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Abstract: The general-relativistic (GR) magnetohydrodynamic (MHD) equations for a conductive
plasma fluid are derived and discussed in the curved spacetime described by Thorne’s metric tensor,
i.e., a family of cosmological models with inherent anisotropy due to the existence of an ambient,
large-scale magnetic field. In this framework, it is examined whether the magnetized plasma fluid
that drives the evolution of such a model can be subsequently excited by a transient, plane-polarized
gravitational wave (GW) or not. To do so, we consider the associated set of the perturbed equations of
motion and integrate them numerically in order to study the evolution of instabilities triggered by the
GW propagation. In particular, we examine to what extend perturbations of the electric and/or the
magnetic field can be amplified due to a potential energy transfer from the GW to the electromagnetic
(EM) degrees of freedom. The evolution of the perturbed quantities depends on four free parameters,

namely, the conductivity of the fluid, σ; the speed of sound square, 1
3 <

(
Cs
c

)2
≡ γ < 1, which in

this model may serve also as a measure of the inherent anisotropy; the GW frequency, ωg; and the
associated angle of propagation with respect to the direction of the magnetic field, θ. We find that GW
propagation in the anisotropic magnetized medium under consideration does excite several MHD
modes; in other words, there is energy transfer from the gravitational to the EM degrees of freedom
that can result in the acceleration of charged particles at the spot and in the subsequent damping of
the GW.

Keywords: gravitational waves; MHD waves; plasma cosmology

1. Introduction

A long time ago (i.e., back during the era of the dinosaurs) in a galaxy far, far away
(NGC 4993), two neutron stars merged, emitting gamma rays and gravitational waves
(GWs). On 17 August 2017, these two messengers reached the Earth [1]. The GWs were
detected (GW 170817) by the advanced LIGO and VIRGO interferometers [2,3] and the
associated gamma rays (GRB 170817A) by the Fermi space telescope [4,5]. The GW 170817
event and (most importantly) its verification by the associated gamma-ray burst (GRB) not
only has resulted in one more validation of general relativity (GR) but, in fact, has revealed
a powerful probe for exploration of the Universe, GW astronomy.

Apart from wobbling and merging neutron stars, other potential sources of GWs
are coalescing compact binaries or black holes, quasi-normal modes of ringing black
holes, the spinning-down effect observed in magnetars due to their enormous magnetic
field, etc. (see, e.g., [6–10]). In each and every one of those cases, a potential interaction
between GWs and astrophysical plasma present at the spot not only could play an essential
role in the final outcome of the messenger’s profile, but it could also give rise to new
phenomena of particular interest (see, e.g., [11–13]), such as, e.g., the excitation of MHD
modes—especially of magnetosonic waves (MSWs)—by the GW, i.e., the conversion of
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gravitational energy into EM energy (and vice versa). Searching for potential resonances in
the interaction between MHD modes of magnetized plasma and GWs in a curved spacetime
background is an essential first step towards that direction. Indicative, though incomplete,
research on this subject includes derivation of the exact GR equations for finite-amplitude
MHD waves [14], GWs versus MSWs in the covariant formalism [15] and in the 3 + 1
orthonormal tetrad description [16], coupling of GWs with EM waves in magnetized
vacuum [17–21], propagation of GWs in magnetized plasma [22–25], coupling of GWs with
magnetized plasma in a Friedmann–Robertson–Walker (FRW) Universe [26,27], non-linear
GW interaction with plasma [28], frequency conversion by GWs [29], exact spherically
symmetric MHD solutions in GR [30], evolution of gravitational instabilities in magnetized
plasma [31,32], dynamo effects in magnetized cosmologies [33], MHD perturbations in
Bianchi Type I models [34–36], large-scale magnetic fields and MHD phenomena in the
early Universe [37–39], MHD processes in the vicinity of central galactic engines [40–42],
parametric resonant acceleration of particles [43] and/or amplification of EM plasma waves
in a dispersive GW background [44], and so on.

Despite the wealth of references, a comprehensive study regarding the excitation
of MHD modes (and their subsequent temporal evolution) by GWs is far from being
exhausted. The various approaches considered so far involve the interaction between
gravitational and MHD waves mainly in two cases, i.e., either in flat spacetime or in an
almost maximally symmetric FRW cosmological model. In other words, it is admitted that
the external magnetic field is too weak to destroy spacetime homogeneity and isotropy.
Yet there exist several cases, either of astrophysical interest or in the primordial stages of
the Universe’s evolution, where strong, ambient magnetic fields could have an important
effect on the local spacetime structure (see, e.g., [15], and references therein). In fact,
as long as the magnetic field coherence length is larger than or comparable to the causality
horizon, isotropy is lost and an anisotropic background (where plasma and GWs coexist
and interact) must be taken into account to guarantee proper treatment [45]. In fact, there
is a class of cosmological models in which the magnetic field is inherently encapsulated
to the spacetime geometry and results in its anisotropic evolution, the so-called Thorne’s
model [37,46].

In this article, we study the interaction between gravitational and MHD waves in
a conductive (resistive) magnetized medium that drives the evolution of the anisotropic
cosmological model described by Thorne’s metric tensor. In Section 2, we set up the GR
framework regarding the propagation of GWs in an anisotropic curved spacetime in the
presence of an ambient EM field. In Section 3, we derive the complete, self-consistent set
of equations of motion for the perturbed MHD and GW modes. By virtue of a particular
TT-gauge-like condition, only three non-zero components of the metric perturbations
remain relevant. In Section 4, we perform a numerical study of the associated system
of equations using a fifth-order Runge–Kutta–Fehlberg temporal integration scheme of
variable step. The corresponding results suggest that the propagation of GWs in the
anisotropic magnetized plasma so considered does excite several MHD modes, even if
initially all the perturbed quantities were null, i.e., their temporal initial conditions had
been set equal to zero. In other words, energy transfer from the gravitational to the EM
degrees of freedom does take place, depending on the conductivity of the plasma fluid
(resistive instabilities), the anisotropy of the curved spacetime (anisotropic instabilities),
the frequency of the GW (dispersive instabilities), and the associated angle of propagation
with respect to the direction of the ambient magnetic field (resonant instabilities). Finally,
we conclude in Section 5. In what follows, we use the system of units where the velocity of
light, c; Boltzmann’s constant, kB; and Newton’s gravitational constant, G; are all equal to
unity, i.e., c = kB = G = 1.
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2. Propagation of GWs in Magnetized Anisotropic Cosmologies

We consider an axisymmetric Bianchi Type I cosmological model, the line-element of
which is written in the form

ds2 = −dt2 + A2(t)
[
dx2 + dy2

]
+ W2(t)dz2, (1)

where A(t) and W(t) are the dimensionless scale factors. The anisotropy along the
ẑ-direction is due to an ambient magnetic field of the form ~H = H(t)ẑ, where H(t) ≡ Fx

y,
with Fx

y being the EM field tensor, and ẑ = W−1∂z. Assuming that the curved background
given by Equation (1) is filled with a perfect (though conductive) fluid with equation of
state p = γρ—where ρ is the rest-mass density, p is the pressure, and 1

3 < γ < 1 denotes
the speed of sound square, C2

s —the associated Einstein–Maxwell equations yield [37]

A(t) = t1/2, W(t) = t`, ` ≡ (1− γ)

(1 + γ)
, (2)

H(t) =
(1− γ)1/2(3γ− 1)1/2

2(1 + γ)
× 1

t
, (3)

ρ(t) =
(3− γ)

16π(1 + γ)2 ×
1
t2 . (4)

However, since in the original derivation of Thorne’s model the ambient magnetic
field corresponds to the mixed component of the EM field tensor, in what follows, the
background magnetic field reads

H(B) ≡ gyy H(t) =
H(t)

t
=

(1− γ)1/2(3γ− 1)1/2

2(1 + γ)
× 1

t2 . (5)

Notice that for γ → 1
3 , the magnetic field strength, H(t), along with the associated

anisotropy vanish. In fact, for γ→ 1
3 , `→ 1

2 and we obtain the isotropic, FRW radiation-
dominated Universe. In this context, Thorne’s model can be considered as an extension
to the expansion history of the Standard Model of the Universe and, in particular, as an
alternative to the radiation era of the early Universe in the case where large-scale magnetic
fields might have ever played an important role in cosmic expansion. Actually, we do
not know.

On the other hand, in the stiff matter approach (i.e., for γ→ 1), the inherent anisotropy
of Equation (1) not only remains active, but it becomes even more prominent, since, al-
though H → 0, the ẑ-axis becomes static (W → 1), resulting in a pancake model. Hence,
the speed-of-sound-square parameter, γ, may serve also as a measure of the inherent
anisotropy. The exact solution given by Equations (1)–(4) determines the class of Thorne’s
anisotropic magnetized cosmologies [37], which will serve as our background metric,
g(B)

µν , i.e., in what follows, tensor indices are raised and lowered using this metric tensor.
In Thorne’s model, the Alfvén group velocity of the MHD waves propagating in the interior
of the conductive cosmic fluid along the ẑ− axis remains constant, namely,

u2
A ≡

H2

4πρ
=

(1− γ)(3γ− 1)
(3− γ)

. (6)

Let us consider a plane-polarized GW propagating in the aforementioned model at an
angle θ with respect to the direction of the magnetic field. In this case, the associated
spacetime metric reads

gµν = g(B)
µν + hµν , (7)

where |hµν| � 1 and Greek indices refer to the four-dimensional spacetime (in accordance,
Latin indices refer to the three-dimensional spatial section). Following [46], we admit



Astronomy 2023, 2 108

that δgµν = hµν, hence, hαβ ≡ gαµ

(B) gβν

(B) hµν, and δgµν = −hµν = −gµα

(B) gνβ

(B) hαβ, where
repeated upper and lower indices denote summation. Without loss of generality, we may
restrict ourselves to a GW propagating on the (y, z)-plane. In this case, GW propagation
takes place along the ξ-direction, which, together with its normal one, the v-direction, are
determined by

ξ = z sin θ + y cos θ ,

v = z cos θ − y sin θ . (8)

In view of Equation (8), the associated covariant components of the metric tensor (1)
are given by

gξξ = cos2 θA2 + sin2 θW2 ,

gvv = cos2 θW2 + sin2 θA2 ,

gξv = sin θ cos θ(W2 − A2) (9)

and their contravariant counterparts are written in the form

gξξ =

(
sin2 θ

W2 +
cos2 θ

A2

)
,

gvv =

(
sin2 θ

A2 +
cos2 θ

W2

)
,

gξv = sin θ cos θ

(
1

W2 −
1

A2

)
, (10)

for which the following (auxiliary) conditions hold

gξξ gvv − g2
ξv = A2W2 , (11)

gξξ gvv −
(

gξv
)2

=
1

A2W2 . (12)

Consequently, from now on, all quantities depend on (t, ξ), and the angle of propaga-
tion ranges from zero to π

2 . For θ = 0 , the GW propagates normal to the direction of the
magnetic field, while for θ = π

2 , it propagates parallel to that direction.
The GW’s equation of propagation in the curved background determined by Equa-

tions (1)–(4) is given by (see, e.g., [46])

(hµν)
α
|α + 2R(B)

µανβhαβ = gαβ

(B)

(
tαµhνβ + tανhµβ

)
, (13)

where the vertical bar denotes covariant derivative with respect to the background metric,
R(B)

µανβ is the associated Riemann curvature tensor, and tαβ is the source tensor, i.e., the part
including all the non-gravitational fields, given by

tαµ ≡ 8π

(
Tαµ −

1
2

Tg(B)
αµ

)
. (14)

In Equation (14), Tαµ is the stress–energy tensor of the model’s (1) matter content, and
T ≡ gµν

(B)Tµν denotes its trace. Regarding the background metric itself, the Einstein field
equations are written in the form

R(B)
αβ = tαβ , (15)
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with R(B)
αβ being the associated Ricci tensor. In a cosmological model filled with perfect

fluid in the presence of an ambient EM field, the stress–energy tensor is decomposed to

Tµν = Tµν

(em)
+ Tµν

( f luid) =
1

4π

(
FµαFνβgαβ −

1
4

gµνF2
)
+

+ [(ρ + p) uµuν + p gµν] , (16)

where uα
(B) = (1, 0, 0, 0) is the fluid’s four-velocity at rest with respect to the comoving

frame. In this case, the Faraday tensor, Fµν, of the associated EM field is given by

Fµν =


0, Ex, Ey, Ez

−Ex, 0, Bz, −By
−Ey, −Bz, 0, Bx
−Ez, By, −Bx 0

 , (17)

where Bi (i = x, y, z) is magnetic induction. Notice that, as long as there is no magnetization
field, the quantities Hi and Bi coincide up to a constant. Accordingly, the components of
the electric field are given by Ej = Fjµu(B)

µ , and their magnetic counterparts are written in
the form Bi =

1
2 εijkmFjkum

(B). The stress–energy tensor given by Equation (16) satisfies the
conservation law

Tµν

|ν = 0 , (18)

and Maxwell’s equations in curved spacetime read (see, e.g., [46])

Fαβ

|β = 4π Jα ,

Fαβ|γ + Fβγ|α + Fγα|β = 0 , (19)

Jα
|α = 0 ,

where Jα is current density. In this article, we admit that the cosmic fluid representing
the matter content of Thorne’s model corresponds to a locally neutral, two-component
plasma, in which local neutrality is achieved due to the mobility of the lighter ion species.
Accordingly, the current density can be obtained from the invariant form of Ohm’s law, as

Jα = ρeuα + σFαβuβ , (20)

with σ being the conductivity (see, e.g., [47]). In Equation (20), ρe is the local charge
density, the unperturbed value of which equals zero, i.e., ρe = 0. However, provided
that the conductivity of the fluid is finite, we may admit that, locally, δρe(t,~r) 6= 0 (see,
e.g., [48]). In fact, in what follows, we assume that the conductivity of the magnetized
cosmic plasma fluid not only is finite, but it also remains constant in time. However,
in general, the conductivity can vary with time, following the Spitzer relation (see, e.g., [49])

σ = 102
(

T
eV

)3/2
(sec)−1, (21)

where T is the plasma temperature. According to the Standard Model, the Universe’s
evolution could be driven by plasma during the time era between the epoch of matter–radiation
equality, which took place at teq ' 1011 s, and the recombination epoch (trec ' 1013 s),
during which the temperature dropped to the point where electrons and nuclei could form
stable atoms. In this time interval, we have T = 105.4 t−1/2 eV (see, e.g., [50]). Consequently,

σ ≈ 1010

t3/4 sec−1 , (22)

hence, for teq ≤ t ≤ trec, the conductivity of the cosmic plasma fluid ranges from σrec ' 2 s−1

to σeq ' 55 s−1. For this reason, in what follows, σ is going to be treated as a constant
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parameter that takes values in the range 1 ≤ σ ≤ 50 s−1. In view of the above setting,
we may now proceed to derive the resistive MHD and GW equations of propagation in
the background model given by Equations (1)–(4). Notice that, upon consideration of the
condition uαuα = −1, the perturbed four-velocity vector is written in the form

uα(t, ξ) = (1, δux, δuy, δuz) . (23)

In order to analytically express (and solve) Equation (13), we need to impose a gauge
condition on hµν. In the curved background of Thorne’s model, such a condition would be

(hα
µ)|α = 0 and h = 0, (24)

where h is the trace of hµν. The gauge condition given by Equation (24) is the closest to
the transverse-traceless, (i.e., TT-gauge) condition we can impose in the curved background
given by Equation (1). The first of Equation (24) can be cast in the form

1√−g

(√
−g hα

µ

)
,α
− Γκµαgκλgαβhλβ = 0 , (25)

where g = −A4W2 = −t2(`+1) is the determinant of the metric tensor (1), Γκµα are the
associated Christoffel symbols, and the comma denotes partial differentiation. Notice that
in Equation (25) all the components of the metric tensor involved correspond to those of
the background metric. On the approach of three arbitrary functions, F(i)(t, ξ) (i = 1, 2, 3),
Equation (24) can be solved explicitly in terms of h00 and hxv as follows

hx0 =
F(1)

,ξ√−g
, hξ0 =

F(2)
,ξ√−g

, hv0 =
F(2)

,ξ√−g
, (26)

hxξ =
F(1)

,0√−g gξξ
− gξv

gξξ
hxv , (27)

hξξ =
F(2)

,0√−g gξξ
− gξv

gξξ
hξv, hvv =

F(3)
,0√−g gξv −

gξξ

gξv hξv , (28)

and

gxxhxx = h00 −
F(2)

,0√−g
−

F(3)
,0√−g

gvv

gξv +
hξv

A2W2gξv , (29)

where hξv is also related to h00, through the condition

cos2 θ

A4W2gξξ gξv

(
Ȧ
A
− Ẇ

W

)
hξv = − (

√−g h00),0√−g
−
(

Ȧ
A

)
h00 +

gξξ F(2)
,ξξ + gξvF(3)

,ξξ√−g

+
F(2)

,0√−g gξξ

sin2 θ

W2

(
Ȧ
A
− Ẇ

W

)
+

gξξ F(2)
,ξξ + gξvF(3)

,ξξ√−g
+

F(3)
,0√−g gξv

cos2 θ

W2

(
Ȧ
A
− Ẇ

W

)
(30)

and the dot denotes differentiation with respect to cosmic time, t.
In view of Equations (26)–(30), Equation (13) is left with only three unspecified (i.e.,

that cannot be set equal to zero independently) GW components, namely, hx0, hxξ , and hxv,
accompanied by the phase-space constraint

(A2Wh0x),0

A2W
=

(
sin2 θ

W2 +
cos2 θ

A2

)
hxξ,ξ + sin θ cos θ

(
1

W2 −
1

A2

)
hxv,ξ , (31)
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a direct consequence of Equations (26)–(28). Along with Equation (13), we may now also
perturb Equations (18) and (19) with respect to the metric, the EM field, and the cosmic
fluid variables to obtain the following closed, self-consistent set of perturbation equations
of propagation.

3. The Perturbations’ Equations of Propagation in Thorne’s Model

For clarity reasons, the perturbations’ equations of propagation are sorted as follows:

3.1. GW Propagation in Thorne’s Model

Along with the phase-space constraint given by Equation (31), the propagation of
the non-zero GW components in Thorne’s model (1) is governed by the following set
of equations

�(h0x)− 2
Ä
A
(h0x) = −16πγρ(h0x) , (32)

�(hxξ) − 2
(

Ȧ
A

)[
cos2 θ

Ȧ
A

+ sin2 θ
Ẇ
W

]
(hxξ)− 2

(
Ȧ
A

)
sin θ cos θ

(
Ẇ
W
− Ȧ

A

)
(hxv)

= 8π

[
ρ(1− γ) + cos2 θA4

H2
(B)

4π

]
(hxξ)− 8π sin θ cos θ

[
A4

H2
(B)

4π

]
(hxv), (33)

and

�(hxv) − 2
(

Ȧ
A

)[
sin2 θ

Ȧ
A

+ cos2 θ
Ẇ
W

]
(hxv)− 2

(
Ȧ
A

)
sin θ cos θ

(
Ẇ
W
− Ȧ

A

)
(hxξ)

= 8π

[
ρ(1− γ) + sin2 θA4

H2
(B)

4π

]
(hxv)− 8π sin θ cos θ

[
A4

H2
(B)

4π

]
(hxξ), (34)

where

� f = −∂2
t f +

(
sin2 θ

W2 +
cos2 θ

A2

)
∂2

ξ f −
(

2Ȧ
A

+
Ẇ
W

)
∂t f , (35)

is the D’ Alembert wave operator in the curved spacetime given by Equation (1) and
f,0 = ∂t f = ḟ .

3.2. The Perturbed Maxwell Equations

Next, we consider the perturbed Maxwell equations that give rise to the EM field
perturbations’ equations of propagation. Perturbation of the first of Equation (19) with
respect to metric and the EM variables yields the following set of equations

cos θ(δEy),ξ + sin θ(δEz),ξ = 4π(δρe) , (36)

− (δEx),0 + cos θ(δBz),ξ − sin θ(δBy),ξ −

− (δEx)

(
2Ȧ
A

+
Ẇ
W

)
= 4πσ

[
δEx + A2H(B)δuy

]
, (37)

− (δEy),0 + sin θ(δBx),ξ − (δEy)

(
2Ȧ
A

+
Ẇ
W

)
=

= 4πσ
[
δEy − A2H(B)δux − H(B)hx0

]
, (38)
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and

−(δEz),0 − cos θ(δBx),ξ − (δEz)

(
2Ȧ
A

+
Ẇ
W

)
= 4πσ(δEz) . (39)

Subsequently, perturbing the second of Equation (19), we obtain

(A4δBz),0 − cos θA2(δEx),ξ = 0 , (40)

(A2W2δBy),0 + sin θA2(δEx),ξ = 0 , (41)

(A2W2δBx),0 − sin θA2(δEy),ξ + cos θW2(δEz),ξ +

+ sin θA2H(B)(h0x),ξ − sin θ[A2H(B)hxξ ],0 −

− cos θ[A2H(B)hxv],0 = 0 , (42)

and
sin θA2(δBz),ξ + cos θW2(δBy),ξ = 0 . (43)

Notice that in view of Equation (43), the choice

δBy = −
(

sin θ

cos θ

)
t(1−2`)δBz (44)

would make Equations (40) and (41) identical. In this case, the only remaining equations of
this subset are Equations (40) and (42). The former can be cast in the more convenient form

(δBz),0 +
2
t
(δBz)−

cos θ

t
(δEx),ξ = 0 . (45)

Finally, perturbation of the last of Equation (19) with respect to the metric and the EM
variables results in

(δρe),0 + cos θ
[
σδEy − σH(B)hx0 − σA2H(B)δux

]
,ξ
+ sin θ[σδEz],ξ +

+

(
2

Ȧ
A

+
Ẇ
W

)
δρe = 0 . (46)

3.3. The Perturbed Euler Equations

To conclude with the perturbations’ equations of propagation, we now perturb the
conservation law given by Equation (18), also with respect to the metric and the EM field
variables, to obtain the perturbation equations for the cosmic fluid variables as follows

∂t(δρ) +
1

4π

[
A4H(B)δBz

]
,0
+ (1 + γ)ρ

[
cos θ(δuy),ξ + sin θ(δuz),ξ

]
−

− 1
4π

cos θA2H(B)(δEx),ξ + (1 + γ)

(
2Ȧ
A

+
Ẇ
W

)
δρ +

+ 4
(

Ȧ
A

)(
1

4π
A4H(B)

)
δBz = 0 , (47)
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(1 + γ)∂t(ρδux) +
1

4π
[A2H(B)δEy],0 −

1
4π

sin θA2H(B)(δBx),ξ + γ
[ ρ

A2 h0x

]
,0
−

− 1
8π

[A2H2
(B)h0x],0 +

[
ρ

A2 + A2
H2
(B)

8π

]
(h0x),0 +

+

(
4

Ȧ
A

+
Ẇ
W

)[
(1 + γ)ρδux +

1
4π

A2H(B)δEy
]
+

+ 2
(

Ȧ
A

)
γρ

h0x

A2 − 6
(

Ȧ
A

)
A2

H2
(B)

8π
h0x = 0 , (48)

(1 + γ)∂t(ρδuy) − 1
4π

[A2H(B)δEx],0 + γ
cos θ

A2 (δρ),ξ +

+
1

4π
A2H(B)[cos θ(δBz),ξ − sin θ(δBy),ξ ] +

+

(
4

Ȧ
A

+
Ẇ
W

)[
(1 + γ)ρδuy − 1

4π
A2H(B)δEx

]
= 0 , (49)

and

(1 + γ)∂t(ρδuz) + γ
sin θ

W2 (δρ),ξ +
1

4π
A2H(B)[− cos θ(δBy),ξ − sin θ

A2

W2 (δBz),ξ ] +

+

(
2

Ȧ
A

+ 3
Ẇ
W

)
[(1 + γ)ρδuz] = 0 . (50)

Equations (32)–(50) constitute the complete, closed set of 14 perturbation equations
that govern the evolution of the metric, the EM field, and the fluid variables involved,
namely, hx0, hxξ , and hxv (Equations (32)–(34)); δρe, δEx, δEy, δEz, δBx, δBy, and δBz
(Equations (37)–(42) and (46)); and δρ, δux, δuy, and δuz (Equations (47)–(50)), respec-
tively, along with three first-order (phase space) constraints, namely, Equations (31), (36)
and (43). Although over-determined, this is a very complicated system of partial differential
equations of inter-connected variables, for which several different classes of solutions may
exist. Clearly, it is very difficult to deal with it analytically; hence, we focus on its numerical
study. To do so, we need to point out that:

• As we have already stated, the lower temporal limit (t0) of numerical integration
is taken to be the epoch of matter–radiation equality, which occurs at t0 ∼ 1011 s
(see, e.g., [50]). Accordingly, we normalize time in units of t0. For t ≥ t0, the plasma-
dominated Universe goes on expanding and cooling until trec ∼ 1013 s, at which point
the temperature drops to the point where electrons and nuclei can form stable atoms
(recombination) and no plasma at all is left in the Universe. Hence, the latest time at
which plasma could play a role of cosmological significance is trec = 100 t0, which will
serve as the upper limit of numerical integration. Therefore, the limits of numerical
integration are 1 ≤ t

t0
≤ 100.

• To study resistive and/or other types of instability that might be triggered by the
oblique propagation of a plane-polarized GW within the anisotropic magnetized
plasma fluid under consideration, we assume that all the EM field and fluid perturba-
tions involved correspond to plane-wave-like forms,

δ f (t, ξ) = δ f (t)eı(kξ−
∫ t

ωdt) , (51)

following the so-called adiabatic approximation [51–53], where k is the comoving wave-
number. In this context, the (slowly varying) time-dependent frequency of the various
wave-forms, ω(k, t), is defined by the eikonal Ω =

∫ t
ωdt through the relation ω = dΩ

dt .
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To allow for potential resonances between the GW and the EM degrees of freedom,
in what follows, we assume that ω ≈ ωg, so that ω can be Taylor-expanded around
ωg. In this case,

ω = ωg +
dω

dt

∣∣∣ωg t +
d2ω

dt2

∣∣∣ωg t2 + ... (52)

and the eikonal Ω results in

Ω =
∫ t

t0

ωdt = ωg

(
t
t0

)[
1 +

1
200

(
t
t0

)
+

1
60000

ωg

(
t
t0

)2
+ ...

]
, (53)

i.e., during the whole time interval of numerical integration, it is slightly modulated
around the quantity ωg

(
t
t0

)
(the main resonance).

• On the other hand, ω as defined by Equations (51) and (52) has the usual mean-
ing of the angular frequency of an oscillating process only in the short-wavelength
(high-frequency) regime of the mode k (see, e.g., [54]). In other words, the wave de-
scription in curved spacetime makes sense only when the physical wavelength along
the direction of propagation, λph = λW(t), is smaller than the associated horizon
length, `HW = H−1

W , where HW = 1
W

dW
dt is the Hubble parameter along the anisotropic

ẑ−direction. Accordingly,

λph ≤ `HW ⇒
k

W(t)
≥ HW ⇒ k ≥ 1− γ

1 + γ

(
t0

t

) 2γ
1+γ

. (54)

For 1 ≤ t
t0
≤ 100, it suffices that k ≥ 1−γ

1+γ , measured in units of c−1, i.e.,×10−10 (cm)−1.
• Eventually, at t = t0, with the exception of GWs, all other perturbations are taken to ad-

mit δ f (t0) = 0. Regarding metric perturbations, they correspond to pre-recombination
cosmological GWs, the initial amplitudes of which are given by

δ fg(t0) ≡ A = α

√
L

2ωg
× 10−11 (cm) , (55)

where L is a characteristic length scale (see, e.g., [7]). In the absence of any interaction,
these GWs would manifest an amplitude of the order A ∼ 10−20 cm at the present
epoch. In Equation (55), α = {0.5, 0.9, 1.4, 1.9, 2.5} is the normalized initial amplitude
of the GW. It is used to examine to what extent the GW temporal evolution might
result in its amplitude reduction and, most importantly, what the corresponding effect
on the EM potentials would be. We stress that a potential descending behaviour of
the GW amplitude would signal an energy transfer from the gravitational to the EM
degrees of freedom of the MHD system under consideration, leading to excitation of
the EM fields and damping of the GW (see, e.g., [24]). In this case, it is interesting to
explore the role of the various free parameters involved. In fact, we shall examine the
role of conductivity, σ, and the inherent spacetime anisotropy, γ, along with those of
the GW frequency, ωg, and the associated angle of propagation with respect to the
direction of the background magnetic field, θ.

Accordingly, the 14 differential equations of propagation of the perturbed quantities,
namely, Equations (32)–(34), (37)–(42) and (46)–(50), are integrated forward in time using
the fifth-order Runge—Kutta—Fehlberg computational scheme with variable integration
step. In order to study the dependence of the evolution of the perturbation modes on a
particular parameter, at each numerical run, we keep all other parameters, i.e., exept the
one under consideration, as constants.
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4. Numerical Evaluation of the Perturbation Modes

We consider a plane-polarized GW of frequency ωg = 0.1 Hz, propagating within a
plasma fluid of conductivity σ = 10 s−1 at an angle θ = 45◦ with respect to the direction of
an ambient magnetic field, ~H = H(t)ẑ. The magnetized plasma so considered drives the

evolution of the associated Thorne’s model with γ =
(

Cs
c

)2
= 0.6. The temporal evolution

of the GW component hx0 (normalized over its initial amplitude) is presented in Figure 1
for α = 1.4 (the minus sign is nothing but a convention denoting that |hµν| decreases).
In fact, the evolution of hx0 is independent of α as a consequence of the constraint given by
Equation (31), something that is verified also by the numerical results.

From Figure 1, we observe that the metric perturbation’s amplitude (equivalently, its
energy) decreases at a rate |hx0| ∼ t−0.58, i.e., much steeper than what the cosmological
redshift alone would imply, |hx0| ∼ (A2W)−1/3 ∼ t−0.42. This is a very important feature
of |hx0|, suggesting that, apart from Universe expansion, there is an additional descending
factor of the GW amplitude, most probably due to the gravitational energy loss in the
interaction between gravitational, EM, and the cosmic fluid degrees of freedom (they
constitute a closed system). Notice that the same is also true with regards to the evolution
of hxξ and hxv.
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Figure 1. Time evolution of the normalized (over its initial value) GW amplitude |hx0| for σ = 10 s−1,
γ = 0.6, ωg = 0.1 Hz, and θ = 45◦. The apparent independence of |hx0(t)| on α, which is used
to parametrize its initial value, is, in fact, a consequence of constraint (31). We observe that the
metric perturbation’s amplitude (equivalently, its energy) decreases at a higher rate than what the
cosmological redshift alone would imply, indicating that there is an additional GW energy loss.

A potential energy transfer from gravitational to the EM (and the fluid) degrees of
freedom due to the resonant interaction between GWs and MHD waves in curved spacetime
is an irreversible process, and not only because of the resistivity of the cosmic fluid involved
(in connection, see, e.g., [55,56]). In this case, the subsequent damping of the GW has a
significant side effect: the production of entropy. The entropy, S, associated with a GW is a
natural extension of the quantum von Neumann entropy into classical, four-dimensional
wave systems (see, e.g., [57]), i.e.,

S = −
∫ t

t0

dt
∫

V
d3x
√
−g |hx0|2 ln |hx0|2 , (56)

where V is the spatial volume involved and
√−g =

(
t
t0

)`+1
is the determinant of the

metric tensor (1). In our case, the GW’s profile does not have any spatial dependence, i.e., its
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amplitude depends only on time. Therefore, the associated entropy density, S = S/V, is
given by

S = −
∫ t

t0

√
−g |hx0|2 ln |hx0|2dt . (57)

At the initial state (i), i.e., in the absence of any interaction between GWs and MHD
waves, the amplitude of the GW can be written in the form

|h(i)x0 | = A×
(

t0

t

)0.42
, (58)

where A is given by Equation (55). On the other hand, at the final state ( f ) of the irreversible
process under consideration, i.e., in the resonant interaction between GWs and MHD waves,
we have

|h( f )
x0 | = A×

(
t0

t

)0.58
. (59)

With the aid of Equations (57)–(59), we find that the entropy density variation between
the initial and the final state of the GW evolution in its resonant interaction with MHD
waves is given by

∆S = S f − Si =
1

`+ 0.84
A2
(

t
t0

)`+0.84
(60)

×
[(

t
t0

)0.32
ln
(

t
t0

)
− `+ 0.84

`+ 1.16
ln
(

A
t0

)
+ (2`+ 103.5) +O

(
A0.75

)]
,

where O
(

A0.75) denotes terms of the order A0.75 (∼ 10−8). For γ = 0.6 (` = 0.25) and
1 ≤ t

t0
≤ 100, Equation (60) results in ∆S ' 1.3× 104 A2, which is a definitely positive,

although relatively small
(
∆S ∼ 10−18), quantity.

On the other hand, the energy, Eg, carried by a GW, cannot be defined locally. It can
only be quasi-localized under very certain conditions (for more details, see, e.g., [58]). Pro-
vided that these conditions are met, the energy carried by a GW is, essentially, proportional
to the amplitude square of the GW, i.e., Eg ∼ |hx0|2. Hence, an estimate of the gravitational
energy lost in the resonant interaction between GWs and MHD waves can be given by
comparing the amplitude square of the GW at the aforementioned initial (i) and final ( f )
states of the interaction process. Accordingly,

E (i)g

E ( f )
g

∼
|h(i)x0 |2

|h( f )
x0 |2

=

(
t
t0

)0.32
= 1000.32 = 4.365 . (61)

In view of Equation (61), the GW energy at the beginning of the resonant interaction
process is more than four times larger than that at the end of this process. To the best of our
knowledge, with the exception of large concentrations of plasma around compact objects,
there is no direct conversion of gravitational energy into heat. Therefore, we expect that
this energy deficit corresponds to the energy transferred to the EM and the fluid degrees of
freedom. However, Equation (61) also reveals a much more interesting feature, namely,

E (i)g ≈ 4E ( f )
g ⇒ |h(i)x0 | ≈ 2|h( f )

x0 | . (62)

In other words, if resonant interaction between cosmological GWs (CGWs) and MHD
waves has ever taken place in the expansion history of the Universe, then the observed CGW
amplitude at the present epoch would be half what would otherwise be expected. Such
a result would be an indirect, though quite clear, manifestation that large-scale magnetic
fields have indeed played some role in early Universe evolution.
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In response to the aforementioned results, we consider the temporal evolution of
the electric field perturbations δEz (the Alfvén mode) and δEy (the magnetosonic mode)
parametrized by the normalized initial amplitude of the GW, α (Figure 2). We observe
that as α increases in absolute value in the range 0.5 ≤ α ≤ 2.5, |δEz| almost doubles
its maximum value, rising as |δEz| ∼ α0.44, while the magnetosonic component remains
unaffected by the variation of α, increasing very rapidly to reach an amplitude 2500 times
larger than that of δEz. On the other hand, the electric field perturbation along the x̂−axis
remains null (|δEx| ' 0), i.e., it is not amplified effectively during the whole temporal
integration interval, 1 ≤ t

t0
≤ 100.
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Figure 2. Electric field perturbations δEz and δEy for γ = 0.6, σ = 10.0 s−1, ωg = 0.1 Hz, and
θ = 45◦. We observe that, with regard to the evolution of the magnetosonic component, there is
no dependence on the normalized initial amplitude of the GW, α, whereas the associated Alfvén
component rises more steeply as α increases in absolute value.

Now that we have a clear-cut case regarding a GW’s propagation in the magnetized
plasma that drives the evolution of Thorne’s model—i.e., it can certainly transfer a part
of its energy to the EM field and/or the cosmic fluid degrees of freedom—we may
explore the associated response of the various MHD quantities involved. We need to
point out that the three linearly independent constraints ci = 0 (i = 1, 2, 3) arising from
Equations (31), (36) and (43) are also monitored throughout numerical integration. Dur-
ing the whole time interval 1 ≤ t

t0
≤ 100, none of them ever exceeds the value 10−10,

i.e., they remain sufficiently close to zero. This feature suggests that our model is (indeed)
self-consistent, thus making us quite confident of the accuracy of our results despite the
complexity of the associated field equations.

4.1. Resistive Instabilities

The first set of parameters to be treated as constants are {γ = 0.6, ωg = 0.1 Hz,
θ = 45◦}. In other words, the angle of propagation with respect to the direction of the
magnetic field in Thorne’s spacetime of fixed anisotropy with regard to a transient, non-
dispersive, plane GW of α = 1.4, is also kept fixed at 45◦. In this case, the evolution of the
various MHD modes—basically the electric field perturbations δEz (the Alfvén component)
and δEy (the magnetosonic one)—is parametrized only by the conductivity of the plasma
fluid. On the basis of its potential temporal dependence during t0 = teq ≤ t ≤ trec = 100 t0,
a representative set of conductivity values would be σ = {1.0, 5.0, 10.0, 15.0, 20.0}.
The corresponding results are shown in Figure 3. We observe that the electric field pertur-
bations along the direction of the background magnetic field are, in fact, resistive instabilities,
as they are particularly favoured by small values of conductivity (i.e., high values of resis-
tivity). On the contrary, the perturbations along the (normal) ŷ-direction (the associated
MSWs) increase much more steeply, and they are saturated at high amplitude values (al-
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most 2500 times higher than those of the Alfvén component) for long enough time intervals
( ∆t ' 1012 s) in accordance with the increasing conductivity. This is not an unexpected
result, since in the large-conductivity (i.e., low resistivity) limit of an ideal plasma, only the
magnetosonic component survives (see, e.g., [59]).
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Figure 3. Temporal evolution of the electric field perturbations δEz (the Alfvén component) and
δEy (the magnetosonic component) parametrized by the conductivity, σ, of the plasma fluid for
γ = 0.6, ωg = 0.1 Hz, and θ = 45◦.

In Figure 4, the temporal evolution of the density perturbations in Thorne’s model are
presented as a function of conductivity. It becomes evident that high values of conductivity
suppress density fluctuations quite rapidly. In other words, low conductivity values—
which clearly signal a departure from the ideal plasma case—do favour mass-density
instabilities, a result that is in accordance with earlier works [32,59].
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Figure 4. Temporal evolution of density perturbations for γ = 0.6, ωg = 0.1 Hz, and θ = 45◦, being
parametrized by σ. The associated numerical results suggest that large conductivity values suppress
mass-density perturbations in a more abrupt manner, i.e., no density instabilities are favoured in an
ideal plasma.

4.2. Anisotropic Instabilities

Next, we consider the following set of parameters to be kept constant: {σ = 10.0 s−1,
ωg = 0.1 Hz, θ = 45◦}. In this case, the angle of propagation with respect to the direction
of the magnetic field in Thorne’s spacetime of variable anisotropy (i.e., magnetic field
intensity), as regards a transient, non-dispersive, plane GW, is kept fixed at 45◦. The non-
ideal plasma that drives the evolution of such a spacetime model has a conductivity of
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σ = 10.0 s−1. Accordingly, the evolution of the various MHD modes—basically the electric
field perturbations δEz and δEy—is parametrized by the anisotropy measure, γ, taking
values of growing anisotropy, i.e., γ = {0.4, 0.5, 0.6, 0.7, 0.8}. The associated results are
presented in Figure 5.

Once again, the magnetosonic component of the electric field perturbation increases
more steeply than the corresponding Alfvén one, reaching an amplitude almost 3000 times
higher than that of δEz. In this case, large values of γ correspond to a higher degree of
anisotropy of the background spacetime and to a lower expansion rate along the direction
of the ambient magnetic field. For γ ≥ 0.66, the magnetic field strength starts to decrease
(cf. Equation (3)), and this behaviour is monitored also in the evolution of the electric
field (intersecting curves). Indeed, numerics confirm that up to γ ' 0.7, |δEz| rises with
the increase in the anisotropy measure, whereas for greater values of γ, this behaviour is
reversed (see, e.g., Figure 6).
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Figure 5. Electric field perturbations δEz and δEy for the following set of parameters: {σ = 10.0 s−1,
ωg = 0.1 Hz, θ = 45◦}, illustrating their dependence on the anisotropy measure, γ.
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Figure 6. Electric field perturbation along the ẑ-direction for the set of parameters above, verifying
numerically that the turning point in the behaviour of the magnetic field is attained at γ = 0.67.

In Figure 7, we illustrate the dependence of the mass-density perturbations on γ.
The corresponding results are displayed over a limited time interval for reasons of best
analysis. We observe that the density perturbations decay more rapidly as γ grows. Large
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values of γ correspond to a slow expansion rate along the direction of the magnetic field.
Therefore, we expect that normal to this direction, condensations that may be formed
within the plasma fluid will remain active for longer time intervals, something that could
lead to pancake instabilities. It appears that one- and/or two-dimensional formations are
actually quite common in magnetized anisotropic cosmological models (see, e.g., [59]).
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Figure 7. Density perturbation plots for σ = 10.0 s−1, ωg = 0.1 Hz, and θ = 45◦. Notice that for large
values of γ, the density perturbations decay more prominently.

4.3. Dispersive Instabilities

Now, we examine the dependence of the temporal evolution of the electric field
perturbations δEz and δEy on the frequency of the GW. To do so, we consider the fol-
lowing set of constants {γ = 0.6, σ = 10.0 s−1, θ = 45◦}, while ωg admits the values
ωg = {0.01, 0.05, 0.10, 0.15, 0.20}, measured in Hz. This dependence is illustrated in
Figure 8. We observe that the electric field perturbation along the direction of the back-
ground magnetic field is affected by the variation of the frequency, while that along the ŷ-
direction remains unaltered. In particular, the first of Figure 8 suggests that high-frequency
GWs favour an Alfvén component that grows linearly with ωg, i.e., |δEz| ∼ ωg. On the
other hand, the independence of |δEy| on ωg is rather surprising, since in the isotropic
model, one would have an ω2

g-dependence (see, e.g., [15]). Instead, here, |δEy| rises very
rapidly to reach values 5000 times higher than the Alfvén component and remains almost
saturated for a long time interval. This is typical behaviour of the anisotropic magnetosonic
instability that we saw earlier (cf. Figure 5 for γ = 0.6). It appears that, regarding MSW
propagation in the magnetized plasma under consideration, the spacetime anisotropy
prevails over any frequency modulation of the GW.

Furthermore, we observe that a decreasing ωg (i.e., the long GW wavelength regime)
also favours condensations that can be formed within the plasma fluid to remain active for
longer time intervals (Figure 9).

4.4. Resonant Instabilities

To conclude our analysis on the electric field perturbations, we now consider their evo-
lution with respect to the angle of the GW propagation with respect to the direction of the
ambient magnetic field of Thorne’s model, i.e., θ = {15◦, 30◦, 45◦, 60◦, 80◦} (see Figure 10,
wherein the following set of parameters are treated as constants:
{γ = 0.6, σ = 10.0 s−1, ω = 0.1 Hz}). In this case, in addition to the magnetosonic
component δEy, which is always present as a result of the anisotropic instability (indepen-
dent of θ), as we approach normal propagation (θ → 0◦), the Alfvén component (δEz) is
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also excited significantly. The reason is that when the wave vector becomes vertical to the
direction of the magnetic field, δEz also corresponds to a magnetosonic mode of the system
under study.
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Figure 8. Temporal evolution of the electric field perturbations δEz and δEy for the following set
of the parameters: {γ = 0.6, σ = 10.0 s−1, θ = 45◦}. Although the Alfvén component grows as
δEz ∼ ωg, the magnetosonic one remains unaffected by the variation of ωg.

0.006

0.0065

0.007

0.0075

0.008

0.0085

1.3 1.4 1.5

|δ
ρ
|

t (x 10
11

 sec)

ω=0.01
ω=0.05

ω=0.1
ω=0.15

ω=0.2

Figure 9. Density perturbation plots for γ = 0.6, σ = 10.0 s−1, and θ = 45◦. Notice that the higher
the frequency of the wave, the faster it decays in time.
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Figure 10. Temporal evolution of the electric field perturbations δEz and δEy for the following set of
parameters: {γ = 0.6, σ = 10.0 s−1, ωg = 0.1 Hz} versus the angle of GW propagation, θ.
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4.5. Magnetic Field Perturbations

Finally, in Figures 11 and 12, we depict the temporal evolution of the magnetic field
perturbations parametrized by the normalized initial amplitude of the GW, α, the conduc-
tivity of the plasma fluid, σ, and the angle of propagation of the metric perturbation, θ.
The numerical results indicate that in this case, only the x̂-component of the magnetic field
perturbations (the associated MSW) is excited significantly, probably due to the anisotropic
instability that is always present (in connection, see, e.g., [59]). Nevertheless, δBx exhibits
also some other, very interesting features. In particular, as α increases in absolute value in
the range 0.5 ≤ α ≤ 2.5, |δBx| almost doubles its maximum value, rising as |δBx| ∼ α0.44.
This is exactly the same behaviour as in the case of the Alfvén electric field perturbation (see
Figure 2). It appears that the magnetic field MSWs do get triggered by the GW, while the
corresponding electric-field components are driven mainly by the background anisotropy.
The opposite behaviour is excited by the associated Alfvén components. Finally, the magne-
tosonic component δBx appears to be independent of σ but not of the angle of propagation,
θ, with respect to which it grows as |δBx| ∼ θ 0.22, i.e., it becomes even more prominent on
the approach to the parallel propagation case (cf. Figure 12).
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Figure 11. Magnetic field perturbation δBx: In the first figure, we use the set of constants
{γ = 0.6, σ = 10.0 s−1, θ = 45◦, ωg = 0.1 Hz}, while the second one refers to {γ = 0.8,
σ = 20.0 s−1, θ = 30◦, ωg = 0.05 Hz}. We observe that in both cases, the behaviour of the magne-
tosonic component is almost identical, i.e., δBx is triggered basically by the GW, and in particular as
|δBx| ∼ α0.44.
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Figure 12. Temporal evolution of the magnetosonic mode δBx for {γ = 0.6, α = 1.4, θ = 45◦,
ωg = 0.1 Hz} and {γ = 0.6, σ = 10.0 s−1, α = 1.4, ωg = 0.1 Hz}. We observe that it is independent
of σ, i.e., in the magnetized plasma fluid that drives the evolution of Thorne’s model with γ = 0.6,
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no resistive magnetic instabilities ever occur. On the contrary, the growth of δBx becomes even more
pronounced as θ grows, i.e., on the approach to parallel propagation with respect to the direction of
the ambient magnetic field.

5. Discussion and Conclusions

Using the resistive MHD equations in curved spacetime, we investigated numerically
the temporal evolution of the electric and magnetic field perturbations, along with the
associated mass-density ones, that can be triggered by the oblique propagation of a plane-
polarized GW in a class of anisotropic cosmological models with an ambient magnetic
field along the ẑ-axis, namely, in Thorne’s cosmological model. This model could be a
viable extension to the Standard Model of the Early Universe in the presence of a large-
scale magnetic field since such a field can affect the local spacetime structure; accordingly,
an anisotropic background must be taken into account to guarantee the proper treatment
of curved spacetime.

Technically speaking, the GWs affect the evolution of MHD waves in curved spacetime
through the general-relativistic Euler equations of motion (18) and the associated Maxwell
field Equation (19). The so-assumed gravito–electromagnetic interaction is an irreversible
process, mostly due to the backreaction of the EM fields and the fluid on the curved space-
time background through the Einstein field Equations (14)–(16). In this article, by admitting
a perfect fluid source, we have actually neglected potential distortions of the curved space-
time background due to energy flows. In general, one could use a non-ideal gas, where the
heat conduction, shear, and viscosity of the fluid source should also be taken into account
when solving the Einstein field equations. In fact, it would be particularly interesting to
examine what would be the exact nature of the aforementioned gravito–electromagnetic
interaction in a realistic (i.e., non-ideal) fluid. This will be the scope of future work.

In this article, we are mainly interested in the resonant interaction between GWs
and MHD waves, i.e., when the value of the MHD circular frequency is close to the
corresponding GW quantity. As we have found, in this case, energy transfer from the
gravitational to the EM degrees of freedom does take place, resulting in the excitation of
the latter and in the damping of the GW. The various MHD modes excited increase quite
rapidly at early times after t0 (where the main resonance ω ' ωg takes place) to reach
a maximum value, while afterwards, they decay at a much lower rate. In some cases,
the perturbations (basically, the magnetosonic modes) are saturated at high amplitude
values for long enough time intervals, driven by the inherent background anisotropy.
In particular, we have identified the following major points:

When a plane-polarized GW propagates in a conductive plasma fluid obliquely to
the direction of the ambient magnetic field that drives the evolution of Thorne’s model,
its amplitude (equivalently, its energy) decreases at a rate much higher than what the
cosmological redshift alone would imply (Figure 1). This result suggests that, apart from
Universe expansion, there is an additional descending factor of the GW amplitude, most
probably due to the gravitational energy lost in the interaction between gravitational, EM,
and the cosmic fluid degrees of freedom, since all of them constitute a closed system. In this
context, the GW damping results also in the production of an extra amount of entropy.
Indeed, in the resonant interaction between GWs and MHD waves in Thorne’s model,
the entropy density variation, ∆S , between the initial state (when there is no interaction
at all) and the corresponding final one (i.e., at the end of the gravito–electromagnetic
interaction process) is directly proportional to the amplitude square of the GW involved,
which is a definitely positive, although quite small, quantity.

Certainly, the energy carried by a GW cannot be defined locally. However, an estimate
of the gravitational energy that is lost in the resonant interaction between GWs and MHD
waves can be given by comparing the amplitude square of the GW at the aforementioned
initial and final states of the interaction process. Accordingly, we have found that the GW
energy at the beginning of the resonant interaction process was more than four times larger
than that at the end of this process (cf. Equation (61)). To the best of our knowledge, there
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is no direct conversion of gravitational energy into heat. Therefore, we expect that this
energy deficit corresponds to the energy transferred to the EM and the fluid degrees of
freedom. This result, however, might have a much more intriguing consequence, that is,
if a resonant interaction between cosmological GWs (CGWs) and MHD waves has ever
taken place in the history of Universe expansion, then the observed CGW amplitude at the
present epoch would be half what is expected (cf. Equation (62)). Verification of this result
by observations would be an indirect, though quite clear, manifestation that large-scale
magnetic fields have indeed played some role in the early Universe’s evolution.

In view of the aforementioned results, the temporal evolution of the electric field
perturbations δEz (the Alfvén mode) and δEy (the magnetosonic mode) has been examined,
parametrized by the normalized initial amplitude of the GW, α (Figure 2). We have found
that, as α increases in the range 0.5 ≤ α ≤ 2.5, the Alfvén mode |δEz| rises as |δEz| ∼ α0.44.
Regarding the associated magnetosonic one, δEy, it appears to remain unaffected by the
variation of α and increases rapidly after t0, probably because it is trapped in the second
resonance, ω ' 1.005 ωg. Its amplitude reaches values 2500 times higher than those of δEz,
where it saturates for a relatively long time interval, probably due to the inherent spacetime
anisotropy (anisotropic instability).

On the other hand, regarding the magnetic field perturbations, numerics indicate
that only the x̂-component (the associated MSW) is excited significantly, probably due to
the anisotropic instability that is always present. The amplitude of δBx also rises with
the increasing α as |δBx| ∼ α0.44, i.e., at exactly the same rate as |δEz|. It appears that the
magnetic field MSWs do get triggered by the GW, while the corresponding electric field
components are driven mainly by the background anisotropy. Accordingly, we cannot
help but wonder whether the ever-present magnetic field in the Universe has been partly
achieved at the expense of gravitational radiation. Clearly, this could be the scope of
future work. Notice also that the magnetosonic component δBx appears to be independent
of σ but not of the angle of propagation, θ, with respect to which its amplitude grows
as |δBx| ∼ θ 0.22, i.e., it becomes even more prominent on the approach to the parallel
propagation case (cf. Figure 12).

As for the response of the electric components to the variation of the cosmological
parameters involved, such as the conductivity of the plasma fluid (resistive instabilities),
the anisotropy measure of the curved spacetime (anisotropic instabilities), the frequency
modulation of the GW (dispersive instabilities), and the variation of the associated angle of
propagation with respect to the direction of the magnetic field (resonant instabilities), it can
be summarized as follows:

Resistive instabilities: Numerical results suggest that the electric field perturbations
along the direction of the background magnetic field are particularly favoured by low
conductivity (i.e., high resistivity) values (Figure 3). Regarding the perturbations along
the (normal) ŷ-direction (the associated MSWs), they increase much more steeply and they
are saturated at high amplitude values (almost 2500 times higher than those of the Alfvén
component) for much longer time intervals (∆t ' 1012 s) in accordance with growing
conductivity. This is not an unexpected result, since in the large σ limit (i.e., approaching
the ideal plasma case), only the magnetosonic component survives.

Anisotropic instabilities: When anisotropy grows, the magnetosonic component of
the electric field perturbation increases steeply and its amplitude reaches values almost
3000 times higher than those of δEz. Large values of the associated measure,γ, correspond
to a lower expansion rate along the direction of the ambient magnetic field. For γ ≥ 0.66,
the magnetic field strength also starts to decrease (cf. Equation (3)), and this behaviour is
monitored also in the evolution of the electric components (cf. Figure 5). Indeed, the nu-
merical results confirm that up to γ ' 0.7, |δEz| rises with the increase in the anisotropy
measure, whereas for greater values of γ, this behaviour is reversed (cf. Figure 6).

Dispersive instabilities: Regarding the dependence of the electric modes on the frequency
of the GW, we have found that high-frequency GWs favour the Alfvén component, which
grows linearly with ωg. On the contrary, δEy appears to be independent of ωg, rising
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steeply to reach values 5000 times higher than those of δEz and remaining saturated for
a relatively long time interval. This is typical behaviour of anisotropic magnetosonic
instability; hence, regarding the propagation of MSWs in the magnetized plasma under
consideration, the spacetime anisotropy prevails over any frequency modulation of the GW.

Resonant instabilities: In this case, in addition to the magnetosonic component δEy,
which is always present (independent θ), as we approach normal propagation (θ → 0◦),
the Alfvén component δEz is also excited significantly. The reason is that when the wave
vector becomes vertical to the direction of the magnetic field, δEz also corresponds to a
magnetosonic mode of the system.

Rest mass-density fluctuations: Numerics indicate that the rest mass-density perturba-
tions decay more rapidly as γ grows. Large values of γ correspond to a low expansion
rate along the direction of the magnetic field; hence, we expect that normal to this direc-
tion, condensations that may be formed within the plasma fluid will remain active for
longer time intervals, something that could lead to a two-dimensional (pancake) insta-
bility. On the other hand, large conductivity values suppress mass-density fluctuations
quite rapidly. In other words, low conductivity, which signals a departure from the ideal
plasma case, may favour mass-density instabilities (resistive Jeans instabilities). Finally,
long-wavelength GWs (i.e., low ωg values) also favour density fluctuations to remain active
for long time intervals.

To the best of our knowledge, this is the first time that all these kinds of instabilities
have been collectively examined in Thorne’s model, a viable extension to the Standard
Model of Universe expansion. Clearly, a comprehensive study regarding the excitation of
MHD modes (and their subsequent temporal evolution) by GWs in curved spacetime is not
only far from being exhausted but, in fact, looks very promising. Therefore, the interaction
between gravitational and MHD waves in curved spacetime should be further explored
and scrutinized in the search for the most accurate profile of many astrophysical and/or
cosmological processes.
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