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Abstract: A comparison of gravitational forces and a space probe’s trajectory parameters is made
for two different models of the sun’s field, expressed in Schwarzschild and isotropic coordinates.
It is shown that these two representations of a single Schwarzschild solution give, in the tangent
space format, different deflections from classical finite trajectories and, hence, from one other; greatly
amplified by a planet’s (Venus’) gravity assist, this effect renders it possible to experimentally specify
the format of the gravity law that dominates the solar system.
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1. Introduction

For more than a century, Schwarzschild’s solution for the equations of general relativity
(GR) seems to have been exhaustively analyzed [1–5], and so revisiting the theme may seem
an attempt destined to failure; nonetheless, one essential aspect of this solution deserves
attention because of possible experiments that aim to specify the gravity law that dominates
the solar system.

The current state of the problem may be characterized as the common belief in GR
as a correct math embodiment of physical reality, mostly due to a few observational
confirmations; anyway, the effects of relativistic gravity are practically considered in the
designs of space missions. We should admit, therefore, that the sun quite probably generates
at least Schwarzschild’s gravitational field (or Kerr’s field, if the spin is considered). The
question then arises, as to which sample of the static spherically symmetric solution of
Einstein’s equation is physically realized: one born in Schwarzschild’s coordinates or
another one rearranged into the isotropic coordinates?

Until recently, this question sounded senseless, due to the widely perceived impos-
sibility of distinguishing between the solution variants for at least two reasons: (i) in the
weak-field approximation both metrics look similar; (ii) the “most convincing” GR effect,
Einstein’s “perihelion shift” [6], is described in both metrics by apparently the same for-
mula. Other “orbital” effects characterizing the GR-caused distortions of trajectories in
the solar system have been assessed to be of the order of the sun’s gravitational radius
∼ 1.47 km, and hence practically unobservable.

Analytical calculations and numerical modeling, however, have demonstrated that a
planet’s gravity assist (GA)—a frequent element in current space missions—can amplify the
deflection of a spacecraft’s orbit sufficiently to make the shift observable [7,8]; moreover, the
GA sensitivity—the ability to amplify a small change of the probe–planet impact parameter
(IP)—turns out to be great enough to detect the sun’s specific GR features in general, as
well as to identify the type of Schwarzschild field variant.

The deviation of a space probe ballistic trajectory, caused by the peculiarity of the sun’s
gravity, greatly enhanced by the “GA instrument”, can be considered a basic phenomenon
for performing a repeated experiment, the results of which can be recorded in the observer’s
laboratory: this will enable, with a high degree of reliability, clarification of the format of
the law of gravity that dominates the solar system.

Astronomy 2022, 1, 246–254. https://doi.org/10.3390/astronomy1030014 https://www.mdpi.com/journal/astronomy

https://doi.org/10.3390/astronomy1030014
https://doi.org/10.3390/astronomy1030014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/astronomy
https://www.mdpi.com
https://orcid.org/0000-0002-9706-1269
https://doi.org/10.3390/astronomy1030014
https://www.mdpi.com/journal/astronomy
https://www.mdpi.com/article/10.3390/astronomy1030014?type=check_update&version=1


Astronomy 2022, 1 247

In this study, we aim to highlight the difference between the sun’s GR gravity laws
represented in Schwarzschild’s and isotropic coordinates, as they must be evaluated by a
physical observer, and to suggest a comparative analytical calculation of the parameters of
the respective finite-motion trajectories of a space probe, demonstrating the existence and
observability of the difference in a virtual experiment.

Section 2 offers a concept of the probe’s standard flight, which is given with an
explanation of how a planet’s GA amplifies a small deflection of the probe’s motion from
an assigned trajectory; we also deal here with two of Schwarzschild’s versions of the sun’s
gravity law, and suggest the motivation to regard the probe’s motion in tangent space. In
Section 3 we briefly present all the requisite analytical equations in general metric form, we
reduce the motion equations to a Newton-type dynamic shape for both GR gravity laws,
and we compare respective types of gravitational radial forces. In addition, we deduce
here the analytical formulas of the probe’s quasi-elliptic trajectories for two metrics, we
calculate the respective differences of the basic trajectory parameters, and we demonstrate
that the mismatch can be experimentally observed. Section 4 concludes the study with a
compact discussion.

2. Materials and Methods
2.1. The Standard Flight Concept and GA Sensitivity Function

A type of standard trajectory should be chosen, to compare deflections from it. In pre-
vious papers [7,8] we suggested such a trajectory satisfying the following setting conditions:
a space probe is supposed to move in an ideal model of a planetary system comprising a
spherically symmetric star (the sun) and two planets imitating the Earth and Venus, which
orbit the star by coplanar circular trajectories (the masses, velocities, and orbit characteris-
tics of the bodies are close to real physical parameters). The motion is described in polar
(R, Φ) coordinates, with the sun placed at the initial point.

The standard flight is determined by the following conditions. At the initial time
moment T = 0 the probe is launched from the Earth’s orbit, with coordinates and the
velocity components (the velocity is less than the Earth’s):

R0 = RE, Φ0 = 0; VR0 = 0, VΦ0 = V0 < VE. (1)

Under condition (1), the probe starts falling freely in the sun’s Newtonian (subscript
N) gravity towards Venus by an elliptic trajectory:

R = pN/(1− eN cos Φ), (2)

with the focal parameter pN and eccentricity eN determined by the sun’s mass and condition
(1). Within the framework of the “Patched Conic Approximation” (PCA) method (see,
e.g., [9] and many references therein) the probe is subject to GA at the time moment TN.GA
in a point RGA = RV = pN , ΦN.GA = 3π/2; the first trajectory part “launch—GA” will
be referred to as trek 1. Within the standard flight scheme, the probe approaches Venus
‘behind it’ thus making the planet’s GA accelerate the probe so that the second ballistic
trajectory part (trek 2), “GA—final point”, returns the probe to the Earth’s orbit radius,
which determines the trajectory final point (FP) RN.FP = RE, azimuth ΦN.FP, and flight-
time TFP, with all these values being found from the equation of the type (2) with trek
2 parameters.

A set of standard flight trajectories is parametrized by the principal GA characteristic,
the probe–Venus impact parameter (IP), whose value h must be set (with high precision) in
the design of this space mission. To get another standard trajectory, we can variate the h
value by a virtual choice of Venus’ initial position, while leaving conditions (1) intact. With
the help of this scheme, we managed to build an empiric GA sensitivity function S(h) [7,8]
which gave the values of the probe’s FP deflection under a relatively small IP change dh.
The results were surprising: for h = (16− 10) · 104 km, S(h) ∼= 104 − 105; this means that,
e.g., for h = 10, 000 km (4000 km over Venus’ surface) an IP change dh = 1 km entails the
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FP shift of ~82,000 km, which can be detected from Earth (for simplicity, the Earth’s gravity
is not taken into consideration).

There are many physical factors able to distort trek 1, thus changing a pre-set probe–
Venus IP: among them are the sun’s oblateness, the pressure of solar radiation, the grav-
itational impact of celestial bodies, and probably other random factors. The primary
candidate to change the classical probe’s trajectory, however, is non-Newtonian gravity;
Schwarzschild field variants are plausible models. Having built trek 1 in both GR fields,
we can therefore evaluate their contribution to changing the classical IP value, and by
experimentally measuring the FP shift we can judge with more arguments which type of
gravity physically dominates the solar system. In Table 1, we give the basic physical data
for the considered planetary model and standard flight; here, we use a system of units
(kg, km, s) that is convenient for describing the flight of a small probe in near space.

Table 1. Physical constants and parameters of the planetary model and “standard flight”.

Magnitude Symbol Units Value

Gravitational constant G km3/
(
kg · s2) 6.6741 · 1020

Fundamental velocity c km/s 299,792
Sun’s mass MS kg 1.989 · 1030

Sun’s gravitational radius rS km 1.477
Mass of Venus MV kg 4.876 · 1024

Earth’s orbit radius RE km 149,587,816
Earth’s orbital velocity VE km/s 29.790
Venus orbit radius RV km 108,207,679
Venus orbital velocity VV km/s 35.026
Probe’s initial velocity V0 = V0Φ km/s 25.337
Eccentricity Newtonian eN - 0.276627

2.2. The Gravity Models, Motivation for the Tangent Space, and the Universal Radial Map

In the virtual space experiment, the solar system space–time is modeled by the spher-
ically symmetric interval ds2 = g00c2dt2 + g11dr2 + g22dϕ2 + g33dθ2 (Schwarzschild solu-
tion), the probe moving in the ecliptic plane θ = π/2, dθ = 0. We consider two versions
of the sun’s GR gravity, in Schwarzschild coordinates and in isotropic coordinates; both
metrics are given here in exact-solution form and in the weak-field approximation (g00
down to the second small order if it exists) under condition rS/r ∼ 10−8 << 1.

The space–time metric in Schwarzschild coordinates is

g00 = 1− 2rS
r

, |g11| =
(

1− 2rS
r

)−1
∼= 1 +

2rS
r

, |g22| = r2, (3)

and the metric in isotropic coordinates is (see, e.g., [5])

g00 =

(
1− rS/2r
1 + rS/2r

)2
∼= 1− 2rS

r
+

2rS
2

r2 , |g11| =
(

1 +
rS
2r

)4 ∼= 1 +
2rS
r

, |g22| =
(

1 +
rS
2r

)4
r2 ∼=

(
1 +

2rS
r

)
r2. (4)

Equations (3) and (4) have close weak-field approximations, but their space–times have
different topology; we look for the relevant difference in the gravitational forces and the
probe’s motion, analyzing solutions of the geodesic equation. To perform the analysis,
many studies have been done only in holonomic variables [1,5,6]; however, one readily
demonstrates that a specific (additional) GR term appearing in the dynamic equation
written in holonomic variables (t, r, ϕ) weakens the classical gravitational force for both
metrics, which appears to contradict the GR perihelion shift forward.

Having in mind a real experiment, we can therefore accept here the technique (close to
the tetrad approach) of implying the use of physical magnitudes observed and measured
experimentally in the locally flat tangent space (TS). The non-holonomic differentials of TS
variables are dT ≡ √g00dt, dR ≡

√
|g11|dr, dΦ ≡

√
|g22|dϕ. Apart from the differentials,
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there is a radial variable that needs an appropriate mapping from the holonomic to the
tangential embodiment. For metrics (3) and (4) the tangent radial coordinate is determined
similarly:

R =
∫ √

|g11|dr ∼=
∫
(1 + rS/r)dr ∼= r[1 + (rS/r)ln(r/r0)], r0 = const. (5)

L’Hospital’s rule indicates that for r → ∞ the small term in Equation (5) drops as rS/r.
With this fact in mind, we consider the following motivation for a simplified “tangent—
holonomic radial map”, acceptable on the experiment scale. The probe travels between
the orbits of Mercury and Mars; Equation (5) gives the difference between the tangent W
and holonomic w width of the ring W − w = rSln(RMar/RMerc) ∼= 1.46rS. For an even
smaller inner ring radius, the tangent and holonomic widths differ only in units of rS in
agreement with the earlier estimates (see, e.g., [2,5]); therefore, we suggest an approximate
tangent–holonomic universal radial map:

R ∼= r(1 + rS/r) → r ∼= R(1− rS/R) , 1/r ∼= (1/R)(1 + rS/R) (6)

which is identical for both metrics; thus, we intentionally “minimize” the GR gravity impact
on the whole experimental area.

2.3. Dynamic and Trajectory Equations in General Form

In this section, we represent in general form the probe’s dynamic equations, motion in-
tegrals, and trajectory equation in holonomic and TS formats (without detailed calculations
which are elementary). The geodesic equation is used in the form convenient to solve

d
ds

(
gµν

dxν

ds

)
=

1
2

∂µgαβ
dxα

ds
dxβ

ds
. (7)

For any static spherically symmetric metric, Equation (7) has the relativistic energy and
angular momentum integrals

ε ≡ 1 + E/c2 = g00
cdt
ds

=

√
g00

1−V2/c2 = const, l ≡ L/c = |g22|
dϕ

ds
= ε

√
|g22|
g00

dΦ

dT
= const. (8)

where E, L are the physical constants, the probe’s specific (per unit mass) energy, and
angular momentum, and V is the probe’s velocity modulus. The radial and azimuthal
components of Equation (7) are

d2R
dT2 = − ∂rg00c2

2g00
√
|g11|

+
∂r|g22|

2|g22|
√
|g11|

R2
(

dΦ

dT

)2
,

dΦ

dT
=

cl
εR

√
g00

|g22|
. (9)

The trajectory equation in holonomic and TS formats is

dϕ

dr
=

l
−g22

[
1
−g11

(
ε2

g00
− 1 +

l2

g22

)]−1/2

,
dΦ

dR
=

l
R
√
|g22|

√
|g11|

[
1
|g11|

(
ε2

g00
− 1− l2

|g22|

)]−1/2

. (10)

We note that the integration of the first Equation (10) with the subsequent transition to the
TS format gives, in the accepted approximation, the same result as the straight integration
of the second Equation (10); it can be verified by direct computation.

3. Results
3.1. Motion Integrals and Comparison of GR Forces

Firstly, for cases (3) and (4) we need to compute the integrals (8) entering the second
dynamic Equation (9); then, for each case, we can represent Equation (10) in the Newtonian
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form and compare the respective radial forces acting on the probe. We also use the map (6)
everywhere.

3.1.1. Schwarzschild Coordinates

In case (3), the probe’s energy and angular momentum constants (8) have the TS-format
(to the first order of infinitesimals):

ESch = (ε− 1)c2 ∼= EN +
1

2c2

(
3V0

4

4
− 3rS

2c2

RE2 −
rSV0

2

RE

)
, LSch = lc ∼= LN

(
1 +

EN
c2

)
, (11)

the respective classical characteristics being EN = V0
2/2− GMS/RE, LN = R2dΦ/dT =

REVΦ0. All quantities are evaluated at the launch point (1). The radial motion equation is
the azimuth time derivative replaced by angular momentum:

d2R
dT2

∣∣∣∣
Sch

∼= −
rSc2

R2 −
3rS

2c2

R3 +
LN

2

R3 . (12)

We stress that in Equation (12) LN = const as in the second Equation (11) EN ∼= const.

3.1.2. Isotropic Coordinates

In the second case (4) the motion constants have TS format:

Eiso ≡ (ε− 1)c2 ∼= EN +
1

2c2

(
3V0

4

4c2 −
rS

2c2

RE2 −
V0

2rS
RE

)
, Liso = lc ∼= LN

(
1 +

EN
c2 +

rS
RE

)
; (13)

note that here LN 6= const. The radial component of the respective motion equation is

d2R
dT2

∣∣∣∣
iso

∼= −
rSc2

R2 −
rS

2c2

R3 +
LN

2

R3

(
1− rS

R

)
. (14)

3.1.3. Analysis and Comparison

For both metrics, Equations (12) and (14) are the Newton-type dynamic equations
written in the chasing frame, i.e., in a rotating (non-inertial) frame, where its radial vector
always points onto the probe; therefore, apart from pure gravitational forces (the first two
terms on the right-hand side of the radial dynamic equations), the centrifugal force terms
appear. We state also that in both cases the additional GR terms make gravity forces greater
than the classical attraction. The classical gravitation (specific) force and its GR additions,
“Schwarzschild’s” and “isotropic”, are evaluated at the launch point as follows:

fN =
rSc2

RE2 = 5.93 · 10−6km/s2,

δ fSch =
3rS

2c2

RE3 = 1.75 · 10−13km/s2, δ fiso =
rS

2c2

RE3 +
rSLN

2

RE4 = 1.01 · 10−13km/s2.

The most precise (and visualized) difference between gravities (3) and (4) can be assessed
in the numerical construction of the probe’s treks under the action of forces fSch and fiso,
which deserves a separate study.

3.2. Trajectory Equations and Comparison of GR Shifts of the Gravity Assist Points
3.2.1. Schwarzschild Coordinates

The first Equation (10) in holonomic coordinates has the integral form:

ϕSch =
∫ ldr

r2
√

ε2 − 1 + 2rS
r −

l2

r2 +
2rS l2

r3

.
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Transition to the tangent–space azimuth ϕSch
∼= (1− rS/r)ΦSch, and change of the integra-

tion variable r = R− rS (here coinciding with the map (6)), yields the tabular integral in TS
format:

ΦSch
∼=
(

1 +
rS

2

l2

) ∫ (
1 + rS

R
)
dR

R2
√

ε2−1
l2−2rS

2 +
2rS

(l2−2rS
2)R −

1
R2

; (15)

with an appropriate choice of the integration constant, the integral (15) gives a quasi-elliptic
trajectory equation:

ΦSch
∼=
(

1 +
2rS
pN

)
arccos

1− pSch/R
eSch

+ rS

√
ε2 − 1

l2 +
2rS
l2R
− 1

R2 , (16)

where the focal parameter and eccentricity are expressed through the motion constants (11):

pSch ≡
l2

rS
− 2rS, eSch

∼=

√
1 +

(ε2 − 1)(l2 − 2rS
2)

rS
2 . (17)

One can show that at the gravity-assist point, RGA = RV = pN , the last term in Equation (16)
(an extra rotation of the ellipse) is approximately a 1.5 order smaller than the other GR
corrections; therefore, it can be neglected here. The azimuth of the gravity-assist point (16)
then breaks down into a sum:

ΦGA.Sch
∼=

2rS
pN

3π

2
+ arccos

1− pSch/pN
eSch

Φsq ≡ ∆ΦEin + Φsq. (18)

The first small term is the Einstein-type precession (“perihelion shift”):

∆ΦEin = 3πrS/pN (19)

and the second term is the GA azimuth on only the GR-distorted (in fact, squeezed) ellipse;
we expect this to be close to the classical GA azimuth Φsq = 3π/2 + ∆Φsq, so the geometric
distortion adds to the GA azimuth a small angle:

∆Φsq ∼= cos(3π/2 + ∆Φsq) ∼=
pN − pSch

pNeN
, (20)

the focal parameter pSch being found from the second Equations (11) and the first Equa-
tion (17); within standard flight data given above, it turns out a few km shorter than the
classical focal parameter ∆pSch ≡ pN − pSch ≈ 4km. Both GR corrections (19) and (20)
are positive, i.e., the probe (approaching behind Venus) crosses its trajectory closer to the
planet; hence, the GR-affected impact parameter is shorter by the value:

∆hSch =
(
∆ΦEin + ∆Φsq

)
pN = 3πrS +

∆pSch
eN

≈ 14 km + 16 km = 30 km. (21)

Apart from precession and geometric distortion of the trajectory, there is one more
factor making the GR-caused IP shorter than in the classical case: the probe’s “early
arrival” to the GA point, traveling along a squeezed (hence, shorter) orbit. Using the
method given in detail in [7], we find that within the standard flight scheme (in the
case of the Schwarzschild coordinate) the probe crosses the Venus orbit in the vicinity of
the GA point ∆TN−Sch ∼ 0.25 s earlier than in the classical case; hence, the distance of
probe–Venus (with the relative azimuthal velocity ~35 km/s) additionally is contracted
in ∆hT.Sch = VV∆TN−Sch

∼= 8 km. Together with the shift (21), we get nearly 38 km of the
GR-caused IP contraction; at the IP value h ∼ 10, 000 km, this should entail more than
3.1 million km deflection of the probe’s final point from its classical position.
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3.2.2. Isotropic Coordinates

In this case, the holonomic azimuth is equal to that of the tangent space r(1 + rS/r)dϕ
∼= RdΦ, so it is convenient to use the TS trajectory formula—the second Equation (10) and
the integral following from it:

Φiso
∼=
∫ l

(
1− rS

R
)
dR

R2

√
ε2 − 1 + 2rS

R −
l2

R2

(
1− 2rS

R

) .

The variable substitution R = R′− rS makes it integrable (precisely as in Equation (15)):

Φiso
∼=
(

1 +
rS

2

l2

) ∫
(1 + rS/R′)dR′

R′2
√

(ε−1)2

l2−2rS
2 +

2rS
R′(l2−2rS

2)
− 1

R′2

. (22)

This yields the trajectory equation (written already in original TS radial coordinate R):

Φiso
∼=
(

1 +
2rS
pN

)
arccos

1− piso/R
eiso

+ rS

√
ε2 − 1

l2 +
2rS

l2R
− 1

R2 , (23)

where the last term in Equation (23) is again too small (and ignored); the eccentricity is given
by the second Equation (17) but expressed through the motion constants (13). The Einstein-
type precession here is the same as in the previous case, but the focal parameter is quite
different: here, it turns out variable piso ≡ l2/rS− 2rS− pNrS/R, and (to minimize as usual
the GR impact) we calculate it at the launch point (the angular momentum determined
by the second Equation (13)); it appears to be longer than pSch but still shorter than the
classical focal parameter ∆piso ≡ pN − piso ≈ 3 km, i.e., in the isotropic coordinates the
elliptic trajectory is less squeezed than in the case of the Schwarzschild coordinates. The
full GA azimuth shift is found by formulas similar to Equations (19) and (20), and the
respective GR-caused contraction of the impact parameter is

∆hiso =
(
∆ΦEin + ∆Φsq

)
pN = 3πrS + ∆piso/eN ≈ 14 km + 12 km = 26 km. (24)

The “early arrival” time difference, in this case, is about ∆TN−iso ∼ 0.12 s: hence, an
additional “IP-loss” of ∆hT.iso = VV∆TN−iso

∼= 4 km, the total IP contraction thus being
~30 km. In the standard flight scheme (with h ∼ 10, 000 km) this must cause about 2.4
million km deflection of the probe’s classical FP position. This deflection seems to be
quite well experimentally detected by an Earth observer. Similarly, a smaller but also
great distance, of nearly 650,000 km, is experimentally observable, distinguishing the final
point positions of the probe moving under identical physical standard flight conditions
in different GR gravities modeled by the Schwarzschild field in the different coordinate
systems discussed here. Some results of the calculations are in Table 2.

Table 2. Analytically calculated differences of the probe’s trajectories parameters in the sun’s GR
gravities, modeled by the metric in Schwarzschild and isotropic coordinates. The final points distance
is evaluated for the probe’s altitude of ~4000 km over Venus’ surface (h = 10,000 km).

Magnitude Units Equation/Source Value

Focal parameter iso-Sch difference km ∆p = piso − pShc 1.07
Eccentricity iso-Sch difference − ∆e = eiso − eShc −0.714 · 10−8

IP geometric iso-Sch difference km ∆hgeom = ∆hiso − ∆hSch 3.86
GA-time iso-Sch difference s ∆T = TT.iso − TT.Sch, [7] 0.13
IP GA-time iso-Sch difference km ∆hT = ∆hT.iso − ∆hT.Sch 4.2
IP total iso-Sch difference km ∆h = ∆hgeom + ∆hT 8.06
Sensitivity function (h = 10,000 km) − S10,000 [8] 81,857
Final points iso-Sch distance km ∆lFP = S10,000∆h 659,767
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4. Conclusions and Discussion

Summarizing the obtained results, we make the following conclusion. Three prin-
cipal GR gravity factors change (decrease) the probe–Venus classical IP in the standard
flight model: a quasi-elliptic orbit precession (Einstein’s “perihelion shift”); the ellipse
compression (squeeze); and the early arrival at the GA point. Table 2 demonstrates the
importance of the last two factors changing trek 1 in the sun’s GR gravity modeled by the
Schwarzschild solution in Schwarzschild and isotropic coordinates, respectively. Venus’
gravity assist greatly amplifies (~105 times) emerging relatively small IP changes, so that
the distance between the probe’s final points (achieved by equal times) in different gravities
can reach more than a half million km, an experimentally observable length; moreover, since
this result is obtained under the assumption of minimal GR effect in the holonomic—TS
mapping, the observed effect may be even stronger. A thoroughly arranged space experi-
ment (obligatory comprising GA) may therefore not only detect a difference between the
classical and GR gravities of the sun, but may also indicate the type of GR gravity; formerly,
this seemed an unsolvable problem. In his fundamental work [5] Weinberg enumerates
several physical reasons that affect a body’s orbit, causing, e.g., precession much bigger
than GR: some of them are mentioned in Section 2 of this paper (except the Earth-based
observation error); fortunately, however, all these effects can be precomputed with the help
of well-known methods of classical mechanics. As to the error of observations from the
Earth laboratory, one can note that the suggested experiment is focused on the results of
the gravitational interaction of the probe–Venus, and there is no need to bother about the
observation of the small deviations of the probe’s orbit; one needs to observe only the last
great deflection of the probe’s final point (not far from the Earth’s orbit).

It is necessary, nonetheless, to note that the analytical method used here (including
PCA) gives only approximate results. As is mentioned in in Section 3 (Section 3.1.3),
greater precision—and visualization—is provided by a point-by-point construction of
probe trajectories on the basis of a fine numerical solution of Newton-type equations, with
an adequately defined force function for each type of GR gravity; we expect this task to be
realized. We also note that the discussed model of the gravitational experiment may help
to specify the parameters of the generalized theories of gravity (e.g., Brans–Dicke theory).
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