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Abstract: CO2 methanation was studied on Ni-based yttria-stabilised zirconia (Ni/YSZ) catalysts.
The catalysts were prepared by the wet impregnation method, where the amount of Ni content was
varied from 5% to 75%. Thereafter, the prepared catalysts were analysed by BET, XRD, SEM and
H2-TPR. BET results showed an initial increase in the surface area with an increase in Ni loading, then
a decrease after 30% Ni loading. The XRD results revealed that the Ni crystallite size increased as the
Ni loading increased, while the H2-TPR showed a shift in reduction peak temperature to a higher
temperature, indicating that the reducibility of the catalysts decreased as the Ni loading increased.
The activity of the synthesised catalysts for CO2 methanation was studied by passing a mixture of H2,
CO2 and N2 with a total flow of 135 mL min−1 and GHSV of 40,500 mL h−1 g−1 through a continuous
flow quartz tube fixed-bed reactor (I.D. = 5.5 mm, wall thickness = 2 mm) containing 200 mg of
the catalyst at a temperature range of 473 to 703 K under atmospheric pressure and a H2:CO2 ratio
of 4. The tested Ni/YSZ catalysts showed an improvement in activity as the reaction temperature
increased from 473 K to around 613 to 653 K, depending on the Ni loading. Beyond the optimum
temperature, the catalyst’s activity started to decline, irrespective of the Ni loading. In particular, the
40% Ni/YSZ catalyst displayed the best performance, followed by the 30% Ni/YSZ catalyst. The
improved activity at high Ni loading (40% Ni) was attributed to the increase in hydrogen coverage
and improved site for both H2 and CO2 adsorption and activation.

Keywords: power-to-gas; CO2 methanation; YSZ; Ni loading; reducibility

1. Introduction

The global energy demand continues to increase as a response to the growing world
population and advancement in technology. Currently, fossil fuels account for the largest
percentage of total energy generation. In 2020, fossil fuel sources provided over 80% of
the global energy demand [1]. However, there are growing concerns due to the associated
greenhouse emissions, which are largely responsible for the climate change crisis. The
worldwide average amount of CO2 in the atmosphere reportedly hit a new record high of
413.2 ppm in 2020 [2]. This new level of CO2 has further placed pressure on nations to act
fast in reducing greenhouse gas emissions. This was also the main topic of discussion in the
COP26 and COP27, the United Nations Climate Change Summits held between 31 October
to 12 November 2021 and 6 to 18 November 2022, respectively. Several solutions are being
proposed, including the planting of trees and the replacement of fossil fuels with renewable
and clean sources. However, the total energy produced from renewable sources is not
yet able to meet the current world energy demand. Other problems associated with most
renewable sources include energy storage challenges and volatility (weather and season
dependency). Although great efforts have been channelled toward scaling up renewable
energy production and energy storage capacity, the use of fossil fuels cannot be phased out

Methane 2023, 2, 86–102. https://doi.org/10.3390/methane2010007 https://www.mdpi.com/journal/methane

https://doi.org/10.3390/methane2010007
https://doi.org/10.3390/methane2010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/methane
https://www.mdpi.com
https://orcid.org/0000-0002-1956-9155
https://orcid.org/0000-0002-7335-8965
https://doi.org/10.3390/methane2010007
https://www.mdpi.com/journal/methane
https://www.mdpi.com/article/10.3390/methane2010007?type=check_update&version=1


Methane 2023, 2 87

in the short term. The international energy outlook data from the U.S. Energy Information
Administration [1] showed that fossil fuels and their infrastructure will still be relevant and
highly consumed in the next few decades.

Therefore, it is important to find ways of minimising CO2 emissions during the use
of fossil fuels whilst the transition to renewable sources continues. One way of achieving
this is to capture the CO2 emitted during the combustion process and convert it to useful
products. This is a feasible process because CO2 is an essential feedstock for the production
of C1-based fuels and their derivatives via various processes [3]. In recent times, the
hydrogenation of CO2 into synthetic natural gas (SNG) has become a very attractive means
of storing the excess energy generated from renewable sources [4,5]. Generally, energy from
a renewable source is used to power electrolysers for hydrogen production, which is then
utilised in CO2 hydrogenation through the Sabatier reaction to form synthetic methane
(Equation (1)). The advantage of SNG over hydrogen is that it is fully compatible with
the existing natural gas infrastructure. This power-to-gas strategy helps to minimise CO2
emissions while solving the storage challenge of renewable energy. CO2 captured from
fossil fuel processes will in this way be re-utilised, thus reducing fossil CO2 emissions, but
not preventing them. If the CO2 is obtained from biomass sources, no fossil CO2 will be
released at all. Besides the climate mitigation point of view, it is also believed that CO2
methanation will be economically competitive if carbon capture and the electrolytic process
for the required H2 are further improved and reduced in cost. As electricity from renewable
energy sources has become the cheapest type of electricity in many parts of the world, and
with the current developments in natural gas market, favourable economic conditions are
clearly visible [6].

CO2 + 4H2 
 CH4 + 2H2O ∆H298K = −164 kJ mol−1 (1)

Despite the promising potential of CO2 hydrogenation for renewable energy storage
and CO2 utilisation, technological challenges remain, including heat management and
catalyst deactivation. CO2 hydrogenation is thermodynamically favoured at low tem-
peratures [7,8] but the temperature in the reactor is likely to increase above the starting
temperature due to the strong exothermal character of the reaction. Consequently, reac-
tor overheating can lead to hot spot formation which again causes catalyst deactivation
through agglomeration and carbon deposition [9,10]. Interestingly, the heat released in the
exothermic CO2 hydrogenation reaction can provide the energy required for the adsorption
of CO2 on a dispersed adsorbent to spill over to the catalyst active sites where it is further
converted [11]. Therefore, heat management is essential in the CO2 hydrogenation system
for process optimisation.

It is also important to develop thermally stable catalysts with high activity and ex-
ceptional resistance to carbon deposition and sintering at the CO2 hydrogenation reaction
conditions. In this regard, extensive research has been conducted on the application of
various kinds of catalysts for the CO2 hydrogenation reaction [12–14]. Group VIII metals
such as Pt, Pd, Ru, Rh, and Ni are among the most widely studied metal catalysts for CO2
hydrogenation owing to their high activity toward CO2 conversion [15–19]. Although the
noble metal catalysts (Pt, Pd, Ru, Rh) have superior catalytic activity and stability compared
to Ni, their application on a large scale is not feasible due to their high cost [20]. Hence,
for CO2 hydrogenation, Ni-based catalysts are considered suitable alternatives to noble
metal catalysts since they are considerably active, inexpensive and readily available [14].
Nevertheless, Ni-based catalysts are easily deactivated due to their poor resistance to
carbon formation and to sintering during CO2 hydrogenation reactions [14]. Therefore, Ni
catalysts are modified by the synthesis method [21,22], by application on supports with
a good surface for the dispersion of the active metal [23], or by the incorporation of a
promoter into the catalyst framework to enhance the dispersion of the active metal and
improve CO2 adsorption, whilst minimising sintering [24].

Supports such as alumina (Al2O3), ceria (CeO2), silica (SiO2), titania (TiO2), and
zirconia (ZrO2) have been extensively employed in the modification of Ni-based catalysts
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for CO2 hydrogenation reactions due to their ability to enhance the activity of Ni [25–27].
Specifically, ZrO2 has shown to be exceptional catalyst support for CO2 hydrogenation
owing to its high thermal and chemical stability, high mechanical strength, and strong
resistance to carbon deposition. These superior properties of ZrO2 can be attributed to
its physicochemical properties which include the presence of defect sites (e.g., oxygen
vacancies), Lewis acid sites (Zr3+, Zr4+), adsorbed O2− and OH groups (basic sites), and
Zr4+-O2− acid-base pairs [28,29]. These properties also make the tuning and doping of
ZrO2 more feasible for various catalytic processes. Moreover, the Lewis basic oxygen
vacancies on ZrO2 are crucial for the adsorption and activation of CO2 [30] which is one of
the major steps in the mechanism of CH4 formation during CO2 hydrogenation.

Generally, pure zirconia exists in three different crystal configurations, at atmospheric
pressure and different temperatures: monoclinic (m-ZrO2), tetragonal (t-ZrO2) and cubic
(c-ZrO2) [31–35]. Notwithstanding the great properties displayed by ZrO2, its redox activity
is low due to the difficulty of its surfaces in discharging lattice oxygen atoms to form
vacancies [36]. This challenge is overcome by doping the ZrO2 with metals with a lower
valency than Zr (less than +4) such as Ni, La, Co, Ca, and Ti. The introduction of these
dopants helps lower the energy required for the formation of oxygen vacancies through the
substitution of some of the Zr4+ ions and the cleavage of the local symmetry of the lattice
structure [36]. The introduction of lower valence dopants results in the alteration of the
electronic arrangement of ZrO2, which affects the catalytic properties. It is worth noting that
two unpaired electrons are left behind when oxygen vacancies are formed. These unpaired
electrons can influence the catalytic cycle by enhancing the catalyst’s surface activity [36].

At low temperatures, the alteration in the crystal structure of ZrO2 can cause instability
which limits its use in the industry [37,38]. This is why the cubic and tetragonal forms
are generally stabilised at room temperature by doping with various metal oxides such as
CeO2, MgO, CaO and Y2O3 [38]. Consequently, Y2O3 is mostly employed in stabilising
ZrO2 owing to the improved stability effect it provides [32]. Another reason for the high
preference for stabilising ZrO2 by Y2O3 is its influence in creating an oxygen vacancy in the
anionic sub-lattice when two Zr4+ ions are replaced by two Y3+ ions, and this assists in the
migration of oxygen ions through the yttria-stabilised zirconia (YSZ) material [39,40].

The use of ZrO2 as a support for CO2 methanation catalysts has been reported by
many researchers. Gac et al. [41] studied the effect of Ni loading on Al2O3, ZrO2 and CeO2
supports. The authors reported that the increase in Ni loading from 10% to 40% on the
ZrO2 resulted in a gradual decrease in the Ni crystallite size. The CeO2-supported catalysts
showed the best performance followed by the ZrO2-supported catalysts in terms of CO2
conversion at 553 K. An increase in Ni loading was favoured for the CeO2 support, the
performance of the ZrO2-supported catalyst was found to decrease after 20% Ni loading.
In another study by Traitangwong et al. [42], Ni loading varied from 15% to 45% over
Ni-modified ceria-zirconia support (e.g., Ni0.05Ce0.20Zr0.75O2) and the catalysts were tested
for CO2 methanation. The catalyst with 45% Ni loading exhibited the best performance.
The authors stated that increasing the Ni loading favoured the number of H2 molecules
that were activated, which translated into higher catalytic performance.

Kosaka et al. [43] investigated the influence of Ni content on the performance of a
Ni/YSZ catalyst by varying the Ni loading from 25% to 75%. The authors found that
the catalyst performance was favoured with the increase in the Ni content where the
75% Ni/YSZ catalyst displayed the best activity. Kesavan et al. [44] investigated the influence
of Ni particle size on the performances of Ni-based YSZ-supported catalysts during CO2
methanation. Variation in Ni0 particle sizes for the Ni/YSZ catalysts was achieved by
employing different preparation steps, namely wetness impregnation, electroless plating and
mechanical mixing. The study revealed that the size of Ni0 and its morphology influenced
the Ni/YSZ catalysts, where the catalyst with a smaller Ni0 particle size exhibited the best
performance. It should be noted that Ni0 (reduced nickel) is obtained when nickel oxide
(NiO) is reduced in a hydrogen environment at the reduction temperature which depends
on the catalyst structure.
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Motivated by these experimental findings, the current study aims to investigate the
effect of varying the Ni content on the performance of YSZ catalysts in CO2 methanation
by examining a wide range of Ni loading. The Ni-based YSZ catalysts were prepared by
wet impregnation to obtain 5%, 10%, 20, 30%, 40, 50% and 75% Ni loading, and then tested
for the CO2 methanation reaction at different temperatures.

2. Results and Discussion
2.1. Catalyst Characterisation
2.1.1. Textural Properties

The N2-adsorption/desorption properties of YSZ and the freshly prepared Ni/YSZ
catalysts were investigated. Their adsorption curves are presented in Figure 1. As seen
in the figure, the adsorption curves of all the samples developed into type-IV isotherms
with an H3-type hysteresis loop based on the IUPAC classifications [45,46]. This kind
of hysteresis loop is caused by capillary condensation and evaporation at high relative
pressures within the range of 0.8 to 1. This N2-adsorption/desorption property is typical for
mesoporous materials consisting of slit-shaped pores [47]. In addition, the similarity in the
N2-adsorption/desorption isotherms of both the YSZ and Ni/YSZ catalysts revealed that
there was no significant alteration in the YSZ support’s framework after the impregnation
of Ni. Notwithstanding, there were changes in the BET surface area, pore size and pore
volume after the impregnation process as shown in Table 1. The BET surface area initially
decreased with increasing Ni content from 5% to 10% and then increased until 30% Ni
loading then declined again with high Ni loading of above 40%. The observed decrease in
the surface area can be attributed to the partial blockage of the pores due to the dispersion of
Ni in the support. Furthermore, the average pore size and pore volume relatively increased
with higher Ni loading until 30% Ni loading and decreased above 30% Ni loading.
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Table 1. Physicochemical properties of the YSZ support and the calcined Ni/YSZ catalysts before
the reaction.

Samples BET Surface Area (m2 g−1) Pore Size (nm) a Pore Volume (cm3 g−1) b
Crystallite Size (nm) c

dNiO dNi

YSZ 5.825 5.639 0.0082 - -
5% Ni/YSZ 5.246 6.029 0.0079 21.73 25.74

10% Ni/YSZ 5.335 6.356 0.0085 31.36 34.39
20% N/YSZ 6.221 5.922 0.0092 31.24 36.52
30% N/YSZ 6.081 5.846 0.0089 33.73 36.22
40% N/YSZ 4.237 5.675 0.0060 35.75 39.11
50% Ni/YSZ 4.842 6.064 0.0073 35.83 40.30
75% Ni/YSZ 4.731 5.929 0.0070 35.92 41.08

a Data were obtained from the BJH adsorption average pore diameter (4 v/A). b Data were obtained from the BJH
single point adsorption at P/Po = 0.95. c Estimated from Scherrer Equation with the (2 0 0) reflection for the NiO
phase in the unreduced Ni/YSZ catalysts and (1 1 1) for the Ni0 phase in the reduced Ni/YSZ catalysts in the
XRD data.

2.1.2. XRD Analysis

The crystalline phases present in all the catalysts were investigated by powder XRD.
The recorded diffractograms of both the freshly prepared and reduced catalysts are shown
in Figure 2a,b. The X-ray peaks were matched with the Joint Committee on Powder
Diffraction Standards (JCPDS) database [48,49]. The NiO and Ni0 particle sizes were
estimated using the Debye–Scherrer equation [50] (Equation (2)):

dp(nm) =
Kλ

β cos θ
(2)

where dp is the particle size in nm, K is the shape factor with the value of 0.9 (assuming a
spherical particle), λ is the X-ray wavelength of the X-ray source Cu Kα (1.5406 Å), β is the
line broadening at half the maximum intensity (FWHM) of the NiO or Ni0 diffraction peak
and θ is the Bragg angle in radian.

An analysis of the patterns for the freshly prepared catalysts (Figure 2a) indicated
the existence of YSZ peaks (JCPDS 81–1550) at 2θ = 29.9◦ (1 1 1), 34.6◦ (2 0 0), 50.0◦ (2 2 0),
59.4◦ (2 2 2), 62.3◦ and 73.5◦ (4 0 0) [44,51]. NiO peaks (JCPDS 73–1519) were observed at
2θ = 37.4◦, 43.4◦, 75.6◦ and 79.5◦ for the 30% Ni, 50% and 75% Ni catalysts, while the NiO
peak intensities observed at 2θ = 37.4◦, 43.4◦ and 75.6◦ for the 5% Ni and 10% Ni catalysts
was very weak. In addition, there was an overlap between the YSZ and NiO phases at
2θ = 62.8◦. After catalyst reduction in H2, the peak at 2θ = 37.4◦ disappeared while the
peak at 43.4◦ shifted to around 44.5◦–45◦ indicating the presence of Ni0 metal (Figure 2b).
A new peak appeared at about 52◦, indicating the presence of Ni0 metal. Furthermore, the
particle size calculation using the Scherrer Equation (Equation (5)) showed that there was a
relative increase in Ni particle size after the reduction in H2.

This increase in Ni particle size after the reduction of NiO was unexpected. However,
the reduction of catalysts at elevated temperatures has been reported to encourage crystal
growth through migration and coalescence, or by atom diffusion [52–55]. Yi et al. [56]
employed the atom diffusion mechanism to conduct a sintering kinetic study for the
growth of Ni during the reduction of a series of Ni-based catalysts. The authors stated
from their findings that the distance between the diffused Ni species and metal-support
interactions (MSI) or variation in pore size and shape influenced the order of sintering
kinetics of Ni.
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Notwithstanding the occurrence of Ni crystal growth, all the reduced catalysts exhib-
ited similar XRD patterns, which indicated that the Ni/YSZ structure was not significantly
altered after the reduction process.

2.1.3. SEM Measurement

The SEM images of the calcined Ni/YSZ catalysts and SEM-EDS elemental mapping
of the reduced catalysts are represented in Figures 3 and 4, respectively. The YSZ support
(Figure 3a) showed a rough surface with uniform morphology. The SEM image of the
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5% Ni/YSZ catalyst Figure 3b showed a uniform surface, which indicates an even distribu-
tion of the Ni particles. This even distribution and absence of sintering of the NiO particles
were likely due to the low content of NiO particles in relation to the YSZ support’s high
surface availability. With increasing Ni content (Figure 3c–f), the clustering of NiO particles
became evident, which was in line with the BET analyses.
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The EDX mapping of the reduced catalysts shown in Figure 4 gives an insight into
how Ni particles are distributed on the catalyst surfaces. The circled regions have a high
concentration of Ni (clustering), as indicated by the dense green colour, while the dark
spots seen in most of the EDX mapping of the catalysts are due to the cavities resulting
from their rough surfaces. At 5% Ni, the Ni particles were well dispersed on the surface.
The presence of Ni particles started becoming more visible as the loading increased from
10% to 75%. However, the mappings of the catalysts with higher Ni loadings from 30%
to 75% showed an uneven distribution of Ni particles. In addition, the regions showing
the presence of Ni clusters (dense green colour) also increased with the Ni loading. These
results further support other analyses indicating the occurrence of significant sintering at
higher Ni-loading.
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2.1.4. Catalyst Reducibility

The reduction behaviour of all the catalysts was investigated using the TPR-MS
technique in the H2(20%)/N2 environment. The TPR profiles of the catalysts are shown
in Figure 5. Generally, when the reduction of a catalyst in the H2 environment begins,
the amount of hydrogen in the system will start dropping (increase in H2 consumption).
The increase in H2 consumption will continue until a maximum point is reached, and
then the signal will start decreasing. The temperature at which the maximum point is
reached normally is used to identify the reduction temperature of a catalyst. Therefore, the
reduction temperatures of the catalysts in this study were determined by the readings at the
maximum peaks from the H2-TPR profile. As seen in the figure, both the 5% Ni and 10% Ni
loading exhibited similar behaviour at temperatures ranging from 567 to 810 K. Meanwhile
the reduction of 30% Ni, 50% and 75% Ni catalysts was in the range of 520 to 860 K. The
reduction peak temperatures for all the catalysts are given in Table 2. The first peak observed
at lower temperatures for all the catalysts can be attributed to the reduction of bulk NiO
with weak support interaction to Ni0, while the second peak at higher temperatures can be
ascribed to the reduction of the highly dispersed NiO particles with stronger MSI [57,58].
These results revealed that higher Ni loading of around 30–40% decreased the reducibility
of the catalysts as seen in the shift in the reduction peaks to the right and enlarged peak 2,
which means that a higher temperature is required for the complete reduction of the NiO
particles. This indicated higher interaction with the support and was in line with the BET
results. A further increase in Ni loading to 50 to 75% resulted in an increase in Ni with
low MSI and a reduction of Ni at a lower temperature, as indicated by enlarged peak 1
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(Figure 4). This confirmed the BET and XRD results and the formation of large Ni particles
with low MSI.
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Figure 5. H2-TPR profiles of 5% Ni/YSZ, 10% Ni/YSZ, 20% Ni/YSZ, 30% Ni/YSZ, 40% Ni/YSZ,
50% Ni/YSZ and 75% Ni/YSZ calcined catalysts before the reaction.

Table 2. Reduction peak temperatures during the H2-TPR of calcined Ni/YSZ catalysts.

Samples
Reduction Peak Temperatures (K) *

Peak 1 Peak 2

5% Ni/YSZ 629 -
10% Ni/YSZ 641 734
20% N/YSZ 645 724
30% N/YSZ 654 748
40% N/YSZ 601 706
50% Ni/YSZ 654 778
75% Ni/YSZ 659 764

* Reduction peak temperatures were obtained from H2-TPR profiles depicted in Figure 5.

The reduction of all the catalysts was completed before reaching 973 K. Therefore,
973 K was selected as the catalyst reduction temperature to ensure that no NiO was taking
part in the reaction during the activity testing.

2.2. Catalyst Activity Test

The results of the activity test over the Ni/YSZ catalysts during CO2 methanation
are shown in Figure 6a,b. As seen in Figure 6a, there was a steady but low XCO2 at
temperatures between 473 to 553 K. However, beyond 553 K a sharp increase in the CH4
formation was observed. The increase in XCO2 continued with increasing temperature
until around 633 K for all tested catalysts. Thereafter, the XCO2 declined slowly at higher
temperatures. Therefore, the optimal temperature for XCO2 was from 613 to 653 K. All
the catalysts exhibited relatively high activity at the optimal temperature. These superior
properties of the catalysts are likely related to the unique physicochemical properties of the
YSZ support which include the presence of defect sites such as the oxygen vacancies [28,29].
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These properties aid the adsorption and activation of CO2 [30] which is a crucial step in the
mechanism of CH4 formation during the CO2 methanation reaction.
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Figure 6. Activity test profile showing (a) CO2 conversion and (b) CH4 yield during CO2 metha-
nation over Ni/YSZ catalysts. Reaction conditions: Total flow = 135 mL min−1, H2:CO2 ratio = 4,
pressure = 1 bar, temperature = 473–703 K, GHSV 40,500 mL h−1 g−1

cat.

In Figure 6b, a similar trend was observed for YCH4 , where the amount of CH4 pro-
duced was initially favoured as the temperature increased, and then decreased when the
temperature was raised above the optimum value. It is worth noting that the CO2 metha-
nation reaction is thermodynamically feasible at low temperatures due to its exothermic
nature (see Figure 7), but the results from this study revealed that high YCH4 cannot be
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achieved at low temperatures. This is due to the substantial kinetic limitations associated
with the cleavage of CO2 bonds during its reduction processes to produce other carbon
species, which leads to the formation of CH4 [59,60]. Mebrahtu et al. [61] acknowledged
that the CO2 methanation reaction is thermodynamically feasible at low temperatures,
but the authors stated that high operating pressures will be required to conduct CO2
methanation at low temperatures for a favourable equilibrium composition.

Methane 2023, 2, FOR PEER REVIEW 12 
 

 

Figure 6. Activity test profile showing (a) CO2 conversion and (b) CH4 yield during CO2 methana-

tion over Ni/YSZ catalysts. Reaction conditions: Total flow = 135 mL min−1, H2:CO2 ratio = 4, pressure 

= 1 bar, temperature = 473–703 K, GHSV 40,500 mL h−1 g−1cat. 

 

Figure 7. Activity profile showing the influence of temperature and pressure on CO2 equilibrium 

conversion and selectivity for CO2 methanation conducted at a H2:CO2 ratio of 4. Adapted with 

permission from ref [61]. Copyright 2019 Elsevier B.V. 

On the other hand, conducting CO2 methanation at elevated reaction temperatures 

favours side reactions such as CH4 dry reforming (Equation (3)), CH4 steam reforming 

(Equation (4)), reverse-Boudouard (Equation (5)), and RWGS reactions (Equation (6)), 

which usually causes low YCH4 [60,62]. 

Figure 7. Activity profile showing the influence of temperature and pressure on CO2 equilibrium
conversion and selectivity for CO2 methanation conducted at a H2:CO2 ratio of 4. Adapted with
permission from ref [61]. Copyright 2019 Elsevier B.V.

On the other hand, conducting CO2 methanation at elevated reaction temperatures
favours side reactions such as CH4 dry reforming (Equation (3)), CH4 steam reforming
(Equation (4)), reverse-Boudouard (Equation (5)), and RWGS reactions (Equation (6)), which
usually causes low YCH4 [60,62].

CO2 + CH4 
 2CO + 2H2 ∆H298K = 247.3 kJ mol−1 (3)

CH4 + H2O 
 CO2 + 3H2 ∆H298K = 206 kJ mol−1 (4)

CO2 + C 
 2CO ∆H298K = 172.4 kJ mol−1 (5)

CO2 + H2 
 CO + H2O ∆H298K = 41.2 kJ mol−1 (6)

The occurrence of these side reactions most likely was responsible for the observed
steady and slow decrease in XCO2 at temperatures above the optimum value of 650 K, since
CO2 was consumed during most of these reactions while the decline in YCH4 was visible.
Moreover, the exothermic nature of the CO2 methanation reaction and the likelihood of
hot-spot formation makes it difficult to control the heat in the reactor. Razzaq et al. [63]
reported that instead of the YCH4 increasing at high temperatures, CO formation via RWGS
reaction was favoured at temperatures above 673 K. Similarly, Panagiotopoulou et al. [64]
observed that at reaction temperatures greater than 633 K, the formation rate of CO through
RWGS was greater than the rate at which CO was consumed in the hydrogenation reaction,
which in total led to the decrease in CO conversion.

The catalyst performance improved as the Ni loading increased until reaching optimal
performance for a loading of 40% Ni. Any further increase in Ni loading reduced the
catalyst activity for the methanation reaction. The initial increase in the catalyst’s activity
with Ni loading can be ascribed to more availability of active sites resulting from the



Methane 2023, 2 97

improved pore size as seen in the BET results (see Table 1) and the improvement in MSI
as seen in their reducibility at lower temperatures (see Figure 5). Figure 8 reveals that the
increase in Ni loading resulted in a decrease in CO selectivity up to 40% Ni loading. Studies
have shown that Ni loading, together with Ni0 particle size and morphology, influences
the reaction pathways during CO2 methanation owing to its role in the adsorption and
activation of H2 on the catalyst surface [65]. Small Ni0 particle size will likely encourage a
longer adsorption-dissociation route through which CH4 or C is formed. The small Ni0

particles may also have low coverage for H2 dissociation which favours the desorption of
CO from the surface without hydrogenation to CH4 [44,66].
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Meanwhile, large Ni0 particle size can influence the intermediate carbon species
to be hydrogenated to CH4 since there is a large coverage for H2. This means more
CH4 production and less CO formation. Accordingly, the decrease in CO selectivity was
observed as shown in Figure 8. can be attributed to the favoured reaction route towards
the formation of CH4 as the Ni content increases. Other studies have also shown that an
increase in Ni loading encourages H2 chemisorption and increased H2 uptake, indicating
high H2 coverage on the catalyst surface [66,67]. However, too high Ni loading of over 40%
affects the catalyst morphology reducing the overall catalyst activity.

From our results, the catalyst performance significantly declined after increasing the
Ni% loading beyond 40%. This indicates that there was likely a change in the reaction path
at higher Ni loading or inaccessibility of the reacting species to the active sites due to pore
blockage. In any case, further study is required to determine the relationship between Ni
loading and the number of active sites, as well as the optimum Ni0 particle size that favours
high CH4 production and minimises or inhibits CO formation. Overall, the performance of
the catalysts was in the order 40% Ni/YSZ > 30% Ni/YSZ > 20% Ni/YSZ > 50% Ni/YSZ >
10% Ni/YSZ > 5% Ni/YSZ > 75% Ni/YSZ at temperatures beyond 613 K. Therefore, the
optimum catalyst choice was 40% Ni/YSZ. It is worth mentioning that this comparative
study was carried out using an equal mass of catalysts. We also found that the catalyst
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bed length in the reactor increased with higher Ni loading, indicating an increase in the
volume and a decrease in the bulk density. This means that the Ni/YSZ catalysts at higher
Ni loading would likely have a longer contact time for the reacting species to react than the
catalysts at low Ni loading. The longer contact time may also explain why there was an
improvement in the performance with higher Ni loading.

However, the catalyst activity dropped when the loading was increased beyond 40% Ni
despite a favoured higher contact time. This is likely due to the enhanced clustering of the
Ni particles as seen in the SEM images and the increase in the crystallite size at higher Ni
loading (see Table 1).

3. Materials and Methods
3.1. Catalyst Synthesis

Ni-based yttria stabilised zirconia, Ni/YSZ was prepared by wetness impregnation
of YSZ (YSZ: Tosoh-zirconia TZ-8YS, from Tosoh corporation, Tokyo, Japan) with an
aqueous solution of nickel(II) nitrate hexahydrate (Ni(NO3)2·6H2O Extra Pure, SLR, from
Fisher Chemical™, Waltham, MA, USA). In a typical synthesis, the calculated weight of
YSZ powder was added to an aqueous solution containing a calculated concentration of
Ni(NO3)2·6H2O (to achieve various Ni loading) and stirred at 500 rev min−1 and 303 K
temperature for 2 h. Thereafter, the temperature was raised to 323 K while the mixture
remained under stirring until a slurry was formed. The mixture was then transferred to an
oven where it was dried overnight at 353 K and calcined at 923 K for 3 h.

3.2. Catalyst Characterisation

The BET surface area of the samples was measured via N2 adsorption using a
Micromeritics® TriStar II Plus analyser at a temperature of 77.15 K. Before the analy-
sis, the samples were degassed for 6 h at 373 K under vacuum. Powder X-ray diffraction
of all the samples was carried out in a Proto Benchtop AXRD at 30.5 kV and 20.5 mA
scanning from a 2-theta of 5◦ to 80◦ at an increment of 0.0149◦ using Cu-Kα with wave-
length 1.5406 Å. An environmental Scanning Electron Microscope (SEM) Zeiss Evo10 and
Tabletop electron microscope Hitachi TM3030 with an energy dispersive spectrometer
(EDS) were used to take images and view the distribution of the various species on the
catalyst surfaces through mapping. The reducibility of samples was determined through
H2-temperature programmed reduction (TPR) in a quartz tube reactor connected to an
MKS Cirrus mass spectrometer.

3.3. Catalyst Testing

The performance of the synthesised catalysts for the CO2 methanation was examined
in a continuous flow quartz tube fixed-bed reactor (I.D. = 5.5 mm, wall thickness = 2 mm)
at a temperature range of 473–703 K under atmospheric pressure. In a typical test, 200 mg
of the catalyst was loaded into the reactor containing inert quartz wool at both ends of
the catalyst. The reactor was horizontally positioned in a temperature-controlled furnace
(Elite Thermal Systems. Ltd.: Model THH12/90/305, Market Harborough, UK). Before
the reaction, a catalyst was first reduced by passing a stream of 20 mL min−1 H2 and
60 mL min−1 N2 through it at 923 K for 1.5 h. Subsequently, the reactor was cooled to
the reaction temperature of 473 K and the catalyst was purged by passing a stream of N2
(100 mL min−1) for 5 min. Thereafter, a gaseous feed stream containing N2 (60 mL min−1),
H2 (60 mL min−1) and CO2 (15 mL min−1) was introduced at 473 K under atmospheric
pressure and the temperature was increased gradually up to 693 K. The reactant flow
rate was controlled using calibrated mass flow controllers. The product of the reaction
was channelled through a drying system before being sent to a gas chromatograph (GC)
Shimadzu GC-2014 for analysis. The GC, which was equipped with a thermal conductivity
detector and a column (ShimCarbon ST, length 200 m, inner diameter 0.35 mm), was
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operated under argon as the carrier gas. The catalyst activities were estimated by applying
Equations (7)–(9) [68], respectively:

XCO2 =

(
FCO2,in − FCO2,out

FCO2,in

)
× 100% (7)

Si =

(
Fi,out

FCH4,out + FCO,out

)
× 100% (8)

YCH4 =

(
XCO2 × SCH4

100

)
% (9)

where XCO2 = CO2 conversion, Si = Selectivity of product i (CO or CH4), YCH4 = CH4 yield,
FCO2,in = molar flowrate of inlet CO2 in mol/s, FCO2,out = flowrate of unreacted CO2 in
product and FCH4,out is the molar flowrate of CH4 in the product, Fi,out is the molar flowrate
of CH4 or CO in the product.

4. Conclusions

The effect of Ni loading on the catalytic activity of Ni/YSZ catalysts during CO2
methanation was studied. The Ni/YSZ catalysts were prepared by the wetness impregna-
tion method with variations in the amount of Ni content. The N2 adsorption/desorption
isotherms of these catalysts revealed that they were formed in a type IV isotherm with an
H3-type hysteresis loop which confirms the presence of mesopores and micropores in their
structures. The similarity in the isotherms of all the catalysts, regardless of the amount of Ni
content, suggests that the YSZ structure was preserved after the catalyst preparation. XRD
results indicated that higher Ni loading favoured the formation of larger Ni particle sizes as
obtained from the Scherrer equation. The EDX mapping of these catalysts further revealed
the presence of more clusters at higher Ni loading. The reducibility test showed that the
increase in Ni loading caused the reduction temperature to shift to the right. This suggests
that a higher temperature is required to reduce the catalysts with higher Ni loading as a
result of strong MSI. An activity test of these catalysts at different temperatures from 473 to
663 K was carried out. The results showed that both CO2 conversion and CH4 yield were
favoured with an increase in temperature until an optimum temperature of around 613
to 653 K, beyond which there was a decline in the activity. The decrease in activity at the
elevated temperatures beyond the optimum value was ascribed to the occurrence of side
reactions, which are favoured at higher temperatures. It was also found that the catalyst
performance did not increase proportionately with Ni loading. The amount of Ni in the
catalyst was increased from 5% to 75% and the optimum loading was found to be between
30% and 40% Ni loading. The improved catalyst performance with higher Ni loading was
ascribed to the increase in coverage for H2 adsorption and activation. We also noted that
the bed length was longer for the catalysts with higher Ni loading and this encouraged
higher contact time. However, the catalyst activity dropped as the Ni loading increased
beyond 40% Ni. Therefore, further study is recommended to determine how the variation
in Ni loading influences the number of active sites. This will help to fully understand the
mechanism of the reactions during CO2 methanation over Ni/YSZ at different Ni loadings.
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