Next Issue
Volume 2, June
Previous Issue
Volume 1, December
 
 

Astronomy, Volume 2, Issue 1 (March 2023) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
11 pages, 909 KiB  
Communication
Fitting Power Spectrum of Scalar Perturbations for Primordial Black Hole Production during Inflation
by Daniel Frolovsky and Sergei V. Ketov
Astronomy 2023, 2(1), 47-57; https://doi.org/10.3390/astronomy2010005 - 22 Mar 2023
Cited by 5 | Viewed by 1378
Abstract
A simple phenomenological fit for the power spectrum of scalar (curvature) perturbations during inflation is proposed to analytically describe slow roll of inflaton and formation of primordial black holes (PBH) in the early universe, in the framework of single-field models. The fit is [...] Read more.
A simple phenomenological fit for the power spectrum of scalar (curvature) perturbations during inflation is proposed to analytically describe slow roll of inflaton and formation of primordial black holes (PBH) in the early universe, in the framework of single-field models. The fit is given by a sum of the power spectrum of slow-roll inflation, needed for a viable description of the cosmic microwave background (CMB) radiation in agreement with Planck/BICEP/Keck measurements, and the log-normal (Gaussian) fit for the power spectrum enhancement (peak) needed for efficient PBH production, in the leading (model-independent) approximation. The T-type α-attractor models are used to get the simple CMB power spectrum depending upon the e-folds as the running variable. The location and height of the peak are chosen to yield the PBH masses in the asteroid-size window allowed for the whole (current) dark matter. We find the restrictions on the peak width. Full article
Show Figures

Figure 1

25 pages, 824 KiB  
Technical Note
On the Dynamical Instability of Monatomic Fluid Spheres in (N + 1)-Dimensional Spacetime
by Wei-Xiang Feng
Astronomy 2023, 2(1), 22-46; https://doi.org/10.3390/astronomy2010004 - 02 Mar 2023
Viewed by 2259
Abstract
In this note, I derive the Chandrasekhar instability of a fluid sphere in (N + 1)-dimensional Schwarzschild–Tangherlini spacetime and take the homogeneous (uniform energy density) solution for illustration. Qualitatively, the effect of a positive (negative) cosmological constant tends to destabilize (stabilize) the [...] Read more.
In this note, I derive the Chandrasekhar instability of a fluid sphere in (N + 1)-dimensional Schwarzschild–Tangherlini spacetime and take the homogeneous (uniform energy density) solution for illustration. Qualitatively, the effect of a positive (negative) cosmological constant tends to destabilize (stabilize) the sphere. In the absence of a cosmological constant, the privileged position of (3 + 1)-dimensional spacetime is manifest in its own right. As it is, the marginal dimensionality in which a monatomic ideal fluid sphere is stable but not too stable to trigger the onset of gravitational collapse. Furthermore, it is the unique dimensionality that can accommodate stable hydrostatic equilibrium with a positive cosmological constant. However, given the current cosmological constant observed, no stable configuration can be larger than 1021M. On the other hand, in (2 + 1) dimensions, it is too stable either in the context of Newtonian Gravity (NG) or Einstein’s General Relativity (GR). In GR, the role of negative cosmological constant is crucial not only to guarantee fluid equilibrium (decreasing monotonicity of pressure) but also to have the Bañados–Teitelboim–Zanelli (BTZ) black hole solution. Owing to the negativeness of the cosmological constant, there is no unstable configuration for a homogeneous fluid disk with mass 0<M0.5 to collapse into a naked singularity, which supports the Cosmic Censorship Conjecture. However, the relativistic instability can be triggered for a homogeneous disk with mass 0.5<M0.518 under causal limit, which implies that BTZ holes of mass MBTZ>0 could emerge from collapsing fluid disks under proper conditions. The implicit assumptions and implications are also discussed. Full article
(This article belongs to the Special Issue Feature Papers in the Astronomical Sciences)
Show Figures

Figure 1

7 pages, 315 KiB  
Communication
(No) Eternal Inflation in the Starobinsky Inflation Corrected by Higher Curvature Invariants
by Jan Chojnacki and Jan Henryk Kwapisz
Astronomy 2023, 2(1), 15-21; https://doi.org/10.3390/astronomy2010003 - 22 Feb 2023
Viewed by 1109
Abstract
The swampland criteria in string theory assert the no eternal inflation scenario. This work studied the impact of generic gravitational quantum corrections on eternal inflation. In particular, we find that the Starobinsky model of inflation should receive higher-order corrections stemming from quantum gravity. [...] Read more.
The swampland criteria in string theory assert the no eternal inflation scenario. This work studied the impact of generic gravitational quantum corrections on eternal inflation. In particular, we find that the Starobinsky model of inflation should receive higher-order corrections stemming from quantum gravity. In this work, we studied the effect of the R3/2 and R4 corrections on the eternal inflation conditions for the Starobinsky model. Full article
Show Figures

Figure 1

1 pages, 128 KiB  
Editorial
Acknowledgment to the Reviewers of Astronomy in 2022
by Astronomy Editorial Office
Astronomy 2023, 2(1), 14; https://doi.org/10.3390/astronomy2010002 - 16 Jan 2023
Viewed by 1065
Abstract
High-quality academic publishing is built on rigorous peer review [...] Full article
13 pages, 416 KiB  
Article
Isoscalar Giant Monopole Resonance in Spherical Nuclei as a Nuclear Matter Incompressibility Indicator
by Mitko K. Gaidarov, Martin V. Ivanov, Yordan I. Katsarov and Anton N. Antonov
Astronomy 2023, 2(1), 1-13; https://doi.org/10.3390/astronomy2010001 - 12 Jan 2023
Cited by 2 | Viewed by 1716
Abstract
The incompressibility of both nuclear matter and finite nuclei is estimated by the monopole compression modes in nuclei in the framework of a nonrelativistic Hartree–Fock–Bogoliyubov method and the coherent density fluctuation model. The monopole states originate from vibrations of the nuclear density. The [...] Read more.
The incompressibility of both nuclear matter and finite nuclei is estimated by the monopole compression modes in nuclei in the framework of a nonrelativistic Hartree–Fock–Bogoliyubov method and the coherent density fluctuation model. The monopole states originate from vibrations of the nuclear density. The calculations in the model for the incompressibility in finite nuclei are based on the Brueckner energy–density functional for nuclear matter. Results for the energies of the breathing vibrational states and finite nuclei incompressibilities are obtained for various nuclei and their values are compared with recent experimental data. The evolution of the isoscalar giant monopole resonance (ISGMR) along Ni, Sn, and Pb isotopic chains is discussed. This approach can be applied to analyses of neutron stars properties, such as incompressibility, symmetry energy, slope parameter, and other astrophysical quantities, as well as for modelling dynamical behaviors within stellar environments. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop