cell periphery [71]. Type X methanotrophs, represented by the genus
Methylococcus, exhibit a combination of characteristics from both type I and type II methan-
otrophs [72]. They possess cellular membranes containing fatty acids with 16 carbon
atoms and utilize both the ribulose monophosphate and serine pathways for formaldehyde
assimilation [73].

In a notable study by Amodeo et al. (2018), they successfully operated a fungal-bacterial
biofilter for the reduction of methane (CH4) emissions and achieved impressive elimination
capacities of 878 g per cubic meter per day (g/m3 d) with an inlet load of 984 g/m3 d, all under
a relatively short empty bed residence time (EBRT) of just 20 min [74]. This biofilter consisted
of compost that had been inoculated with the fungal strain Graphium sp. and was irrigated
using a mineral salt medium containing the antibiotic chloramphenicol, which was added
to inhibit the growth of competing bacteria [75]. Interestingly, their study revealed that
as the irrigation rate increased, reaching up to 200 mL/day (resulting in excess leachate
collected through a drainage system at the bottom of the biofilter), the performance of the
fungal-bacterial biofilter improved significantly. Surprisingly, this increase in irrigation did
not lead to significant pressure drops or other operational problems [30]. Pressure drop
in methane biofiltration is a critical consideration in designing and operating biofilters for
the treatment of methane-containing gas streams. The average reasoning behind pressure
drop involves factors such as the characteristics of the filter media, flow rate, fouling,
moisture content, and biofilm growth. Smaller media particles, higher porosity, and proper
humidity can mitigate pressure drop, while higher flow rates and fouling tend to increase
it. Theoretical reasoning employs fundamental concepts such as Darcy’s Law and the
Ergun Equation, as well as computational fluid dynamics (CFD) modelling, to understand
and predict pressure drops in biofilters. These theoretical approaches provide a more
detailed understanding of pressure drop distribution within the biofilter [76]. The most
attractive native product in Type II methanotrophs is polyhydroxy butyrate (PHB), due
to its inherent biodegradability, biocompatibility, water resistance, optical purity, and
piezoelectric properties (Figure 5) [77].

4.2. Non-Methanotrophic Bacteria

Nitrifying bacteria, which are responsible for breaking down ammonia (NH3), have the
capacity to degrade methane (CH4) as well. However, their CH4 degradation performance
is notably lower, typically less than 5%, when compared to pure methanotrophic popula-
tions [78]. Additionally, certain bacteria involved in the decomposition of methanol can
also degrade CH4, but this occurs effectively only when CH4 concentrations are maintained
below 10% v/v and their optimal growth temperature is around 35 ◦C [79].
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dehydrogenase [26].

There are anaerobic bacteria capable of CH4 degradation as well. These bacteria are ac-
tive in aqueous environments and often work in conjunction with sulfate-reducing bacteria.
This process requires additional carbon sources like acetate or lactate, and the minimum
sulfate concentration in the system should be approximately 1 mmol L−1 [80]. The concept
of a connection between sulfate reduction and anaerobic methane oxidation is supported
by studies conducted in landfill-leachate plumes [81] and groundwater [66]. However,
attempts to isolate these anaerobic bacteria have been unsuccessful so far [82,83]. Recently,
a microbial consortium capable of methane oxidation coupled with nitrate reduction in the
absence of oxygen has been isolated.

4.3. Fungal Methane Removal

The utilisation of fungal activities for methane abatement in CH4 biofiltration has not
been widely explored. Casas et al. (2023) attempted to employ fungal strains as a biological
adsorption mechanism to enhance CH4 retention in the system. However, none of the
strains they tested survived once the system was operational for CH4 treatment.
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Fungal methane removal, often referred to as fungal biofiltration or mycofiltration, is
a promising area of research within the broader field of biofiltration [84]. Biofiltration is a
biotechnological process that utilises living organisms to remove or degrade pollutants from
the air or water. In the case of fungal methane removal, certain types of fungi are employed
to capture and metabolise CH4, a potent greenhouse gas [85]. Certain fungi are capable of
oxidising methane as part of their metabolic processes. These fungi belong to the group of
methanotrophic organisms. One well-studied example is Methylocystis, a genus of methan-
otrophic fungi that can utilise methane as a carbon and energy source. Methanotrophic fungi
are characterised by their unique ability to utilise methane, a compound traditionally deemed
challenging for microbial metabolism due to its low reactivity [86–88]. The genus Methylocystis
stands out as a well-studied representative of this group, demonstrating remarkable methane-
oxidising capabilities that contribute to its significance in biofiltration applications [89]. The
key to the methane-oxidising ability of methanotrophic fungi lies in their possession of spe-
cialised enzymes, particularly methane monooxygenase (MMO) [25]. This enzyme catalyses
the initial and crucial step in methane metabolism, converting methane into methanol. This
oxidation process not only facilitates the assimilation of methane-derived carbon into the fun-
gal biomass but also generates energy crucial for the organism’s growth and maintenance [29].
While significant progress has been made in understanding the methane-oxidising abilities of
methanotrophic fungi, challenges remain. Researchers are working to optimise fungal strains
for enhanced methane oxidation efficiency, improve the scalability and stability of biofiltration
systems, and explore potential synergies with other microorganisms or plant species to create
more robust and resilient biofiltration environments (Table 1).

Nitrifying bacteria, encompassing ammonia-oxidising bacteria (AOB) and nitrite-
oxidising bacteria (NOB), play vital roles in the nitrogen cycle by converting ammonia to
nitrite and then to nitrate. These microbes, represented by genera such as Nitrosomonas
and Nitrobacter, facilitate nutrient availability for plants. In contrast, methane oxidation
is primarily driven by methanotrophic bacteria, which is crucial for mitigating methane,
a potent greenhouse gas. Methanotrophs, categorised into Type I and Type II, convert
methane to carbon dioxide. Although these processes operate independently, their interplay
in soils is influenced by factors like soil conditions, microbial competition for oxygen,
and broader environmental variables. Understanding these interactions is essential for
managing nutrient cycles, greenhouse gas emissions, and overall soil health (Figure 6).
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Table 1. Summary of CH4 biofiltration (and biotrickling filter, BTF) studies. All studies included in this table are either laboratory or field packed-bed column
studies. The studies that rely on atmospheric diffusion are indicated as such.

Media Nutrient Source O2:CH4 EBRT (min) Maximum CH4
Conversion (%) References

Landfill cover soil: coarse sand; clay top soil NH4NO3, K2HPO4, and
sewage sludge 13:1 52.1 61% [67]

Agricultural soil and landfill cover soil Organic amendments: wheat straw and beet leaves 30:1 7.8 78% [68]

Soil (70% sand) None 21:1 92 to 93 83% [69]

Landfill cover soil (closed landfill) NH4Cl, KNO3, KCl 11.7:1 103 36% [70]

Alberta, Canada, soils None 2:1 43 50% [71]

2:1 compost and perlite Nutrient solution 12.5:1 57 to 1136 >70% [72]

Landfill cover soil None 25:1 40 to 45 40% [73]

Compost and sand None 8:1 and 210:1 447 to 1162 88% [74]

40:60 (by volume) perlite and compost None 2.6:1 to 52:1 7 to 80 24% [75]

Inorganic material and compost Nutrient solution 2:1 to 7:1 4.3 98% [76]

Compost, wood fibres, peat, and mixture None 28:1 to 46:1 5.2 (bench) 98% [77]

Compost; recycling paper pellets None 28:1 to 30:1 2.4 (pilot) 90% [78]

4:2:4 (ww) of compost, de-inking waste, and sand None 6:1 to 70:1 98 to 558 80% [79]

Gravel Nutrient solution 10:1 495 to 515 85% [80]

Stone Nutrient solution 2.5:1 4.2 [81]

Landfill cover soil and earth worm cast None 2.7:1 to 3.7:1 3.2 to 7.5 41% [82]

Compost, 2:1 ceramsite and compost None 21:1 to 161:1 3.8 to 280 23% [54]

gravel Nutrient solution 21:1 to 161:1 884 11% [63]

Various: compost, sewage sludge, sand, soil, and
Mixtures None 0.4:1, 1.7:1, 3.8:1 4.2 96% [29]

Stones Nutrient solution Atmospheric
diffusion 310 97% [50]
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Table 1. Cont.

Media Nutrient Source O2:CH4 EBRT (min) Maximum CH4
Conversion (%) References

BTF: Clay spheres, Polypropylene sphere, Stones Nutrient solution 840:1 4.2 38% [36]

1:1 Perlite and volcanic pumice soils from landfill Nutrient solution 49:1 4.25 >90% [51]

cap None 2.5:1 4.2 100% [42]

Pumice soils (top soil and subsoil) None 28.5:1 >120 65% [64]

Soil, compost and mixtures (1:1, 3:1 w/w) None 29:1 90 36% [23]

52.8% plastic waste and 47.2% stabilized organic
Waste Nutrient solution 40:1 to 393:1 15.7 Up to 100% [17]

GAC and pumice Mineral Salt Medium 2:1 9425 to 28,274 65% [29]

BTF: polyurethane foam Nutrient solution 3:1 to 206:1 20.1 50% [27]

Perlite Nutrient solution 6:1 4 43% [34]

Tobermolite Nutrient solution Atmospheric
diffusion 20 Up to 100% [18]

Mixture: wood pine bark chips, perlite, compost None 3.4:1 to 52.3:1 20 100% [34]

Mixtures: compost (60%, v/v), burst furnace slag Nutrient solution 9:1 4.4 70–100% [28]

Stone material Mineral Salt Medium 4:1 7.4 to 42.8 Up to 97% [18]

Compost and fungal strains Nitrate Mineral Salts 4:1 1 to 6 91–99% [30]

Activated carbon, plastic bio-balls, gravel None 85:1 to 161:1 20 to 40 82.8% [25]

Fungal strains and spores; bacterial consortium None 6.7:1 to 59.8:1 200 to 998 12% [10]

0:50 (v/v) volcanic pumic soil and perlite Nitrate Mineral Salts 210:1 0.42 (or 25 s) 51.3% [39]

BTF: Polyethylene rings None 161:1 50 33% [47]

Compost None 123:1 10 to 100 62% [14]

Compost Nitrate Mineral Salts 20:1 54 to 163 90% to 95% [28]

Estimates presented here are calculated from values provided in the paper and may be different from what is reported. Where temperature is not specifically provided, 25 ◦C (and 1 atm)
is used for the calculations.
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5. Influence of Salt Concentration (Sodium and Sulfur) on Methane Oxidation Activity

Soil salinity has the potential to significantly impact the availability of carbon (C) and
nitrogen (N) in the soil, affecting various microbial processes and activities [36]. These
alterations in soil conditions can lead to changes in soil organic carbon (SOC) levels and
emissions of greenhouse gases (GHGs) such as carbon dioxide (CO2), methane (CH4),
and nitrous oxide (N2O) [9]. Previous research has indicated that soil salinity primarily
decreases CO2 and CH4 emissions [36]. However, the response of N2O emissions to soil
salinity varies, including linear increases, decreases, or no significant response [37]. Some
studies have suggested that the microbial processes involved and certain control factors
play a role in determining these different responses to GHG emissions [39]. Furthermore,
it has been observed that soil salinity-induced CO2 and N2O emissions are sensitive to
temperature [40] and can also be influenced by the use of inorganic fertilisers [41]. This
implies that under scenarios of warming and intensified fertiliser use, salinized soils may
produce more CO2 and N2O [42].

In summary, the available research suggests that soil salinity-induced GHG emis-
sions have the potential to influence global GHG dynamics and budgets. However, the
results in this field have not been thoroughly synthesised, and there are research gaps
and directions for future investigations that have not been clearly identified [43]. Studies
have shown that increasing salt concentrations, resulting in electrical conductivity (EC)
values greater than 6 mS cm−1, lead to a clear decrease in methane consumption by both
Methylosinus sp. cultures and biofilter materials [44]. For pure cultures, an increase in salt
concentration from EC = 6 to EC = 12 mS cm−1 resulted in a six-fold decrease in methane
consumption [45]. On the other hand, for biofilter materials, increasing EC values from
4 to 12 mS cm−1 led to only a three-fold decline in methane consumption rates [46]. This
suggests that the methanotrophic population in the biofilter may adapt better to higher salt
concentrations [47].

Interestingly, in both experiments, using biofilter leachate as a medium resulted in
methane oxidation rates significantly lower than those achieved with nutrient media solu-
tion (NMS-media) adjusted to the corresponding EC values [48]. This indicates that the
environmental conditions in situ may not optimally support the activity of the methan-
otrophic population [49].

Furthermore, the addition of MgSO4·7 H2O from 0.5 to 1 g L−1 (resulting in EC values
of 2.8 and 3 mS cm−1, respectively) greatly enhanced methane consumption by biofilter
material. The exact reason for this improvement remains unclear. However, it can be ruled
out that the medium or glass bottle contamination was the cause, as the aliquots were from
the same lot used to test the Methylosinus sp. culture, and all three replicates showed similar
methane uptake rates [50]. It is suggested that the increase in methane oxidation rate from
EC 2.8 to 3 mS cm−1 is likely due to enhanced nutrient availability [51].

Salinization has a significant impact on belowground microbially-mediated biogeo-
chemical processes, including methane cycling in rice paddies. Previous research has
demonstrated the adverse direct and indirect effects of salinization on methanogenesis (the
production of methane) and methane emissions [52]. However, there is less knowledge
about how salt stress affects methane oxidation and the methanotrophic bacteria in wetland
rice paddies [53]. This area of research seeks to understand how changes in soil salinity
levels may influence the microbial processes responsible for methane consumption in these
environments. Salinity can also have an impact on methane (CH4) flux by affecting plant
physiological characteristics. First, an increase in salinity can lead to a decrease in plant
species diversity and growth rate. This reduction in plant diversity and growth can, in turn,
decrease CH4 emissions from the soil by reducing the input of organic matter [54].

Second, higher salinity levels may result in increased CH4 emissions from tree stems.
Trees have the capacity to emit CH4 that is either produced within the tree itself or in the
surrounding soils. Frasi et al. (2020) discovered that exposure to seawater in five forests
along the United States coastline significantly increased tree-stem CH4 emissions. It is
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possible that dying gymnosperm trees, which can result from seawater exposure, may
accumulate higher levels of CH4 [55]. Interestingly, some studies have not observed any sig-
nificant response of soil CH4 emissions to changes in soil salinity in agricultural fields [56].
This suggests that the impact of salinity on CH4 emissions can vary depending on the
specific environmental conditions and ecosystems under consideration. The relationship
between the electrical conductivity of saturated paste extraction (ECe) and soil organic
carbon (SOC) contents is shown in Figure 7.
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Halophilic and halotolerant methanotrophs, capable of thriving in saline environments,
have been identified in various settings such as soda lakes, mangroves, alkaline lakes, and
estuaries [57]. These microorganisms often possess specialised mechanisms that allow them
to adapt to and overcome salt-stress conditions [58]. Most of these salt-adapted methan-
otrophs belong to the type of Ia subgroup within the gammaproteobacteria. However,
there have been reports of an alphaproteoacterial methanotroph, Methylocystis, which has
demonstrated the ability to cope with salt stress at salt concentrations below 1% NaCl [59].
While previous studies have focused on methanotrophs indigenous to saline environments
and their responses to salt stress at the cellular level [60], less attention has been given to
understanding how methanotrophs from non-saline environments respond to increasing
salinity and what the resistance and threshold levels are for their methanotrophic activ-
ity [61]. Recent research indicates that the NaCl threshold for methanotrophic activity in
paddy soil is approximately 0.3 M (approximately 1.75% salinity). This threshold is higher
than what has been observed in freshwater planktonic methanotrophs (0.1–0.5% salinity)
but lower than the threshold for methanotrophs in estuarine environments (>3.5% salin-
ity) [62]. These findings highlight the variability in salt tolerance among methanotrophic
microorganisms and the importance of understanding their responses to changing salinity
conditions in different ecosystems.

The inhibitory effect of ammonium on methane oxidation has been a subject of study by
various researchers. Zarei et al. (2023) and Vikrant et al. (2018) concluded that this inhibition
is due to chloride ions (Cl−), which are the counter ions of ammonium (NH4

+). In contrast,
previous research [63,64] observed high chloride sensitivity among soil methanotrophs with
high chloride concentrations. On the other hand, some authors found no growth inhibition
for 135 different methanotrophic strains when exposed to a medium containing 10 g NaCl
per litter [65]. These variations in findings suggest that the response of methanotrophs to
chloride ions and ammonium can vary among different strains and environmental conditions.
Regarding wetlands exposed to high concentrations of sulfate, which is present in seawater,
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they often emit methane at relatively low rates. This is because sulfate-reducing bacteria can
outcompete methanogens for energy sources in the presence of sulfate, thereby inhibiting
methane production [66]. However, the relationship between sulfate concentrations and
methane emissions in saline marshes can be complex and influenced by various factors.

Since methane oxidation is influenced by temperature and plant activity, the temporal
and spatial variability in these processes, as well as sulfate dynamics, can create conditions
where methane production and sulfate coexist in wetland ecosystems [67,68]. Annual methane
emissions as affected by salinity are summarised in Table 2. Several researchers (Table 2) found
a negative relationship between porewater salinity and methane flux. This trend was only
partly supported when the data were grouped by salinity class. Mean methane emissions were
significantly lower for polyhaline systems than for the other salinity classes. Methane emissions
were generally lower in mesohaline systems than in freshwater (Table 2).

Regarding the tolerance of methanotrophic bacteria to salinity, some cultures have
been reported to grow in the presence of up to 15% NaCl [69]. Additionally, in some
cases, the addition of cow manure to salt-affected paddy fields enhanced CH4 emissions
significantly due to an increase in the relative abundance of methanogens, which benefited
from improved soil properties and nutrient availability [70].

It is important to note that salinity can have different effects on various microbial
groups. While methanogens may be more adversely affected by salinity due to their
reliance on sodium ions (Na+) for growth and metabolic processes, methanotrophs and
methylotrophs may exhibit more tolerance to salinity [71]. Different types of methanogens,
such as acetolactic methanogens and hydrogenotrophic methanogens, may also respond
differently to saline conditions, with some being significantly inhibited while others main-
tain their methanogenesis rates [72]. Overall, the response of methane-producing and
methane-consuming microorganisms to salinity is complex and can vary depending on the
specific environmental conditions and microbial communities present (Figure 8).
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Table 2. Summary of data extracted from references on annual methane emissions.

Site Name Sample
Frequency a

Salinity
(mS m−1)

Soil Surface
Flooding b Daily Flux Reported Annual Flux

Reported c References

(mg CH4 m−2d−1) (g CH4 m−2 yr−1)

Fresh 13 (17 mo) 0.4 not systematic 213.3 [74]

Brackish 13 (17 mo) 1.8 not systematic 97.3 [62]

Salt 13 (17 mo) 18.1 not systematic 5.7 [54]

Creek bank 16 (20 mo) 18.7 exposed 1.2 [33]

High marsh 13 (13 mo) 22.6 exposed 0.4 [20]

Short Spartina 21 (24 mo) 26.3 exposed 1.3 [72]

Site 1 11 (12 mo) 5.1 not reported 18.2 [60]

Site 2 11 (12 mo) 12.8 not reported 22.4 [30]

Site 3 11 (12 mo) 16.6 not reported 5.6 [29]

GI Near Bank 8 (13 mo) 0.25 exposed 8.2 [52]

GI Far Bank 8 (13 mo) 0.25 exposed 5.7 [38]

UF Near Bank 8 (13 mo) 0.25 exposed 5.1 [40]

UF Far Bank 8 (13 mo) 0.25 exposed 3.5 [22]

Upland edge 6 (1.5 mo) 23.5 not systematic 3.7 [12]

High marsh 6 (1.5 mo) 31.6 not systematic 0.5 [26]

Middle marsh 6 (1.5 mo) 33.7 not systematic 0.6 [82]

Low marsh 6 (1.5 mo) 35.1 not systematic 0.6 [30]

Scirpus Close 68 (24 mo) 2.5 exposed 4.5 [11]

Phragmites Far 68 (24 mo) 2.5 exposed 75.4 [29]

Sweet Hall 8 (15 mo) 0.25 exposed 96.0 [32]

Lower site 17 (20 mo) 0.25 exposed 1.3 [81]

Upper site 16 (20 mo) 0.25 exposed 1.8 [55]
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Table 2. Cont.

Site Name Sample
Frequency a

Salinity
(mS m−1)

Soil Surface
Flooding b Daily Flux Reported Annual Flux

Reported c References

Alresford Creek 12 (12 mo) 0.25 not reported 0.3 [38]

Colne Point 12 (12 mo) 33.0 not reported 0.4 [62]

C3 Ambient CO2 14 (24 mo) 6.8 exposed 13.9 [57]

C4 Ambient CO2 7 (24 mo) 6.8 exposed 9.6 [36]

Salt marsh - - flooded 600.0 [84]

Salt marsh
24-h Day - 2.1 flooded 2365.7 [34]

CD Marsh - - exposed 1585.8 14.4 [21]

CD Marsh
24-h Day 9 (12 mo) 5.5 exposed 13.8 [30]

Wildlife 6 (6 mo) 11.6 exposed 90.0 14.1 [17]

Barbados 6 (6 mo) 12.9 exposed 94.0 [54]

Shanyutan wetland - 2.3 exposed 122.4 [41]

Shanyutan wetland - 4.2 flooded 48.0 [68]

Shanyutan wetland - 2.3 exposed 112.8 [71]

All flood stages 10 (12 mo) 2.3 flooded + exposed - 32.6 [64]
a Number of sampling events (total length of study, mo: month). b indicates whether the soil surface was exposed or flooded during emission measurements. In cases deemed “not
systematic”, fluxes were measured under both flooded and exposed conditions, but flooding was either determined to have no effect on emissions or the effects were not determined.
c Emissions [4] were based on Table 2 and accounted for the length of time between sample dates.
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Gypsum and phosphogypsum have long been employed for soil reclamation in alkali
soils due to their ability to dissociate into calcium and sulfur. Calcium’s strong affinity
for soil particles displaces sodium and enhances soil structure by promoting aggregation.
While numerous studies have explored gypsum effects on soil reclamation, only a select few
have assessed its impact on greenhouse gas (GHG) emissions. Some investigations [50,51]
focused on CH4 emissions in rice ecosystems and observed reductions in reclaimed soils.
Gypsum application increases SO4

2− concentration, leading to competition between sulfate-
reducing bacteria (SRB) and methanogens for common substrates such as H2, CO2, and
acetate. Sulfate-reducing bacteria have a higher affinity for these substrates, which inhibits
methanogenesis but does not completely eliminate CH4 emissions. Gypsum also enhances
water infiltration and soil redox potential, mitigating CH4 emissions from saline/sodic
soils. The rate of gypsum application plays a significant role, with higher doses leading to
increased CH4 mitigation due to intensified competition between SRB and methanogens.
Gypsum is considered an effective reclamation agent for CH4 emissions in both sodic and
non-sodic soils, with higher application rates resulting in greater mitigation. Approximately
60% CH4 mitigation was achieved with 8 MG ha−1 of by-product gypsum fertiliser (BGF)
application [52]. It was found that 18–23% CH4 mitigation in coastal paddy soils was
achieved with the application of 150 kg ha−1 silicate slag, which contained high free iron
oxide and SO4

2− content acting as electron acceptors [53,54]. Additionally, Sun et al. (2020)
explored the potential of gypsum and humic acid on CH4 and N2O emissions from coastal
saline soils, observing a 19.36% reduction in CH4 emissions and a 9.43% reduction in N2O
emissions with gypsum-amended N-fertilized soils. The application of humic acid, while
stimulating higher N2O fluxes, enhanced soil redox potential and further impacted GHG
emissions in these soils. Impact of different amendments practices on GHG emissions
from salt-affected soils is summarised in Table 3. Greenhouse gas (GHG) emissions from
salt-impacted soils can be influenced by various improvement methods. Saline soils are
characterised by high levels of salts, which can affect microbial activity, nutrient availability,
and overall soil health. Regularly monitoring soil conditions, salinity levels, and GHG
emissions can help in implementing timely interventions and adjusting management
practices accordingly.
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Table 3. Impact of different amendment practices on GHG emissions from salt-affected soils.

Experiment Type Treatment Detail Observation (GHG Emissions) Key Findings
and Reasoning References

Pot experiment Initial soil pH = 7.8,
EC = 5.6 dS m−1, OC = 1.48%

25 nM salinity.
25 nM + phosphogypsum

Biochar amendment to saline soil reduced
CH4 emission by 16.4% (25 mM) to 19.6%

(at 75 mM)

Phospho-gypsum and biochar mitigate
CH4 emission due to improved soil redox

potential (Eh), increased SO4
2− and

decreased soil EC.

[62]

Field experiment growing rice
conducted in Jiangsu Province, China

N1 (300 kg N ha−1).
N1 + humic acid.

N1 + gypsum.
N1 + humic acid + gypsum

CH4 emissions increased with
Humic acid (6.2%), gypsum (19.4%),

decreased with gypsum + humic acid
(27.3%). Humic acid and gypsum
application increase N2O emission

Humic acid and gypsum application with
N300 kg ha−1

is the better management for coastal
saline soils of China to mitigate CH4

emission.

[50]

Field experiment with rice.

No by-product gypsum
fertiliser (BGF); BGF

(2 Mg ha−1); BGF
(4 Mg ha−1); BGF

(8 Mg ha−1)

CH4 flux decreased with increasing level
of BGF, and BGF (8 Mg ha−1) reduced it

by 60.6% compared to control.

BGF application could be a better
management practice for CH4 mitigation

from paddy soils.
[42]

Field experiment with rice
in upland soil.

Urea (250 kg ha−1).
Urea + Phosphogypsum

(90 kg ha−1).
Urea + silicate slag

(150 kg ha−1)

Silicate slag and phosphogypsum
reduced CH4 emission by 18.0–23.5% and

14.7–18.6%, respectively.

Silicate slag and phosphogypsum
decreased CH4 due to high free iron oxide

and SO4
2− content which acted as
electron acceptors

[30]

Field experiment with rice. Urea (165 kg N ha−1); Urea + gypsum
(6.60 t ha−1)

The CH4 emissions from gypsum
amended plots were reduced by 55–70%

compared to non-amended plots.

Inhibition of methanogenesis by
sulfate-reducing bacteria caused a

reduction in CH4 emission.
[64]

Field experiment with rice
N1 (300 kg N ha−1).

N1 + 20 t biochar ha−1.
N1 + 40 t biochar ha−1

Biochar amendment increased N2O
emissions b 13.7–38.1% and had no
significant effects on CH4 emissions

Thus, long-term observations are needed
to evaluate the environmental impacts of

biochar and N fertilisers
[51]

30 days incubation
experiment Control; Biochar

Biochar amendment to saline soil
decrease CH4 uptake (8.8%), CO2 (11.9%),

and N2O (9.8%) emissions

Biochar amendment to soils mitigates
GHG emissions where CO2 and N2O are

driven by soil rewetting events.
[63]
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Table 3. Cont.

Experiment Type Treatment Detail Observation (GHG Emissions) Key Findings
and Reasoning References

Rice experiment in
irrigated saline soils of
Gadakujang (a fishing

hamlet) of coastal
Odisha, India

Prilled urea
(40 kg N ha−1); Sesbania green manure

(5 Mg ha−1) + Prilled urea (20 kg N ha−1).
Ipomoea lacunose (5 Mg ha−1) + Prilled

urea (28 kg N ha−1)

Sesbania and Ipomoea lacunose green
manure reduced CH4 emission

by 23.2 and 29.9%.

Locally available Ipomoea lacunose
green manure ca use CH4 mitigation

and yield enhancement from the coastal
saline rice ecosystems

[71]

Field experiment with rice
GM (S. Rostrata: 20 t ha−1) + urea

(30 kg urea ha−1); GM + urea + gypsum
(6.60 t ha−1)

Green manure addition enhances CH4
emissions by 10 times than that of urea

application alone, further gypsum
addition reduced CH4 emission

by about 71.1%

Database for CH4 emissions mitigation
from rice grow on high-sulfate

containing soils
[36]

Field experiment was conducted in
saline sodic soils in the upper Yellow

River basin, Northwest China

Organic fertiliser (CK),
sheep manure (FYM),

lignite bioorganic fertiliser (LBF1)
(1.5 t ha−1) LBF2 (3 t ha−1), LBF3
(4.5 t ha−1), and LBF4 (7.5 t ha−1)

LBF treatments decreased CH4 and CO2
and increasing N2O emissions beyond

3 t ha−1 application rate. FYM acted as a
CH4 source, and LBF2 and LBF3

treatments acted as CH4 sinks

The application of lignite bioorganic
fertiliser at 3.0–4.5 t ha−1 is

appropriate for GHG mitigation in
saline-sodic farmlands

[27]

Microcosm experiments of
80 days incubation

Interaction of salinity
(0 and 1.2% salt) with

biochar

5–10 times higher N2O emissions
occurred from saline soils than that from
non-saline soils. Aged biochar decreased

N2O emissions and increased CO2
emissions in saline soils.

Aged biochar could be a better option for
mitigation of N2O emissions from

saline soils
[73]

Field experiment with
rice crop

Nonsaline (NS) soi; NS
soil + DMPP (0.8% w/w of N); low saline
(LS) soil; LS soil + DMPP; high saline (HS)

soil; HS soil + DMPP

The nitrification inhibitor DMPP
(3,4-dimethyl pyrazole phosphate)

reduced cumulative N2O emissions by
61% in non-saline soil and by 75% in low

saline soil.

DMPP offsets low salinity-induced high
N2O emissions by inhibiting

ammonia oxidation.
[19]
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6. Influence of Temperature on Methane Oxidation Activity

The increase in anthropogenic greenhouse gas (GHG) emissions has led to a significant
rise in air temperatures, currently increasing at a rate of 0.2 ◦C per decade [20]. Projec-
tions indicate that this warming trend is expected to persist, with an estimated average
temperature increase of up to 4.8 ◦C [21]. Temperature plays a crucial role in influencing
biochemical reactions, including methane oxidation. Understanding the temperature kinet-
ics of these reactions is vital for designing systems exposed to ambient temperatures, as
metabolic activities tend to decrease during colder seasons, such as winter [22].

Previous research conducted using material from a pilot biofilter plant located on
the same landfill site revealed an interesting phenomenon. Methane oxidation activity
in the laboratory was found to be significantly higher when the biofilter material was
sampled during the winter and incubated at 10 ◦C compared to incubation at 17 ◦C [23].
This observation led to further investigations and the enrichment of a co-culture consisting
of Methylobacter sp. and Rhodococcus erythropolis at the 10 ◦C incubation temperature [24].
This highlights the importance of considering temperature effects when studying methane
oxidation and its microbial communities in different environmental contexts. Methane
oxidation in the biofilter material exhibited typical mesophilic behavior, with the optimum
methane consumption rate occurring at 38 ◦C [25]. This process displayed a broad temper-
ature range, with methane oxidation still detectable at temperatures as low as 3 ◦C and as
high as 45 ◦C [26]. An activation energy of 74.5 kJ mol−1 was calculated for a temperature
increase from 10 to 20 ◦C [27].

Interestingly, the co-culture of Methylobacter sp. and Rhodococcus erythropolis had a
different temperature response profile, with the optimum methane oxidation rate observed
at 22 ◦C. When the incubation temperature was raised to 28 ◦C, methane uptake rates
dropped below those observed at 4 ◦C. At 37 ◦C, which is close to the optimum temperature
for the biofilter material, virtually no methane oxidation could be detected in the enrichment
culture [28]. An activation energy of 97.7 kJ mol−1 was calculated for a temperature increase
from 10 to 22 ◦C in this culture.

Comparing these findings with other studies, temperature optima for methane oxida-
tion have been reported in the range of 20–31 ◦C for landfill covers, soils, and peatlands [29],
and a temperature optimum of 35 ◦C was found for paddy soils [30]. Notably, the temper-
ature optimum observed for the biofilter material falls slightly on the higher side of this
range, while the Methylobacter-containing culture optimum is in the lower range of reported
values [31]. These temperature responses highlight the variability in methane oxidation
kinetics among different microbial communities and environmental conditions.

Exposure to low temperatures during the winter can indeed lead to shifts in methan-
otrophic temperature optima [32]. For example, enrichment and isolation conducted at
28 ◦C resulted in a Methylosinus sp. culture, while performing the same procedure at a
10 ◦C incubation temperature yielded a culture containing Methylobacter sp. as the sole
methanotroph [33]. This suggests that temperature changes can lead to species shifts within
the methanotrophic population rather than the mere adaptation of the same species to
temperature variations [34].

For biofilter operation at ambient temperatures, these findings suggest better perfor-
mance during the winter than previously assumed. Reduced methane emissions during
colder periods might be explained by increased sulfate availability due to higher salin-
ity [35]. Methanogens are the least competitive among heterotrophic microorganisms in
soils, and the presence of major electron acceptors, including sulfate (SO4

2−), can push
methanogens out of the competition for substrates, leading to a decrease in methanogenic
activity [36]. Sulfate-reducing bacteria and methanogens compete for acetate and hydro-
gen, which are primary substrates for methanogenesis. Therefore, an increase in sulfate
reduction activity due to elevated sulfate availability can significantly reduce methanogenic
activity, resulting in decreased soil methane emissions [37].
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Rates of microbial CH4 oxidation are indeed influenced by a range of environmental
factors, and numerous studies have demonstrated the impact of these factors on changes
in methanotrophic community structure and diversity. Factors such as soil texture, pH,
gas concentration, and moisture content play crucial roles in shaping community structure
in landfills [38]. However, it is worth noting that there have been relatively few studies
that have investigated the effects of temperature on microbial diversity using molecular
techniques across various ecosystems [39] (Table 4).

Methanotrophs are typically mesophilic microorganisms that thrive at moderate tem-
peratures, typically in the range of 25–35 ◦C [40]. Various laboratory incubation studies
across different ecosystems have reported peak CH4 oxidation rates at temperatures rang-
ing from 20 to 31 ◦C in environments like landfill cover soil, peat soil, wetlands, forests,
and boreal soils [41]. There is research on temperature effects and CH4 oxidation potential
in landfill cover soil by subjecting soil cores to temperatures ranging from 4 to 46 ◦C and
moisture contents ranging from 5 to 71% [42].

The optimal conditions for CH4 oxidation were 31 ◦C and 11% moisture content [43].
When the moisture content was held constant at 11%, increasing CH4 oxidation rates were
observed as temperatures rose from 4 to 36 ◦C, but a decline in oxidation rates was noted
at temperatures exceeding 46 ◦C [44]. It is important to note that CH4 oxidation rates also
decreased significantly when moisture content was at 11% [45]. In contrast, previous studies
suggested that moisture content had a more dominant influence on CH4 oxidation rates
compared to temperature, with optimal moisture content ranging from 15.6 to 18.8% and
an ideal temperature range of 20–30 ◦C [46]. Their study indicated a decrease in the optimal
temperature as moisture content increased, suggesting that temperature had minimal
effects on CH4 oxidation [47]. Previous research explored various factors affecting CH4
oxidation in landfill cover soil and concluded that moisture content, temperature, and gas
concentration were the most critical factors influencing CH4 oxidation [48]. The optimum
conditions were identified as 25% moisture content, which facilitated gas transport for
microbial activity, and a temperature of around 30 ◦C [49].

Indeed, temperature plays a crucial role in influencing the composition of microbial
communities, including methanotrophs. Previous researchers [50,51] conducted a study
using phospholipid fatty acids (PLFAs) as biomarkers in landfill cover soil and found
temperature to be a significant factor affecting community composition. They observed
the growth of Type-I methanotrophs at lower temperatures (5–10 ◦C) and Type-II methan-
otrophs at higher temperatures (20 ◦C) [52]. This temperature-dependent division of
methanotroph types has been supported by other studies as well [53].

However, there can be variations in the relative abundance of methanotrophs in
different environments [54]. The differences in the relative abundance of methanotrophs
in two distinct soils (rice field and forest soil) by analysing terminal restriction fragment
length polymorphism (T-RFLP) of particulate methane monooxygenase genes (pmoA)
were described previously [55]. Their findings suggest that environmental factors beyond
temperature can also impact methanotroph community composition. Furthermore, the
temperature dependence of methanotrophs may vary in different contexts. Temperature
dependence and the coexistence of both Type-I and Type-II methanotrophs across a wide
temperature range (5–45 ◦C) in soils were described in previous research [56,57]. This
suggests that the response of methanotrophs to temperature can be complex and context-
specific, influenced by various environmental factors.

While previous studies have primarily focused on abiotic parameters like pH, tem-
perature, and pressure in the context of CH4 biofiltration, it is crucial to also consider the
role of methanotrophs and their diversity in these systems. Methanotrophs are the key
drivers of CH4 oxidation, and understanding how changes in abiotic parameters affect their
community dynamics can provide valuable insights into system performance. Nitrogen
cycling, in particular, has a significant influence on methanotrophic communities and CH4
abatement potential. Additionally, it is important to consider the potential for the emission
of more potent greenhouse gases (GHGs) in these systems.
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Table 4. Studies showing genus- or species-level methanotrophs/methylotrophs identified in ecosystems at varied temperatures.

Temperature Specific temperature CH4 Concentration Ecosystem Molecular Biomarker Genus/Species/Type of Methanotroph References

(◦C) (◦C) (%)

6–70 6 5 Landfill cover soil Shotgun sequencing,
16S rRNA

Methylobacter luteus,
Methylobacter tundripaludum,

Methylotenera
[38]

6–70 23 Methylobacter luteus, Methylocystis

6–70 30 Methylobacter luteus, Methylovorus glucosetrophus

6–70 40 Methylocaldum sp. SAD2, Methylocaldum sp.14B

6–70 50 Methylocaldum Szegediense

5–45 5, 10, 15, 25, 35 4 Rice field and forest soil TRFLP-pmoA gene

Methylobacter Methylococcus/
Methylocaldum Methylocystis/
Methylosinus Methylomonas

Methanica

[41]

3–20 5, 10 5 Landfill cover soil PLFA Type-I methanotrophs [75]

3–20 20 Type-II methanotrophs

4–21 4 10 Arctic lake DNA-SIP Methylophilus, Methylobacter [32]

4–21 10 Methylobacter, Methylomonas, Methylosoma

4–21 21 Methylocystis, Methylophilus,
Methylobacter, Methylomonas

5–40 5 5–50 Landfill cover soil
16S rRNA gene

analysis
(DGGE)

Methylotenera versatilis [63]

5–40 10

Methylobacter tundripaludum,
Methylovorus glucosetrophus

Methylocella tundrae, Methylobacter marinus,
Methylosinus Sporium
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Table 4. Cont.

Temperature Specific temperature CH4 Concentration Ecosystem Molecular Biomarker Genus/Species/Type of Methanotroph References

5–40 20
Methylobacter marinus, Methylobacter luteus,
Methylobacter tundripaludum, Methylosinus

trichosporium, Methylosinus Sporium

5–40 40 Methylocaldum Gracile

4–20 4 - Hydrocarbon
contaminated aquifer

FISH,
TRFLP-pmoA gene

Methylococcaceae, Methylobacteriaceae sp.,
Methylomonas sp. [51]

4–20 12 Methylococcaceae, Methylobacteraceae sp.

4–20 20 Methylocystis sp., Methylococcaceae,
Methylobacteraceae sp.

7.5–9.5 - - Tundra bog soil Immunofuorescence Methylomonas, Methylobacter,
Methylococcus, Methylocystis, Methylosinus [70]
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Future research efforts should focus on developing easily measurable, site-specific pa-
rameters that can provide a more comprehensive understanding of methane emissions and
soil carbon storage estimates. Depending on the specific context, detailed field investiga-
tions and direct methane monitoring may be necessary to verify the radiative forcing effects
of created or restored wetlands, especially in tidal fresh, oligohaline, and mesohaline envi-
ronments. By integrating both abiotic and biotic factors, researchers can gain a more holistic
understanding of CH4 biofiltration systems and their environmental impact, ultimately
contributing to more effective mitigation strategies for reducing methane emissions.
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