
Citation: Nyagisera, R.N.; Wamalwa,

D.; Rapando, B.; Awino, C.; Mageto,

M. A Critical Examination of the

Standard Cosmological Model:

Toward a Modified Framework for

Explaining Cosmic Structure

Formation and Evolution. Astronomy

2024, 3, 43–67. https://doi.org/

10.3390/astronomy3010005

Academic Editor: Paolo Salucci

Received: 10 January 2024

Revised: 27 February 2024

Accepted: 28 February 2024

Published: 12 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Critical Examination of the Standard Cosmological Model:
Toward a Modified Framework for Explaining Cosmic Structure
Formation and Evolution
Robert Nyakundi Nyagisera 1, Dismas Wamalwa 2,* , Bernard Rapando 1, Celline Awino 1 and
Maxwell Mageto 1

1 Department of Physics, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100,
Kenya; robertnyagisera@gmail.com (R.N.N.); brapando@mmust.ac.ke (B.R.); cawino@mmust.ac.ke (C.A.);
mmageto@mmust.ac.ke (M.M.)

2 Department of Physical Sciences, Meru University of Science and Technology, P.O. Box 972,
Meru 60200, Kenya

* Correspondence: dismasw@yahoo.com

Abstract: This paper explores the fundamental cosmological principle, with a specific focus on
the homogeneity and isotropy assumptions inherent in the Friedmann model that underpins the
standard model. We propose a modified redshift model that is based on the spatial distribution of
luminous matter, examining three key astronomical quantities: light intensity, number density, and
the redshift of galaxies. Our analysis suggests that the model can account for cosmic accelerated
expansion without the need for dark energy in the equations. Both simulations and analytical
solutions reveal a unique pattern in the formation and evolution of cosmic structures, particularly
in galaxy formation. This pattern shows a significant burst of activity between redshifts 0 < z < 0.4,
which then progresses rapidly until approximately z ≈ 0.9, indicating that the majority of cosmic
structures were formed during this period. Subsequently, the process slows down considerably,
reaching a nearly constant rate until around z ≈ 1.6, after which a gradual decline begins. We also
observe a distinctive redshift transition around z ≈ 0.9 before the onset of dark-matter-induced
accelerated expansion. This transition is directly related to the matter density and is dependent on
the geometry of the universe. The model’s ability to explain cosmic acceleration without requiring
fine tuning of the cosmological constant highlights its novelty, providing a fresh perspective on the
dynamic evolution of the universe.

Keywords: modified redshift; light intensity; number density; accelerated expansion; galaxies;
structure formation; Friedmann

1. Introduction

Modern cosmology is a dynamic interplay of theoretical and experimental endeavors,
continually evolving to surmount novel challenges. The discipline necessitates systematic
reconstruction to harmonize theory with emerging observational data at each juncture.
A watershed moment in this ongoing debate unfolded with the revelation of supernova
dimming [1], a phenomenon that revealed the limitations of the Friedmann–Lemaitre–
Robertson–Walker metric (herein Friedmann metric). To address this dissonance, the
cosmological constant was introduced to align the theoretical predictions with empirical
insights [2].

Contemporary surveys and astronomical observations indicate that galaxies are in-
creasingly moving away from us. At the core of current cosmological discussions is the
significant challenge of understanding the formation of structures and the evolution of
galaxies amidst the backdrop of the accelerated expansion in the late-time universe. The
Friedmann model, rooted in the cosmological principle, has effectively described the
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universe’s evolution in line with empirical observations [3–6]. However, the mystery of
dark energy and the force driving cosmic acceleration remains a persistent challenge in
contemporary physical cosmology [7,8].

Various attempts to explain cosmic acceleration rely on concepts such as the cosmologi-
cal constant or scenarios dominated by dark energy. However, the perplexities surrounding
the cosmological constant pose significant puzzles [9–11]. Adding to these difficulties is
the potential violation of the cosmological principle when homogeneity or isotropy falters
in galaxy structure formation [12,13].

As for three-dimensional redshift, surveys delve deeper into the cosmos, revealing
structures lacking a transition to homogeneity [14–17]; questions arise regarding the stead-
fastness of the cosmological principle. The galaxy distribution in recent observations (light)
and the simulation of dark matter distribution (matter) display significant inhomogeneity
on the largest statistical scale available. The matter distribution exhibits even greater inho-
mogeneity, challenging the search for the cosmological principle in the current observed
light or matter distribution in the universe [18]. Recent studies on the angular scale of
cosmic homogeneity using the Sloan Digital Sky Survey’s Sixteenth Data Release (SDSS-IV
DR16) of a luminous red galaxy sample based on a model-independent approach found
a homogeneity of 60–80 h−1 Mpc [19]. This finding was recently challenged through a
homogeneity test for the matter distribution based on the Baryon Oscillation Spectroscopic
Survey Data Release 12 CMASS galaxy sample [20]. It was found that the observed dis-
tribution of matter is statistically unlikely to be a random arrangement up to a radius of
300 h−1 Mpc, which is approximately the largest statistically available scale [18].

The identification of large quasar groups (LQGs) further catalyzes the debate, suggesting
an inherent inhomogeneity incompatible with prevailing cosmological paradigms [21–23].
Such revelations underscore the need for a profound cosmological reassessment. Correct
testing on the prediction of the standard model on the spatial distributions of luminous
astronomical sources needs to be based on cosmological simulations of a high resolution
involving a large sample of isolated galaxies using robust data-driven detectors to avoid
misinterpretations of the analyzed sources [24].

While two-dimensional projections appear consonant with isotropy and homogeneity,
three-dimensional catalogues unveil a complex picture of inhomogeneous galactic distribu-
tions. These divergent findings regarding the transition to homogeneity confound attempts
at a unified perspective [25–27].

The contrasting nature of these observations challenges the conventional assump-
tion of cosmic homogeneity and isotropy. The implications have a potential impact on
understanding cosmic acceleration and the need for an additional dark energy compo-
nent [13,28,29]. Researchers find it necessary to explore alternative models of dark energy
or its modified forms to account for the cosmic acceleration of the universe, considering the
observational anomalies of the standard model and its lack of physical motivation [30–33].
The proposed model includes scenarios where the scalar field replaces the cosmological
constant to represent dark energy and modified gravity theories [34,35].

Recent observations, such as the unexplained Hubble parameter tensions, large-scale
anisotropies, and massive disk galaxies at higher redshifts, pose challenges to the Fried-
mann model and the concordance model of cosmology in general. For example, the
Hubble parameter determined from the cosmic microwave background (CMB) radiation
differs from that determined using Type Ia supernovae and the redshift of their host galax-
ies [33,36,37]. While one possible explanation is the incompleteness of the concordance
model, alternative theories propose that the standard redshift model, as a distance–scale
factor relation, might be incomplete [38]. Addressing these observations supports mod-
ifications to some foundations of cosmology based on the cosmological principle [39].
Modifying the standard redshift relation may offer a plausible explanation for investigating
recent Hubble tensions [38].

Some other models propose cosmic acceleration as an emergent phenomenon [40–42].
The fundamental effect of cosmic evolution on photon propagation is cosmological redshift.



Astronomy 2024, 3 45

In the standard model, cosmological redshift is a theoretical function of the scale factor
derived from the Friedmann metric. However, researchers are now reconstructing this scale
factor–redshift relation from observations rather than relying on its theoretical form [40–42].

One drawback of remapping cosmological models is the unknown function of the
observed redshift, increasing the degree of freedom of the equation. This issue has been
addressed by introducing function parameterization through Taylor expansion before
adopting a parametric approach. Related work includes a cosmological model proposed
to explain the accelerated expansion of the universe by modifying the standard redshift
relation [31]. It has been demonstrated that combining Friedmann equations with a modifi-
cation of redshift remapping may lead to a self-consistent framework under the assumption
of the inadequacy of the Friedmann model [42,43]. The parametric [40], non-parametric [42],
and modified standard redshift models [31] are expected to address the cosmological con-
stant problem.

However, all these ambitious objectives hinge upon an indispensable prerequisite—an
abundance of accurate and expansive cosmological data. Despite the growing body of
observational data, persistent limitations require a careful interpretation of the current
cosmological models’ completeness and accuracy [36,44–46]. The upcoming Vera Rubin
Observatory holds the potential for a transformative ten-year exploration, armed with a
3.6 Gigapixel camera, ready to survey the entire visible night sky and delve into cosmic
intricacies [47].

Given the unsettling findings discussed above, there is a widespread unease regarding
the validity of current cosmological models. To address this concern, we introduce a
modified redshift Friedmann model that is tuned to the distribution of luminous matter in
the universe. This study focuses on three key astronomical parameters: number density,
light intensity, and redshift. We investigate the evolution of number density and light
intensity with redshift in both the standard redshift Friedmann model and its proposed
modified version. Our analysis carefully considers the impact of dark matter and dark
energy within these models.

The paper is structured as follows: Section 2 introduces pertinent models relevant
to our work, while Section 3 illuminates our analytical findings. Section 4 engages in the
simulation and discussion of these findings, and the paper culminates in Section 5 with
definitive conclusions.

2. Background Model Formulation
2.1. Parametric Model

The parametric model proposed by Bassett et al. [40] in 2015 introduces modifications
to the traditional redshift paradigm, seeking to refine our understanding of cosmic dy-
namics. This model involves the introduction of parameters that capture modifications in
the redshift space, allowing for a more nuanced interpretation of observational data. The
model addresses subtle aspects of cosmic phenomena by incorporating specific parameters,
providing a more detailed and accurate representation of redshift-related observations.

2.2. Non-Parametric Model

The non-parametric model, as formulated by Wojtak and Prada [42] in 2017, takes
a distinct approach by avoiding predefined parameters, allowing for greater flexibility
in modeling cosmic phenomena. Unlike parametric models, the non-parametric model
refrains from imposing fixed parameters, enabling a more adaptive and data-driven analysis
of redshift-related phenomena.

This model is precious in scenarios where the underlying dynamics are complex and
not easily encapsulated by predefined parameters. It provides a more versatile tool for
interpreting observational data.

The above two models proposed by [40,42] and used in this paper contribute to
different perspectives on how redshift modifications can enhance our understanding
of the universe. While the parametric model introduces specific parameters, the non-
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parametric model adopts a more flexible and adaptive approach, catering to the intricacies
of cosmic dynamics.

2.3. The Friedmann Model

Consider the Einstein field equations in the form:

Gµν = Rµν − 1
2

R gµν + λgµν = β Tµν (1)

Here, Gµν is the Einstein tensor, which is computed from the metric tensor gµν, Rµν is
the Ricci tensor, R is the Ricci scalar, λ is the cosmological constant representing the dark
energy component, Tµν is the energy momentum tensor characterizing matter distribution,
and β = 8πGc−4 where G is the gravitational constant and c is the speed of light.

Consider also the Friedmann–Lemaitre–Robertson–Walker spacetime metric for a
universe that is filled with homogeneous and isotropic matter:

ds2 =c2dt2− R(t)2

(1 + kr2)2 (dx2 + dy2 + dz2) (2)

Here, R(t) being the scale factor of the universe representing the time-dependent
evolution of the spatial part of the metric on surfaces of constant time t, and k = (±1, 0),
determines the geometry of these spatial sections as non-flat and flat, respectively.

Derivations involving Equations (1) and (2) yield two Friedmann equations for de-
scribing the relativistic dynamics and evolution of the universe (see details of calculations
in [48], expressed as:

12 kc2 + 3 R′ (t)2= β c4R(t)2ρ(t) −λ c2 R(t)2 (3)

and
4 kc2 + 2 R(t)R′′ (t) + R′(t)2= −β c 2R(t)2 p(t)−λ c2R(t)2 (4)

Here, the single and double overhead dots denote the first and second derivatives
with respect to time t, respectively; k is the space curvature geometry with values 0, 1 or
−1, p(t) is the pressure, and ρ(t) is the density of the universe both expressed as functions
of time t.

Equations (3) and (4) have been demonstrated [48,49] to yield:

d
dt
(c2ρ(t)R(t)3) = −p(t)

d
dt

R(t)3 (5)

The left-hand side of this equation represents the rate of change of the total energy
in the universe. In the matter-dominated cosmology, where the main energy density is in
cold, with non-relativistic matter behaving like dust (i.e., p = 0), Equation (5) simplifies to

d
dt
(c2ρ(t)R(t)3) = constant, α ⇒ ρ(t) R(t)3 = constant, α (6)

Equation (6) indicates that the total mass contained in the universe remains constant,
aligning with the relativistic theory of matter and fields (Noether’s theorem), where there
is no preferred direction for the motion of matter to maintain isotropy.

Equation (6) can be reformulated as [48,49]:

dt=
dR√

β c4 α
3 R(t) − λ α c 2

3 R(t)ρ(t) − 4 kc2
(7)

Equation (7) represents the time taken for a light photon to travel at a distance dr = dx
+ dy + dz, describing a matter-dominated Friedmann universe. Friedmann Equations (3)



Astronomy 2024, 3 47

and (4) in the form of Equation (7) will later be employed in this paper to derive the light
intensity–modified redshift and number density–modified redshift relations.

2.4. Modified Redshift Model

Redshift scale factor modifications offer a promising approach, presenting a novel
perspective on the dynamics of the universe. Cosmic expansion’s acceleration remains a key
cosmological puzzle [7]. Redshift scale factor modifications provide a unified framework,
addressing both early-time inflationary expansion and late-time cosmic acceleration. This
unity eliminates the need for distinct mechanisms across different epochs, offering a more
cohesive picture of the universe.

These modifications effectively account for large-scale structures and the cosmic
microwave background, maintaining consistency with cosmological observations.

The elusive nature of dark energy, responsible for cosmic acceleration, finds a more
tangible alternative in redshift scale factor modifications. By incorporating these changes,
we may gain deeper insights into the mechanisms behind cosmic acceleration.

The introduction of redshift scale factor modified relations may also have implications
for fundamental physics. Revisiting the universe’s dynamics on a large scale may unveil
connections between cosmological observations and the behavior of matter and energy at
the most fundamental levels.

Therefore, the incorporation of modified redshift scale factor relations into cosmo-
logical models presents a compelling and physically plausible avenue for advancing our
understanding of the universe and offers a fresh perspective that may help resolve existing
anomalies and contribute to a complete and more coherent cosmological framework.

In this work, we undertake an examination of a modified redshift relation to scrutinize
the relativistic dynamics and structure formation in a matter-dominated Friedmann uni-
verse. Our methodology involves the incorporation of a modified version of the standard
redshift relation, as introduced by [31], into the Friedmann equations. The model [31] is
succinctly outlined as follows:

The conventional correlation between cosmological redshift and the cosmic scale factor
for light photons is expressed as

1 + z=
R(t0)

R(te)
=

dt0

dte
, (8)

Hereafter referred to as the standard redshift relation. Should we posit that unknown
quantum effects exert a discernible influence on the frequency of light photons during their
cosmological propagation, then the aforementioned relation can be altered to

1 + f (z)=
R(t0)

R(te)
=

dt0

dte
(9)

It is discernible from the modified redshift equation that when f (z) = z, the equation
reverts to its standard form. Consequently, the modified equation, being more generalized,
is anticipated to yield more comprehensive results upon the appropriate specification of
f (z). This enhancement goes beyond classical experimental tests that aim to distinguish
between the metric and non-metric origins of the cosmological redshift.

We shall proceed to fit the derived Friedmann equations using parametric equation [40]:

f (z) = c1z + c2z2, (10)

where c1 and c2 are arbitrary parameters and non-parametric [42] (modified redshift functions;

f (z)= z + γ
(

z2
)

, (11)
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where γ(z) is a freely varying function of z. The parameter values in these models are
constrained through standard observational datasets to deduce the optimal present values
of cosmological parameters. Notably, these models, grounded in the redshift-scale-factor-
remapping concept, exhibit consistency with contemporary astronomical observations [42].
We introduce slight variations in parameter values and endeavor to explain structure forma-
tion and evolution in the Friedmann universe. The overall aim is to assess the compatibility
of the general outcomes with ongoing and prospective cosmological observations.

Furthermore, we posit a theoretical model in the form:

f (z) =
z
ε

(12)

The utilization of a model incorporating a free parameter, denoted as ε, unfolds a
compelling framework (Equation (12)). As ε approaches unity, the model seamlessly
converges with a well-established expression, wherein z/ε approximates z. Importantly,
this model accommodates scenarios where z is both less than z/ε and surpasses z/ε. The
versatility of this model, in conjunction with other aforementioned models, renders it a
promising tool for scrutinizing cosmic structures.

These models, when integrated into the Friedmann equations, offer a refined per-
spective on relativistic dynamics and structure formation within a matter-dominated
Friedmann universe.

In the realm of cosmic acceleration, models devoid of dark energy, and dominated by
matter, assume special significance. In these models, the modified redshift plays a pivotal
role in accounting for cosmic acceleration. This underscores the need for a comprehensive
exploration of these models to refine our understanding of the universe and reconcile
discrepancies in existing frameworks.

3. Analytical Solutions
3.1. Light Intensity–Modified Redshift

To establish a functional relationship between light intensity I emanating from an
astronomical object and the modified redshift f (z), let te be the time when a star or galaxy
emits a light ray that travels towards an observer located at the origin of our coordinate
system. The light reaches the observer at time to. Thus, the emitted light commences
at r(te) and travels towards the origin, ultimately arriving at r(to) = 0. Suppose that at
time t = t0, ((r(t0) = 0)), an observer measures the brightness I of that light, which he
receives at that given redshift. The light emitted in the time interval (t e, te + dte) will
transverse the observer in the time interval (t 0, t0 + dt0) . During this process, the number
of photons is conserved as the radiation traverses through the universe. Nevertheless,
each of these photons is redshifted relative to the emitted increasing wavelength of their
spectrum, leading to a decrease in their energy by a factor

1
1 + f (z)

(13)

This means that the energy that passes through our spherical ball of radius r = r( f (z))
during the interval (t0, t0 + dt0) is the same as the product of 1

1+ f (z) and the energy
emitted during the interval ( te, te + dte). We can therefore express light intensity I, which
is dependent on the luminosity L of luminous matter in the universe, as

I=
Ldte

(1 + f (z)) Sr ( f (z))
, (14)

where Sr denotes the surface area of the sphere of radius r = r( f (z)) at time t = t0.
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For light-like events or null geodesics (i.e., ds = 0) in Equation (2):

c2 .
t
2
=

R(t)2
( .

x2
+

.
y2

+
.
z2
)

(1 + κr2)
2 (15)

Together with Equation (7), it is easy to show that:

∫ R(t0)

R(te)

dR
√

R
√

β c2 α ρ(t) λ α
3ρ(t) − 4 k R(t)

=−
∫ r( f (z))

r=0

1
1 + kr2 dr (16)

where we have applied the principle of reversibility of light and assumed that
.
t is positive

and
.
r is negative.
Calculations based on Equation (15) for three cases of the curvature of the universe,

i.e., for flat (κ = 0) and non-flat (κ = ±1) universes, yield

r( f (z))=



√
12 ρ(t) R(t0)√

β c2α ρ(t) − λ α
−

√
12 ρ(t) R(t0)√

(β c2α ρ (t)− λ α) (1+ f (z))
, k = 0

√
12 ρ(t) R(t0)

[√
(βc2α ρ(t)−λα) (1+ f (z)) − 12 ρ(t) R(t0) −

√
βc2α ρ(t)−λα − 12 ρ(t) R (t0)

]
√

(β c2α ρ(t)−λα) − 12 ρ(t) R(t0)
√

(β c2α ρ(t)−λα) (1+ f (z))− 12 ρ(t) R(t0)+12 (t) R(t0)
, k = +1

√
12 ρ(t) R(t0)

[√
(β c2α ρ(t)−λα)(1+ f (z))+12 ρ(t) R(t0) −

√
β c2α ρ(t)−λα +12 ρ(t) R (t0)

]
√
(βc2α ρ(t)−λα)+12 ρ(t) R(t0)

√
(β c2α ρ(t)−λα) (1+ f (z))+12 ρ(t) R(t0) +12 ρ(t) R(t0)

, k = −1


(17)

Here, we have applied the equation r(t 0) = 0 together with the modified redshift
relation in Equation (9).

For the case of a unit sphere, we set R(t 0) = 1, so that R(t 0) is the separation distance
between stars or galaxies in the universe at the present observational time and R(t e) is the
distance between stars or galaxies in the universe after the emission of light photons (the
late-time value of the cosmological scale factor after the emission of light photons).

The three curvature cases in Equation (17) can be compacted into one solid equation as

r( f (z))=

√
12 ρ(t) R(t0)

[√
(β c2α ρ(t)− λα) (1 + f (z)) − 12k ρ(t) R(t0) −

√
β c2α ρ(t)− λα − 12 k ρ(t) R (t0)

]
√
(β c2α ρ(t)− λα)− 12k ρ(t) R(t0)

√
(β c2α ρ(t)− λα) (1 + f (z))− 12 k ρ(t) R(t0) + 12 k ρ(t) R(t0)

(18)

Defining:
a∗ = β c2 α ρ(t)− λα − 12 k ρ(t) R (t0) (19)

b∗=
(

β c2α ρ(t)− λα
)
(1 + f (z)) − 12k ρ(t) R(t0) (20)

and considering that the cosmic time te depends on the evolution of the function f (z), we
therefore consider r(te) as a function of r( f (z) such that Equation (18) can be simplified as

r( f (z))=
√

12 ρ(t) R(t0)
√

b∗ −
√

a∗√
a∗b∗ + 12 k ρ(t) R(t0)

(21)

The function f (z) in the modified redshift Equation (18) is a more general form of the
redshift than in the standard case, i.e., when f (z) = z. The results are also bound to be
more general and may deviate from the standard redshift predictions.

Equation (15) can be simplified and integrated from the time of emission te to the time
of observation to and from the coordinate radius r = 0 to r = f (r(z)) as:

∫ t0

te

c
R(t)

dt =
∫ r( f (z))

r=0

1
1 + kr2 dr (22)
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The integration of Equation (22) involving the application of the fundamental theorem
of integral calculus, the modified redshift relation 1

1+ f (z) = R(te)
R(t0)

= dte
dt0

, and the surface area

of the sphere Sr ( f (z))=
4 π r ( f (z))2 R(t0)

2

(1+kr ( f (z) 2))
2 yields:

I( f (z))=
L
(

1 + k r( f (z))2
)2

((1 + f (z)) 2 4 π r( f (z))2 R(t0)
2 (23)

The application of Equation (21) in Equation (23) yields the first analytical result

I( f (z))=

L

[
1 + k

(√
12 ρ(t) R(t0)

√
b∗−

√
a∗√

a∗b∗+12k(t)R(t0)

)2
]2

(1 + f (z))24π

(√
12 ρ(t) R(t0)

√
b∗−

√
a∗√

a∗ b∗+12 k ρ(t) R(t0)

)2
R(t0)

2
(24)

If we drop λ, then the corresponding formula for I( f (z)) without dark energy reduces to

I( f (z))=

L

 1 + k

(√
12 R(t0)

(√
b∗−

√
a∗ )

√
a∗b∗+12k R(t0)

)2
2

(1 + f (z))24π

(√
12 R(t0) (

√
b∗−

√
a∗)√

a∗ b∗+12 k R(t0)

)2
R(t0)

2
, (25)

with
a∗ = β c2α − 12kR(t0); b∗=

(
β c2α

)
(1 + f (z))12kR(t0).

3.2. Number Density–Modified Redshift

Research into the correlation between galaxy numbers and redshift is a key focus in
astrophysics. This area of study is instrumental in unraveling the intricate dynamics and
formation of structures within the universe [50–53].

Assuming that our astronomical objects (stars or galaxies) under consideration are
distributed uniformly in the universe, we can count the number of stars or galaxies we
observe in a given redshift interval. Taking N as the number of stars or galaxies per unit
volume of space with metric by dr2+r2dθ2+r2sin2 θ dθ

(1+kr2)
2 and volume element of the hyper-sphere

surface as r2sinθdθdφdr
(1+kr2)

3 , the number of stars between coordinates r and dr is 4π r2dr
(1+kr2)

3 N
.

The differentiation of Equation (18) with respect to f (z) in view of Equations (19) and
(20) yields:

dr
d( f (z))

= r′ ( f (z))=
(

β c2α ρ(t)
)2 √3 R(t0)

√
a∗
(√

a∗b∗ + 12 k ρ(t) R(t0)
)2 (26)

The number of galaxies enclosed between coordinate hyper-spheres in a given redshift
interval is given as

n( f (z))d( f (z)) = 4π r( f (z))2
(

1 + k r
(

f (z))2
) 3

N r′( f (z))d( f (z)) (27)

so that by substituting Equations (18) and (21) into Equation (26), we obtain the first
analytical result.

n( f (z) ) =
48π NR(t0)

(
β c2α ρ(t)

)2 √3 R(t0)
(√

b∗ −
√

a∗
)2

[
1 + k

( √
b∗−

√
a∗√

a∗ b∗ +12 k ρ(t) R(t0)

)2
]3[√

a∗ b∗ + 12 k ρ(t) R(t0)
]4

(28)
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If we drop λ, then the corresponding formula of n( f (z)) without dark energy reduces to

n( f (z))=
48 π NR(t0)

(
β c2α

)2 √3 R(t0)
(√

b∗ −
√

a∗
)2

[
1 + k

( √
b∗−

√
a∗√

a∗ b∗ +12 k R(t0)

)2
]3[√

a∗ b∗ + 12k R(t0)
]4

, (29)

where a* = βc2α − 12kR(t0); b* =
(

βc2α
)
(1 + f (z))12kR(t0).

Equations (25) and (29) form two relativistic analytical modified Friedmann equations
for describing dynamics and evolution of our universe.

The evolution of light intensity and number density of galaxies or stars as functions of
redshift is given respectively by (see [48])

I(z)=

L
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and

n(z)=
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(31)

where a* = βc2αρ(t)− λα − 12kρ(t)R(t0); b* =
(

βc2αρ(t)− λα
)
(1 + z)12kρ(t)R(t0).

Equations (30) and (31) describe relativistic dynamics and structure formation in
a matter-dominated Friedmann universe. However, in the subsequent evolution of the
universe simulated for phenomenological models, the consideration of vacuum energy
appears unnecessary. The observed value of the cosmological constant is conspicuously mi-
nuscule and diverges significantly from theoretical predictions—approximately 122 orders
of magnitude smaller than the value anticipated by quantum field theory.

To address this issue, a cosmic approach has been implemented, effectively eliminating
the impact of quantum vacuum energy on gravity (λ = 0). This intentional omission of
vacuum energy provides the basis for examining the early evolution, structure formation,
and extensive distribution of structures in the universe. Through computer simulations
based on this innovative methodology, we can gain valuable insights into the roles played
by dark matter and dark energy in shaping the cosmos.

4. MATLAB Graphical Simulations

This section embarks on the simulation of predictions derived from the analytical solu-
tions of two cosmological models, namely the standard redshift Friedmann model and the
modified redshift Friedmann model. The equations governing light intensity and number
density as functions of redshift are explicitly articulated for both models—Equations (30)
and (31) for the standard redshift Friedmann model, and Equations (25) and (29) for the
modified redshift Friedmann model. Through these simulations, we seek to explain the
impact of cosmic accelerated expansion on galaxy formation, distinguishing between the
effects attributed to modified and unmodified redshift models. The overall goal is to
underscore the robust theoretical underpinning of cosmic acceleration, irrespective of the
ongoing debate surrounding the mysteries of dark matter and dark energy. As shall be
seen later, the simulated results presented herein align consistently with other empirical
findings thereby validating our approach.

The parameter values employed in these simulations are meticulously chosen, with
constraints derived from cosmological observational data [40–42]. Variations in parameters,
achieved through a nuanced adjustment in the MATLAB application, shed light on the kind
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of universe expected from our model. For instance, parameters such as (α1,α2) = (1, 0) and
(γ,α2) = (1, 0) exhibit no discernible modification of the redshift, rendering both the standard
and modified model in the absence of dark energy indistinguishable when MATLAB
version R2017 b simulations are run in the background. However, it is emphasized that
only sufficiently small parameter values permit the formation of a universe conducive to
hosting observers. Larger positive values induce rapid expansion, hindering the formation
of gravitational structures, while large negative values precipitate a swift collapse, also
precluding galaxy formation. The subtle variation in parameters serves the dual purpose of
exploring additional statistically significant features of cosmic structures and revealing the
resilience of the model under slight perturbations. In addition, all of the models mentioned
above show very little difference in the overall free parameter adjustment.

To obtain particular parametric values like α1, α2 for the parametric function used
once a model has been chosen, as in our case (modified redshift relation for the Friedmann
model), all that one needs to do is to fit the model onto the observational data to find the
values of the model parameters. This is usually conducted using various statistical methods
depending on the nature of the data and researcher’s objectives. A number of statistical
tools may be used, e.g., maximum likelihood estimation (MLE) or Bayesian inference.
The best-fit values of parameters provide a description of how the redshift scale factor
evolves over time according to the chosen parametric model, and then one calculates the
significance level to reject or accept the obtained values. Astronomical observables may
include position (direction) of light emitted from, e.g., supernovae Type Ia or high-redshift
quasars, the expansion rate of the universe, or flux among, others. Other parameters of
interest may be obtained through normal relationships between physical quantities as the
need arises.

For non-parametric models, the same procedure can be adapted to obtain, e.g., γ,
except that one does not assume a specific function form for the relationship between
variables. Instead, one aims to capture the data’s underlying structure without imposing
pre-defined shapes. One can then consider a suitable statistical technique such as finding
a smooth curve or surface that best fits the data points in a way that minimizes some
measure of error or deviation. Finally, the confidence levels can be calculated for validating
the results.

The choice between parametric and non-parametric approaches often depends on
the underlying assumptions about the observational data and the desired flexibility in
capturing the relationship between redshift and other variables; in our case, number density
and redshift. Furthermore, in general, parametric and non-parametric values are not the
same in cosmology, as they represent different approaches to modeling and analyzing
cosmological data, except possibly where both types of values are used in conjunction to
study different aspects of the universe.

Parameter values used in the modified redshift models are slightly varied for compari-
son under consistent matter density and curvature of the universe. All values employed in
the codes adhere to existing statistical data.

To examine the initial effects of cosmic acceleration on galaxy formation in both
models, we graph the number density curves individually. Subsequently, we observe that
the more significant disparity in structure formation between the standard redshift and
modified redshift Friedmann models makes it challenging to clearly discern the onset of the
accelerated expansion of the universe. The standard redshift model exhibits a greater level
of structure formation compared to the modified redshift model. Nonetheless, to evaluate
the impact of introducing the modified model, we also graph both the standard redshift
and modified redshift models without dark energy on the same scale for comparison.

The MATLAB codes employed in these simulations adhere to constants such as redshift
running from z = 0 to z = 5, the density of the universe ranging from ρ(to) = 3 × 10−27 kgm−3

to ρ(to) = 8.78 × 10−25 kgm−3, speed of light c = 3 × 108 m/s, cosmic scale factor R(to) =
9 × 1025 m (modifiable as needed), gravitational constant G = 6.67 × 10−11 m3 kg−1 s−2,



Astronomy 2024, 3 53

and the geometric curvature of the universe, where κ = 0 signifies a flat universe, κ = +1
designates a closed universe, and κ = −1 represents an open universe.

4.1. Light Intensity–Redshift Graphs

Figures 1–6 portray simulation outcomes for the evolution of light intensity for both
the modified Friedmann model and the standard redshift model grounded in Equations (25)
and (30) respectively. These visual representations offer a nuanced understanding of the
intricate dynamics governing the evolution of cosmic structures under distinct cosmological
paradigms. The standard redshift model displays the simulation results in solid lines while
modified models are in dotted lines.
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Figure 2. Simulation result for log (I) against redshift z for z = 0 to z = 5. The solid curves represent
the standard redshift while dotted curves represent the modified redshift f (z)= z + γ(z)2, where γ(z)
is a free function of z with γ = 0.45. Both models without λ.
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Figure 4. Simulation result for log (I) against redshift z for z = 0 to z = 5. The solid curves represent
log (I) against standard redshift z with λ while dotted curves represent log (I) against modified
redshift f (z) = α1z + α2z2 with α1 = 2.005 and α2 = 0.005 without λ.

We also plot the standard redshift model with λ and the modified redshift model
without λ on the same scale in order to assess the overall effects. The solid lines in
Figures 4–6 portray the simulated results of light intensity with λ for the standard redshift
model based on Equation (30), while the dotted lines represent the modified redshift model
without λ based on Equation (30).
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Figure 6. Simulation result for log (I) against redshift z for z = 0 to z = 5. The solid curves represent
log (I) against standard redshift z with λ while dotted curves represent log (I) against modified
redshift f (z) = z

ε with ε = 0.45 without λ.

The light intensity of the standard redshift model with and without λ is also plotted
on the same scale. The solid curves in Figure 7 portray the simulated result of light
intensity with λ for the standard redshift model based on Equation (30), while the dotted
curves represent the light intensity of the standard redshift model without λ based on
Equation (30).
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Figure 7. Simulation result for log (I) against redshift z for z = 0 to z = 5. The solid curves represent
log (I) against standard redshift z with λ while dotted curves represent log (I) against standard
redshift z without λ.

4.2. Number Density–Redshift Graphs

Figures 8–10 display the simulation results of number density of galaxy formation in
the absence of cosmological constant for the modified redshift Friedmann model based on
Equation (29).
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Figure 8. Simulation result for log (n) against redshift z for z = 0 to z = 5. The solid curves represent
log (n) against standard redshift z while dotted curves represent log (n) against modified redshift
f (z) = α1z + α2z2 with α1 = 2.005 and α2 = 0.005. Both models without λ.

In order to assess the effect of the two models, let us plot the number density of
galaxies of the standard redshift model with dark energy (λ) and the number density of
galaxies of the modified redshift models without dark energy (λ = 0) on the same scale. The
solid lines in Figures 11–13 portray the simulated result of the number density of galaxy
formation with dark energy (λ) based on Equation (31), while the dotted lines represent the
number density of galaxy formation for the modified redshift model in the absence of dark
energy (λ = 0) based on Equation (28).
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(

z)2 , where
γ(z) is a free function of z and γ = 0.45. Both models without λ.
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Figure 10. Simulation result for log (n) against redshift z for z = 0 to z = 5. The solid curves represent
the standard redshift while dotted curves represent the modified redshift f (z) = z

ε with ε = 0.45.
Both models without λ.

The number density of galaxies of the standard redshift model with dark energy is
plotted together with the number density of galaxies of the standard redshift model with a
vanishing dark energy (λ = 0) on the same scale, both graphs based on Equation (31). The
solid curves in Figure 14 portray the simulated result of the number density of galaxies
with dark energy (λ) of the standard redshift model based on Equation (31), while the
dotted curves represent the number density of galaxies of the standard redshift model with
a vanishing λ based on Equation (31).
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5. Discussion
5.1. Light Intensity of Galaxy Distribution

The attenuation of light intensity with redshift is visually depicted in Figures 1–7,
covering various redshift ranges. In Figures 1–3, a distinct decrease in light intensity is
evident across different universe models, transitioning from flat to open and then closed
universes, regardless of the specific model applied. This attenuation is particularly pro-
nounced in universes lacking dark energy and featuring modified redshift, suggesting a
potential phenomenological link between cosmic expansion and dark matter. Furthermore,
this phenomenon is influenced by the matter density and the curvature of the universe, as
demonstrated by the similar attenuation rates between open and flat universes within the
redshift range of z ≈ 2–2.4 before diverging.

Figures 4–7 demonstrate a similar trend of light attenuation as seen in Figures 1–3.
Notably, in closed universes with dark energy, light intensity diminishes more rapidly
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compared to scenarios without dark energy, with this effect becoming more pronounced
over time. Additionally, open universes demonstrate a higher attenuation rate compared
to closed or flat universes, with the highest rate observed in closed universes, followed
by open and flat universes, respectively. The influence of matter density and curvature
remains consistent across these figures.

Analyzing the range of redshifts depicted in Figures 1–3, a discernible exponential
attenuation pattern in the light intensity from galaxies is observed, regardless of the uni-
verse’s geometry. Intriguingly, modified light curves closely resemble standard redshift
curves, indicating a level of universality in light intensity dynamics. However, a notable
deviation is evident in the evolution of these intensity functions, especially in the modified
model, diverging from the standard redshift model both in early epochs and in future
projections. This temporal disparity aligns with theoretical propositions by [48], who found
that light intensity falls with redshift and is affected by dark energy, thereby bolstering the
credibility of the modified model’s departure from conventional cosmic models. Results
from [54] regarding light from GRBs also confirmed these findings. Moreover, the modified
redshift universe demonstrates a more rapid attenuation of light intensity with redshift
compared to the standard redshift universe, as depicted in Figures 1–3. This divergence
underscores the accelerated expansion posited by the modified model, contributing to
the ongoing debate on cosmological models. The empirical validation of this accelerated
expansion, supported by theoretical foundations laid out by [48], emphasizes the sig-
nificance of investigating the intricate relationship between theoretical frameworks and
observational data.

The attenuation behavior of light is in line with classical expectations. As redshift
increases, the ionizing sources decrease because structure formation slows down. Further-
more, space expansion and redshifting of photons leads to energy loss. Furthermore, an
analysis of light pulse shapes originating from gamma rays, slow and fast neutron events,
recorded separately using the Bollinger–Thomas single-photon method, showed a trend
consistent with our results [54].

5.2. Number Density of Galaxy Formation

The data represented in Figures 8–13 reveal intriguing patterns wherein the modified
redshift curves initially display accelerated growth, contrasting with the standard redshift
model. However, both curves stabilize for a duration before diverging. Beyond a redshift
value of z ≈ 1.6, the modified redshift curves start descending below those of the standard
redshift. There is a phase of heightened galaxy formation within the redshift range of
0 < z < 0.4 across all universe models. Additionally, a significant proportion of galaxy
formation appears to have occurred during 0 < z < 0.9, persisting, albeit at a slower pace,
until around z ≈ 1.6. This observation is consistent with Marr’s findings [55], who studied
galaxy number counts in various bands (K, H, I, R, B, U) from the Durham Extragalactic
Astronomy and Cosmology catalogue. In the model, bar graphs revealed a similar relation-
ship between number density and redshift. Studies of massive compact galaxies from the
BOSS spectroscopic dataset for the number density of galaxies against redshift in the range
0.2 < z < 0.6 further confirms our findings [56].

Around z ≈ 0.9, the rate of galaxy formation in the modified redshift model decreases,
unlike the relatively steady formation rate in the standard redshift model. This discrepancy
suggests that the modified redshift model, indicative of a universe propelled by dark
matter dynamics, fosters galaxy formation especially in the beginning. This finding agrees
with [57], who investigated the impact of dark matter on galaxy formation using N-body
simulations. He found that baryonic matter gravitates towards great potential wells of dark
matter halos where galaxies form initially rapidly before slowing down later. However,
the rate of formation is intricately tied to both the matter density of the universe and its
curvature characteristics. Figures 11–14 depict a higher count of galaxies formed compared
to Figures 8–10.
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In examining the early stages of the universe, characterized by the initial burst of galaxy
or star formation, a remarkable uniformity is observed among our models. The accelerating
expansion of space, a key determinant in rendering any future accretion negligible, serves
as a unifying factor at this emerging cosmic era. The indistinguishability of each model
at early times lays the foundation for understanding the subsequent divergences in their
evolutionary trajectories.

The historical divergence among our models becomes conspicuous in the late stages,
primarily attributable to the onset of dark-matter-powered accelerated expansion. A notable
consequence of this divergence is the elimination of the coincidence problem. Scenarios
where λ equals zero equate to the era of matter growth that propels the cosmic accelerating
force responsible for the late-time spatial acceleration. In the modified case, the departure
from the standard redshift Friedmann model continues throughout all cosmic epochs,
marking a significant achievement in this research.

Analyzing Figures 8–14, the number density of galaxy formation exhibits a rapid rise,
culminating around z ≈ 1.6, followed by a gradual decline. The proposed model seems to
undergo a phase of deceleration favoring galaxy formation in the early evolution of the
universe, transitioning into an acceleration phase at later times. This critical transition from
early deceleration to late-time acceleration is pivotal, as the decelerating phase is important
for structure formation, while the slowdown of large-scale structure growth signifies the
onset of dominant accelerating cosmic expansion. This observation is in line with recent
work that suggests that dark matter provides the initial seed for star formation [29,57]
further boost these findings.

As galaxies disperse due to the expanding universe, the processes of accretion and
merging decelerate significantly, leading to a substantial reduction in the galaxy formation
rate after peaking for future epochs. The total number density is predominantly dictated
by contributions from the peak, stabilizing into a plateau around z ≈ 1.6 depending on the
curvature characteristics and matter density. The role of the cosmological constant in shap-
ing the structure formation in the universe appears less impactful in curtailing the late-time
structure formation rate compared to the observed values in modified models, as evident in
Figures 11–13. Figures 8–14 underscore that the universe, largely, has already produced the
majority of its eventual structures, contributing only marginally to future developments.

The number density of galaxies increases with redshift with a remarkably constant
value after peaking for the standard redshift model for future epochs, while that of the
modified redshift model declines slowly thereafter peaking. The drop in galaxy number
may be attributed to a fast increase in light intensity attenuation; producing strong repulsive
forces at high redshifts (see light intensity curves in Figures 1–6). For future epochs,
gravitational forces may play a role in controlling the rate of decline, with the repulsive
forces originating in light attenuation being negligible.

5.3. Comparing the Standard Redshift and the Modified Redshift Friedmann Cosmological Models

Within this section, our primary focus is on comparing the inherent properties of two
cosmological models: the standard redshift Friedmann model and the modified redshift
Friedmann model. As we explore cosmic time, a notable characteristic arises within the
standard redshift model, where the universe’s expansion approaches a constant value
asymptotically, outlining a distinct trajectory. In contrast, the modified redshift model
exhibits a more gradual decline after reaching its peak. This subtle behavior results in a
noticeable decrease in the number density conducive to galaxy formation, particularly in
later epochs (refer to Figures 8–10). While different simulations of the modified Friedmann
model show varied galaxy formations, both models demonstrate a consistent overall
galaxy formation history. In future epochs, the modified universe transitions into an
accelerating expansion era, with the growth rate of structures declining more slowly after
peaking. Conversely, in the standard redshift model, we observe that galaxy growth
approaches a constant value. This diverse formation pattern is linked to the expansion
histories of universes with or without dark energy, as represented by the standard redshift
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and modified redshift models. Graphical representations illustrate a notable disparity
between the trajectories outlined by the standard redshift and modified redshift models
(see Figures 11–13. This clear distinction serves as empirical evidence of the influence of
dark matter driving accelerated expansion [29]. Despite this gap, both cosmologies share a
commonality in the culmination of galaxy formation in the early universe. It is essential
to recognize that as time progresses, the universe undergoes a transformative shift, with
cosmic acceleration playing a crucial role. Concurrently, it may be that the influence of dark
matter suppresses the overarching structure formation, shaping the fate of galaxies as the
universe evolves.

In a nutshell, while our model statistically aligns with the standard redshift Fried-
mann paradigm during the early stages of the universe’s evolution, a distinctive trajectory
emerges at later stages as highlighted in Figures 8–13.

5.4. Transition from Decelerating to Accelerating Expanding Universe

This section concentrates on identifying the suppression point within the structure
amplitude, a key aspect of our simulation concerning the number density of galaxies. This
investigation aids in predicting the transition point between deceleration and acceleration
in our modified cosmological model.

A comprehensive analysis of Figures 8–13 reveals a significant trend in galaxy for-
mation. In the early stages of the universe, galaxies form rapidly, experiencing a burst of
stellar or galactic activity between redshift 0 < z < 0.4. This rate peaks around z ≈ 0.9 before
slowing down significantly, maintaining a relatively constant level of galaxy formation until
z ≈ 1.6 where this process starts to decline, as evident in Figures 8–13. This result agrees
with [58], who found that the onset of cosmic acceleration was consistent with observations
of distant spiral galaxies exhibiting a gradual decline or near constancy in galaxy formation
over time.

The universe may have undergone a shift from a phase of decelerating expansion after
its climax to accelerated expansion. It has been found that the universe undergoes a series of
redshift transitions, as demonstrated by [2], who noted the universe’s mass-energy content
transitions from matter domination to an acceleration-dominated state. The persistence of
accelerated expansion requires overcoming gravitational attraction forces exerted by the
cosmological fluid, primarily composed of ordinary matter.

In our model framework, the transition from deceleration to acceleration expansion
occurs at a specific redshift. Our findings suggest that a transition from matter domination
to acceleration expansion is feasible only if the energy effects driving the universe into
acceleration begin in an epoch z ≈ 0.9. This value is in fair agreement with the best-fit value
of 0.732 < z < 0.966 [59,60]. However, any observed disparities with other models could
stem from variations in models or underlying assumptions used. However, pinpointing
the accurate redshift transition point requires calibrating model parameters against cos-
mological data. This approach was suggested by [61], who predicted a plausible temporal
transition from a matter-dominated universe to a dark-energy-dominated universe, em-
phasizing the importance of fitting model parameters to observational data for precise and
reliable cosmological predictions.

5.5. Meaning of Our Results

The investigation into the evolution and distribution of galaxy number density has
yielded intriguing results, with various modified models consistently predicting an accel-
erating expanding universe. Despite subtle variations in underlying mechanisms, these
models converge on the same analytical outcome concerning the magnitude of observed
structure formation compared to the widely accepted standard redshift Friedmann model.
Indeed, Figures 8–13 illustrate trajectories of different structures formed by standard red-
shift and modified redshift models, indicating a notable disparity and suggesting the
pivotal role of dark matter in late-time acceleration.
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These figures emphasize the essence of our findings, revealing alignment between the
modified redshift relation and a positive cosmological constant within a standard redshift
model. This alignment implies an excess of dark energy introduced by the cosmological
constant, leading to a gradual flattening of the structure formation amplitude profile.
Surprisingly, our results challenge the conventional wisdom, suggesting that a cosmological
constant or other form of dark energy, characterized by peculiar negative pressure, may not
be necessary to explain the observed accelerating expansion of the universe. The notion of
suppressing structure amplitudes emerges as a pertinent condition for the viability of our
dark-matter-dominated cosmological model.

Despite differences in structural growth rates, the impact of accelerated expansion
due to a modified redshift becomes significant only after the majority of structures have
formed, resulting in a decrease in the total number density of galaxies. Remarkably,
the modified redshift model successfully accounts for most observational signatures of
cosmic acceleration.

Intriguingly, simulations devoid of dark energy predict a crossover in the cosmic
galaxy formation rate, transitioning from deceleration to acceleration. These findings
underscore the complexity of cosmic dynamics and highlight the intricate interplay between
various factors influencing the evolution of our expansive universe.

6. Summary and Conclusions

The present astronomical inquiry stands as a diligent effort to scrutinize the fun-
damental principle of cosmology, specifically addressing the homogeneity and isotropy
assumptions inherent in the Friedmann model. Extensive research has already been dedi-
cated to testing spatial isotropy through a spectrum of techniques and probes. Nevertheless,
the homogeneity hypothesis presents a formidable challenge, prompting a focused investi-
gation [18,19]. The study is focused on three fundamental astronomical quantities: number
density, light intensity, and redshift. It explores the interrelationship between these quanti-
ties in both the standard redshift Friedmann model and its modified form proposed within
the research. The study extends the groundwork laid by prior research on the Friedmann
model [48]. The driving force arises from a modification of the conventional redshift,
providing a fresh perspective on the Friedmann equations.

This reinterpretation is grounded in a phenomenologically modified redshift model,
deliberately devoid of dark energy through the elimination of the cosmological constant.

The modified redshift, as introduced in this study, serves as a novel instrument for
characterizing the distribution of luminous matter within the cosmic framework. Empha-
sizing the Friedmann model, the investigation is particularly attuned to the growth rate
of cosmic structures. This parameter emerges as a discerning factor, keen to differentiate
between the general-relativity-backed standard redshift Friedmann model and the alterna-
tive scenarios rooted in its modified form. The overall goal is to establish a framework for
discerning between competing cosmological models.

Distinct phenomenologically modified redshift models, namely parametric [40] and
non-parametric [42] models, are systematically explored within the context of a matter-
dominated Friedmann universe. The analytical prowess of this study is demonstrated
through the rigorous solution of relativistic dynamic Friedmann equations as given in
Equations (25) and (28)–(31). Compared to earlier research [48], Equations (25), (28) and
(29) are presented in a more generalized form, describing the relationship between light
intensity and redshift, as well as the relationship between number density and redshift.
These solutions, in turn, shed light on the light intensity and number density of galaxies,
describing their evolution as functions of the modified redshift as seen in Figures 1–6 and
Figures 8–13, respectively.

The early consideration of dark energy within the framework is a methodological
choice, enabling subsequent analyses to nullify its impact. This is achieved by setting the
cosmological constant to zero in Equations (30) and (31) for modified redshift dark-matter-
powered phenomenological models.
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Simulations are then meticulously executed utilizing MATLAB applications. The
simulation spans the redshift range from 0 to 5, revealing intriguing dynamics. The
simulation reveals a unique pattern of galaxy formation, marked by a significant burst
between redshifts 0 < z < 0.4. This burst then transitions into a gradual rise up to z ≈ 0.9,
after which galaxy formation proceeds slowly at a nearly constant rate until z ≈ 1.6.
Thereafter, a decline in structure formation becomes possible, as illustrated in Figures 8–13.
Furthermore, simulations without dark energy unveil a phase crossover point in the cosmic
galaxy formation rate, marking the transition from deceleration to accelerating expansion
at redshifts around z ≈ 1.6, as seen from Figures 8–13. Our number density relation is
in excellent agreement with other works [55,58]. Simulations of light intensity functions
reveal light attenuation with redshift evident in Figures 1–7, which is in fair agreement with
the GRB results and light pulse distribution shapes [54]. The modified redshift universe
shows that light intensity distribution attenuates more rapidly with the standard redshift
as compared to the modified redshift model (Figures 1–6).

A critical observation emerges concerning the differential impact of the cosmological
constant on structure formation. The study posits that the cosmological constant within the
standard redshift model exhibits a less pronounced effect on late-time structure formation
growth compared to the modified model in agreement with observational evidence [62].
This nuanced disparity underscores the prowess of the modified model. The expansion
of the universe beyond z > 0.9 is attributed to dark-matter-powered cosmic acceleration
rather than the effect of the cosmological constant (Figures 8–13). Despite differences in
the rate of structural growth, the impact of accelerated expansion becomes significant only
after the majority of structures have been formed.

The study concludes with a resolute stance against the necessity of introducing the
cosmological constant into the modified model. The latter, characterized by a positive
cosmological constant in the context of the standard redshift model, eliminates the need
for a cosmological constant, thereby avoiding excessive dark energy and eliminating the
necessity for fine tuning at an implausibly small degree. The relentless acceleration of
the universe in its later stages is proposed as a firmly established and almost model-
independent theoretical certainty, unaffected by ongoing debates about the nature of the
cosmological constant.

The proposed modified model’s ability to accurately capture most of the discernible
signatures of cosmic acceleration underscores its novelty. Therefore, the expansion evo-
lution of the universe might be a result of the imbalance of gravitational forces and dark
matter. The call for future inquiry echoes a commitment to testing with future accurate
cosmological data. This paper, rooted in the analysis and scrutiny of cosmological models,
contributes to the ongoing debate on the dynamic evolution of our universe.
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