Next Issue
Volume 2, March
Previous Issue
Volume 1, September
 
 

Methane, Volume 1, Issue 4 (December 2022) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
10 pages, 1196 KiB  
Article
Optimization of Methane Feed and N:C Ratio for Biomass and Polyhydroxybutyrate Production by the Alphaproteobacterial Methanotroph Methylocystis sp. Rockwell
by Hem K. Sharma, Dominic Sauvageau and Lisa Y. Stein
Methane 2022, 1(4), 355-364; https://doi.org/10.3390/methane1040026 - 06 Dec 2022
Viewed by 2007
Abstract
The consumption of methane and the production of biodegradable polymers using alphaproteobacterial methanotrophs offers a promising strategy to mitigate greenhouse gas emissions and reduce non-biodegradable plastic pollution. This study identified an ideal amount of added methane and N:C ratio in 100 mL batch [...] Read more.
The consumption of methane and the production of biodegradable polymers using alphaproteobacterial methanotrophs offers a promising strategy to mitigate greenhouse gas emissions and reduce non-biodegradable plastic pollution. This study identified an ideal amount of added methane and N:C ratio in 100 mL batch cultures of the alphaproteobacterial methanotroph Methylocystis sp. Rockwell growing in 1-L sealed bottles using Response Surface Methodology (RSM) to achieve both high biomass and high polyhydroxybutyrate (PHB) production. RSM analysis showed achievement of optimal biomass at 474.7 ± 10.1 mg/L in nitrate mineral salts (NMS) medium and 480.0 ± 65.5 mg/L biomass in ammonium mineral salts (AMS) medium with 8 mmol of methane and an N:C ratio of 0.022. However, optimal PHB concentration was achieved with 6 mmol methane at N:C ratios of 0.012 in NMS medium (149.7 ± 16.1 mg/L) and 0.022 in AMS medium (200.3 ± 5.1 mg/L). A multi-objective RSM analysis projected maxima in PHB production and %PHB cell content (based on dry weight) when using 4.88 mmol methane and N:C ratio of 0.016 in NMS cultures, and 6.28 mmol methane and the 0.016 N:C ratio in AMS cultures. Cultures grown under these projected conditions produced 173.7 mg PHB/L with 46.8% PHB cell content in NMS and 196.9 mg/L with 53.1% PHB cell content in AMS. Taken together, these analyses predicted the optimal conditions for growth and PHB production in batch cultures of Methylocystis sp. Rockwell and confirmed a preference for ammonium as the N-source for PHB production. This information is valuable for media formulation in industrial scale-up of Methylocystis sp. Rockwell in PHB production. Full article
(This article belongs to the Special Issue Methane Conversion Technology)
Show Figures

Graphical abstract

13 pages, 317 KiB  
Review
Genetic Improvement and Nutrigenomic Management of Ruminants to Achieve Enteric Methane Mitigation: A Review
by Vasfiye Kader Esen, Valiollah Palangi and Selim Esen
Methane 2022, 1(4), 342-354; https://doi.org/10.3390/methane1040025 - 01 Dec 2022
Cited by 3 | Viewed by 1915
Abstract
A significant portion of global greenhouse gas emissions is attributed to methane (CH4), the primary greenhouse gas released by dairy animals. Thus, livestock farming has a new challenge in reducing enteric CH4 for sustainability. In anaerobic microbial ecosystems such as [...] Read more.
A significant portion of global greenhouse gas emissions is attributed to methane (CH4), the primary greenhouse gas released by dairy animals. Thus, livestock farming has a new challenge in reducing enteric CH4 for sustainability. In anaerobic microbial ecosystems such as the rumen, carbohydrates are converted into short-chain, volatile fatty acids that animals use for energy and protein synthesis. It is, therefore, essential to understand rumen physiology, population dynamics, and diversity to target methanogens. Thus far, numerous CH4 mitigation strategies have been studied, including feeding management, nutrition, rumen modification, genetics, and other approaches for increasing animal production. As new molecular techniques are developed, scientists have more opportunities to select animals with higher genetic merit through next-generation sequencing. The amount of CH4 produced per unit of milk or meat can be permanently and cumulatively reduced through genetic selection. Developing eco-friendly and practical nutrigenomic approaches to mitigating CH4 and increasing ruminant productivity is possible using next-generation sequencing techniques. Therefore, this review summarizes current genetic and nutrigenomic approaches to reducing enteric CH4 production without posing any danger to animals or the environment. Full article
22 pages, 1893 KiB  
Review
Reducing Enteric Methanogenesis through Alternate Hydrogen Sinks in the Rumen
by Prasanta Kumar Choudhury, Rajashree Jena, Sudhir Kumar Tomar and Anil Kumar Puniya
Methane 2022, 1(4), 320-341; https://doi.org/10.3390/methane1040024 - 29 Nov 2022
Cited by 11 | Viewed by 4872
Abstract
Climate change and the urgent need to reduce greenhouse gas (GHG) emission from agriculture has resulted in significant pressure on the livestock industry for advanced practices that are environmentally more sustainable. Livestock is responsible for more than 15% of anthropogenic methane (CH4 [...] Read more.
Climate change and the urgent need to reduce greenhouse gas (GHG) emission from agriculture has resulted in significant pressure on the livestock industry for advanced practices that are environmentally more sustainable. Livestock is responsible for more than 15% of anthropogenic methane (CH4) emission via enteric fermentation and improved strategies for mitigating enteric CH4 production therefore represents a promising target to reduce the overall GHG contribution from agriculture. Ruminal CH4 is produced by methanogenic archaea, combining CO2 and hydrogen (H2). Removal of H2 is essential, as its accumulation inhibits many biological functions that are essential for maintaining a healthy rumen ecosystem. Although several other pathways occur in the rumen, including reductive acetogenesis, propionogenesis, nitrate, and sulfate reduction, methanogenesis seems to be the dominant pathway for H2 removal. Global warming is not the only problem associated with the release of CH4 from ruminants, but the released GHG also represent valuable metabolic energy that is lost to the animal and that needs to be replenished via its food. Therefore, reduction of enteric CH4 emissions will benefit not only the environment but also be an important step toward the efficient production of high-quality animal-based protein. In recent decades, several approaches, relying on a diverse set of biological and chemical compounds, have been tested for their ability to inhibit rumen methanogenesis reliably and without negative effects for the ruminant animal. Although many of these strategies initially appeared to be promising, they turned out to be less sustainable on the industrial scale and when implemented over an extended period. The development of a long-term solution most likely has been hindered by our still incomplete understanding of microbial processes that are responsible for maintaining and dictating rumen function. Since manipulation of the overall structure of the rumen microbiome is still a significant challenge targeting key intermediates of rumen methanogenesis, such as H2, and population that are responsible for maintaining the H2 equilibrium in the rumen could be a more immediate approach. Addition of microorganisms capable of non-methanogenic H2 sequestration or of reducing equivalents are potential avenues to divert molecular H2 from methanogenesis and therefore for abate enteric CH4. However, in order to achieve the best outcome, a detailed understanding of rumen microbiology is needed. Here we discuss some of the problems and benefits associated with alternate pathways, such as reductive acetogenesis, propionogenesis, and sulfate and nitrate reduction, which would allow us to bypass H2 production and accumulation in the rumen. Full article
Show Figures

Figure 1

20 pages, 5155 KiB  
Article
Effect of Metal Dopant on the Performance of Ni@CeMeO2 Embedded Catalysts (Me = Gd, Sm and Zr) for Dry Reforming of Methane
by André L. A. Marinho, Raimundo C. Rabelo-Neto, Florence Epron, Fabio S. Toniolo, Fabio B. Noronha and Nicolas Bion
Methane 2022, 1(4), 300-319; https://doi.org/10.3390/methane1040023 - 28 Nov 2022
Cited by 1 | Viewed by 1330
Abstract
Biogas upgrading by a catalytic process has been studied in order to obtain syngas using renewable source of methane. This work evaluates the influence of metal dopant (Gd, Sm, and Zr) on the CeO2 structure for the dry reforming of methane over [...] Read more.
Biogas upgrading by a catalytic process has been studied in order to obtain syngas using renewable source of methane. This work evaluates the influence of metal dopant (Gd, Sm, and Zr) on the CeO2 structure for the dry reforming of methane over Ni nanoparticle embedded catalysts. The doping with Zr improved the thermal stability of the catalyst, leading to the formation of small Ni nanoparticles, while Ni metal sintering was observed for Ni@CeO2, Ni@CeGdO2, and Ni@SmO2, according to in situ XRD under reduction conditions. The ceria reducibility was affected by the dopant nature, for which the addition of Zr caused distortions in the ceria lattice, promoting the diffusion of oxygen bulk to surface. The doping with Gd and Sm created oxygen vacancies by charge compensation, and the saturation of oxygen vacancies in the fresh samples decreased the degree of Ce reduction, according to TPR results. The larger Ni particles and poor redox behavior for Ni@CeGdO2 and Ni@CeSmO2 were responsible for the high carbon formation on these catalysts during the DRM reaction. The Ni@CeZrO2 catalyst did not present coke formation because of smaller Ni crystallite size and higher ceria reducibility. Therefore, the control of Ni particle size and the high oxygen mobility in the Ni@CeZrO2 catalyst inhibits carbon deposition and enhances the mechanism of carbon removal, promoting the catalyst stability. Full article
(This article belongs to the Special Issue Methane Dry Reforming)
Show Figures

Graphical abstract

14 pages, 3681 KiB  
Article
Shifts in Product Distribution in Microwave Plasma Methane Pyrolysis Due to Hydrogen and Nitrogen Addition
by Mateusz Wnukowski, Julia Gerber and Karolina Mróz
Methane 2022, 1(4), 286-299; https://doi.org/10.3390/methane1040022 - 15 Nov 2022
Cited by 3 | Viewed by 1753
Abstract
Methane pyrolysis can produce many valuable products besides hydrogen, e.g., C2 compounds or carbon black. In the conditions provided by microwave plasma, the distribution of these products might be shifted by the addition of hydrogen and nitrogen. In this work, different ratios [...] Read more.
Methane pyrolysis can produce many valuable products besides hydrogen, e.g., C2 compounds or carbon black. In the conditions provided by microwave plasma, the distribution of these products might be shifted by the addition of hydrogen and nitrogen. In this work, different ratios of H2:CH4, ranging from 0:1 to 4:1, were tested. The most unambiguous and promising result was obtained for the highest H2:CH4 ratio. For this ratio, a significant improvement in methane conversion rate was observed (from 72% to 95%) along with the increase in C2H2 and C2H4 yield and selectivity. The results support the hypothesis that the H radicals present in the plasma are responsible for improving methane conversion, while the presence of molecular hydrogen shifts the product distribution towards C2 compounds. Based on the carbon balance, the increase in the output of C2 compounds was obtained at the cost of solid carbon. At the same time, the addition of hydrogen resulted in the formation of bigger carbon particles. Finally, with the addition of both nitrogen and hydrogen, the formation of carbon was completely inhibited. Hydrogen cyanide was the main product formed instead of soot and some of the acetylene. Full article
(This article belongs to the Special Issue Methane Conversion Technology)
Show Figures

Figure 1

24 pages, 2135 KiB  
Review
Opportunities and Hurdles to the Adoption and Enhanced Efficacy of Feed Additives towards Pronounced Mitigation of Enteric Methane Emissions from Ruminant Livestock
by Emilio M. Ungerfeld
Methane 2022, 1(4), 262-285; https://doi.org/10.3390/methane1040021 - 27 Oct 2022
Cited by 1 | Viewed by 2600
Abstract
This paper analyzes the mitigation of enteric methane (CH4) emissions from ruminants with the use of feed additives inhibiting rumen methanogenesis to limit the global temperature increase to 1.5 °C. A mathematical simulation conducted herein predicted that pronounced inhibition of rumen [...] Read more.
This paper analyzes the mitigation of enteric methane (CH4) emissions from ruminants with the use of feed additives inhibiting rumen methanogenesis to limit the global temperature increase to 1.5 °C. A mathematical simulation conducted herein predicted that pronounced inhibition of rumen methanogenesis with pure chemicals or bromoform-containing algae with an efficacy higher than that obtained in most studies can be important to limiting global temperature increase by 2050 to 1.5 °C but will likely need to be accompanied by improved production efficiency and other mitigation measures. Currently, the most important limitations to the adoption of antimethanogenic feed additives are increased feeding cost without a consistent return in production efficiency and achieving sustained delivery of inhibitors to grazing animals, especially in extensive systems. Economic incentives could be applied in some countries to favor adoption of inhibitors. Changes in rumen microbial and whole animal metabolism caused by inhibiting methanogenesis could potentially be used to make the methanogenesis inhibition intervention cost-effective, although research in this direction is unlikely to yield results in the short term. Future research directions to maximize the adoption and efficacy of inhibitors of methanogenesis are examined. Full article
Show Figures

Figure 1

19 pages, 3856 KiB  
Article
An Analysis of the Methane Cracking Process for CO2-Free Hydrogen Production Using Thermodynamic Methodologies
by Julles Mitoura dos Santos Junior, Jan Galvão Gomes, Antônio Carlos Daltro de Freitas and Reginaldo Guirardello
Methane 2022, 1(4), 243-261; https://doi.org/10.3390/methane1040020 - 07 Oct 2022
Cited by 5 | Viewed by 2845
Abstract
The thermal cracking process of methane does not present the emissions of polluting gases, forming only hydrogen with a high degree of purity and solid carbon that can be commercialized for other industrial purposes globally. Thermodynamic methodologies based on Gibbs energy minimization and [...] Read more.
The thermal cracking process of methane does not present the emissions of polluting gases, forming only hydrogen with a high degree of purity and solid carbon that can be commercialized for other industrial purposes globally. Thermodynamic methodologies based on Gibbs energy minimization and entropy maximization are used in the present study to simulate operating conditions of isothermal and adiabatic reactors, respectively. The chemical equilibrium and combined phases problem were written in a non-linear programming form and optimized with the GAMS software using the CONOPT 3 solver. The results obtained by the methodology described in this study present a good agreement with the data reported in the literature, with mean relative deviations lower than 1.08%. High temperatures and low pressures favor the decomposition of methane and the formation of products. When conditioned in an isothermal reactor, total methane conversions are obtained at temperatures above 1200 K at 1 bar. When conditioned to an adiabatic reactor, due to the lack of energy support provided by the isothermal reactor and taking into account that it is an endothermic process, high methane-conversion rates are obtained for temperatures above 1600 K at 1 bar. As an alternative, the combined effects of the addition of hydrogen to the feed combined with a system of extreme pressure variation indicate a possibility of conducting the thermal cracking process of methane in adiabatic systems. Setting the CH4/H2 ratio in the system feed at 1:10 at 1600 K and 50 bar, following severe depressurization through an isentropic valve, varying the pressure from 50 to 1 bar, the methane conversion varies from 0 to 94.712%, thus indicating a possible operational conformation for the process so that the amount of carbon generated is not so harmful to the process, taking into account that the formation of the same occurs only after the reaction and heating processes. Under the same operating conditions, it is possible to use about 40.57% of the generated hydrogen to provide energy for the process to occur. Full article
(This article belongs to the Special Issue Methane Conversion Technology)
Show Figures

Figure 1

14 pages, 5988 KiB  
Article
Modeling and Forecasting of Coal Bed Methane Reservoir from Raniganj Coalfield, India
by Deepak Singh Panwar, Ram Chandra Chaurasia, Vinod Kumar Saxena and Ajay Kumar Singh
Methane 2022, 1(4), 229-242; https://doi.org/10.3390/methane1040019 - 21 Sep 2022
Cited by 5 | Viewed by 2316
Abstract
Demand for a cleaner source of energy is increasing in India. In the search for alternate energy sources, coal bed methane gas receives considerable attention for its potential as a good energy source. During the coalification process, methane gas is captured in the [...] Read more.
Demand for a cleaner source of energy is increasing in India. In the search for alternate energy sources, coal bed methane gas receives considerable attention for its potential as a good energy source. During the coalification process, methane gas is captured in the coal seams and later released during coal mining operations. Coal bed methane separation is crucial for both economic benefit and methane emission reduction. The methane production from seams is an efficient way to reduce greenhouse emissions and provide a safe mining operation environment. In India, the production of coal bed methane on a commercial scale has been recently observed. In the present paper, an attempt is made to understand and establish a 3-D excavation of coal bed methane from reservoir simulation (COMET3) for Gondwana coal seams in the Sitarampur block of the Raniganj coalfield in India. The simulation study was carried out for a period of 25 years for the recovery of methane from the reservoir. It is observed from the simulation study that 372 million cubic meters CO2 equivalent greenhouse gas emissions can be prevented by the extraction of methane with space and time. The fracture gas concentration increases with time, and it is observed that fractures are fully saturated with gas in 3000 days. Full article
(This article belongs to the Special Issue Coal Seam Gas—Extraction, Use and Emissions)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop