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Abstract: We determine the k-essence Lagrangian of a relativistic barotropic fluid. The equation
of state of the fluid can be specified in different manners depending on whether the pressure is
expressed in terms of the energy density (model I), the rest-mass density (model II), or the pseudo
rest-mass density for a complex scalar field in the Thomas-Fermi approximation (model III). In the
nonrelativistic limit, these three formulations coincide. In the relativistic regime, they lead to different
models that we study exhaustively. We provide general results valid for an arbitrary equation of
state and show how the different models are connected to each other. For illustration, we specifically
consider polytropic and logotropic dark fluids that have been proposed as unified dark matter and
dark energy models. We recover the Born-Infeld action of the Chaplygin gas in models I and III and
obtain the explicit expression of the reduced action of the logotropic dark fluid in models II and III.
We also derive the two-fluid representation of the Chaplygin and logotropic models. Our general
formalism can be applied to many other situations such as Bose-Einstein condensates with a |ϕ|4 (or
more general) self-interaction, dark matter superfluids, and mixed models.
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1. Introduction

Baryonic matter constitutes only 5% of the content of the universe today. The rest of the
universe is made of approximately 25% dark matter (DM) and 70% dark energy (DE) [1,2].
DM can explain the flat rotation curves of the spiral galaxies. It is also necessary to form the
large-scale structures of the universe. DE does not cluster but is responsible for the late time
acceleration of the universe revealed by the observations of type Ia supernovae, the cosmic
microwave background (CMB) anisotropies, and galaxy clustering. Although there have
been many theoretical attempts to explain DM and DE, we still do not have a robust model
for these dark components that can pass all the theoretical and observational tests.

The most natural and simplest model is the ΛCDM model which treats DM as a non-
relativistic cold pressureless gas and DE as a cosmological constant Λ possibly representing
vacuum energy [3,4]. The effect of the cosmological constant is equivalent to that of a
fluid with a constant energy density εΛ = Λc2/8πG and a negative pressure PΛ = −εΛ.
Therefore, the ΛCDM model is a two-fluid model comprising DM with an equation of state
Pdm = 0 and DE with an equation of state Pde = −εde. When combined with the energy
conservation equation, the equation of state Pdm = 0 implies that the DM density decreases
with the scale factor as εdm ∝ a−3 and the equation of state Pde = −εde implies that the DE
density is constant: εde = εΛ. Therefore, the total energy density of the universe (DM + DE)
evolves as

ε =
εdm,0

a3 + εΛ, (1)

where εdm,0 is the present density of DM (when a = 1)1. DM dominates at early times
when the density is high and DE dominates at late times when the density is low. The scale
factor increases algebraically as a ∝ t2/3 during the DM era (Einstein-de Sitter regime) and
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exponentially as a ∝ e
√

Λ/3t during the DE era (de Sitter regime). At the present epoch,
both components are important in the energy budget of the universe.

Although the ΛCDM model is perfectly consistent with current cosmological obser-
vations, it faces two main problems. The first problem is to explain the tiny value of the
cosmological constant Λ = 1.00× 10−35 s−2. Indeed, if DE can be attributed to vacuum
fluctuations, quantum field theory predicts that Λ should correspond to the Planck scale
which lies 123 orders of magnitude above the observed value. This is called the cosmo-
logical constant problem [6,7]. The second problem is to explain why DM and DE are of
similar magnitudes today although they scale differently with the universe’s expansion.
This is the cosmic coincidence problem [8,9], frequently triggering anthropic explanations.
The CDM model also faces important problems at the scale of DM halos such as the
core-cusp problem [10], the missing satellite problem [11–13], and the “too big to fail”
problem [14]. This leads to the so-called small-scale crisis of CDM [15].

For these reasons, other types of matter with negative pressure that can behave like
a cosmological constant at late time have been considered as candidates of DE: fluids of
topological defects (domain walls, cosmic strings) [16–20], x-fluids with a linear equation of
state [21–23], quintessence— an evolving self-interacting scalar field (SF) minimally coupled
to gravity—[24] (see earlier works in [25–33])2, k-essence fields—SFs with a noncanonical
kinetic term [37–39] that were initially introduced to describe inflation (k-inflation) [40,41]—
and even phantom or ghost fields [42,43] which predict that the energy density of the
universe may ultimately increase with time. Quintessence can be viewed as a dynamical
vacuum energy following the old idea that the cosmological term could evolve [44–47].
However, these models still face the cosmic coincidence problem3 because they treat
DM and DE as distinct entities. Accounting for similar magnitude of DM and DE today
requires very particular (fine-tuned) initial conditions. For some kind of potential terms,
which have their justification in supergravity [48], this problem can be solved by the
so-called tracking solution [9,49]. The self-interacting SF evolves in such a way that
it approaches a cosmological constant behaviour exactly today [48]. However, this is
achieved at the expense of fine-tuning the potential parameters. This unsatisfactory state of
affairs motivated a search for further alternatives.

In the standard ΛCDM model and in quintessence CDM models, DM and DE are two
distinct entities introduced to explain the clustering of matter and the cosmic acceleration,
respectively. However, DM and DE could be two different manifestations of a common
structure, a dark fluid. In this respect, Kamenshchik et al. [50] have proposed a simple
unification of DM and DE in the form of a perfect fluid with an exotic equation of state
known as the Chaplygin gas, for which

P = − A
ε/c2 , (2)

where A is a positive constant. This gas exhibits a negative pressure, as required to
explain the acceleration of the universe today, but the squared speed of sound is positive
(c2

s = P′(ε)c2 = Ac4/ε2 > 0). This is a very important property because many fluids
with negative pressure obeying a barotropic equation of state suffer from instabilities at
small scales due to an imaginary speed of sound [18,19]4. This is not the case for the
Chaplygin gas.

Integrating the energy conservation equation with the Chaplygin equation of state (2)
leads to

ε/c2 =

√
A
c2 +

B
a6 , (3)

where B is an integration constant. Therefore, the Chaplygin gas smoothly interpolates
between pressureless DM (P ' 0, ε ∼ a−3, cs ' 0) at high redshift and a cosmological
constant (P = −ε, ε→

√
Ac2, cs → c) as a tends to infinity. There is also an intermediate

phase which can be described by a cosmological constant mixed with a stiff matter fluid
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(P ∼ ε, ε ∼ a−6, cs ∼ c) [50]. In the Chaplygin gas model, DM and DE are different mani-
festations of a single underlying substance (dark fluid) that is called “quartessence” [52].
These models where the fluid behaves as DM at early times and as DE at late times are
called unified models for DM and DE (UDM models) [52]. This dual behavior avoids
fine-tuning problems since the Chaplygin gas model can be interpreted as an entangled
mixture of DM and DE. In this cosmological context, Kamenshchik et al. [50] introduced a
real SF representation of the Chaplygin gas and determined its potential V(ϕ) explicitly.

The Chaplygin gas model has an interesting history that we briefly retrace below.
Chaplygin [53] introduced his equation of state P = −A/ρ in 1904 as a convenient soluble
model to study the lifting force on a plane wing in aerodynamics. The same model was
rediscovered later by Tsien [54] and von Kármán [55]. It was also realized that certain de-
formable solids can be described by the Chaplygin equation of state [56]. The integrability of
the corresponding Euler equations resides in the fact that they have a large symmetry group
(see [57–60] for a modern description). Indeed, the Chaplygin gas model possesses further
space-time symmetries beyond those of the Galileo group [57]. In addition, the Chaplygin
gas is the only fluid which admits a supersymmetric generalization [61–65]. The Chaplygin
equation of state involves a negative pressure which is required to account for the acceler-
ated expansion of the universe5. It is possible to develop a Lagrangian description of the
nonrelativistic Chaplygin gas [57–59,66–68] leading to an action of the form

LChap = −(2A)1/2

√
θ̇ +

1
2
(∇θ)2, (4)

where θ is the potential of the flow. The relativistic generalization of the Chaplygin gas
model leads to a Born-Infeld-type [69] theory for a real SF [58,59,68,70,71]. The Born-
Infeld action

LBI = −(Ac2)1/2

√
1− 1

c2 ∂µθ∂µθ (5)

possesses additional symmetries beyond the Lorentz and Poincaré invariance and has an in-
teresting connection with string/M theory [72]. The Chaplygin gas model can be motivated
by a brane-world interpretation (see [73] for a review on brane world models). Indeed,
the “hidden” symmetries and the associated transformation laws for the Chaplygin and
Born-Infeld models may be given a coherent setting [59] by considering the Nambu-Goto
action [74] for a d-brane in (d + 1) spatial dimensions moving in a (d + 1, 1)-dimensional
spacetime. The Galileo-invariant (nonrelativistic) Chaplygin gas action (4) is obtained
in the light-cone parametrization and the Poincaré-invariant (relativistic) Born-Infeld ac-
tion (5) is obtained in the Cartesian parametrization [58,59]6. A fluid with a Chaplygin
equation of state is also necessary to stabilize the branes [90] in black hole bulks [91,92].
This is how Kamenshchik et al. [93] came across this fluid and had the idea to consider its
cosmological implications [50]. Bilic et al. [71] generalized the Chaplygin gas model in the
inhomogeneous case and showed that the real SF that occurs in the Born-Infeld action can
be interpreted as the phase of a complex self-interacting SF described by the Klein-Gordon
(KG) equation. This SF may be given a hydrodynamic representation in terms of an irrota-
tional barotropic flow with the Chaplygin equation of state. This explains the connection
of the Born-Infeld action with fluid mechanics in the Thomas-Fermi (TF) approximation.
Bilic et al. [71] determined the potential V(|ϕ|2) of the complex SF associated with the
Chaplygin gas. This potential is different from the potential V(ϕ) of the real SF introduced
by Kamenshchik et al. [50] which is valid for an homogeneous SF in a cosmological context.

A generalized Chaplygin gas model (GCG) has been introduced. It has an equation
of state7

P = − A
(ε/c2)α

(7)
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with A > 0 and a generic α constant in the range 0 ≤ α ≤ 1 in order to ensure the condition
of stability c2

s ≥ 0 and the condition of causality cs ≤ c (the quantity c2
s /c2 goes from 0 to α

when a goes from 0 to +∞). Combined with the energy conservation equation, we obtain

ε/c2 =

[
A
c2 +

B
a3(α+1)

] 1
α+1

. (8)

This model interpolates between a universe dominated by dust and de Sitter eras via
an intermediate phase described by a linear equation of state P ∼ αε [50,95]. The original
Chaplygin gas model is recovered for α = 1. Bento et al. [95] argued that the GCG model
corresponds to a generalized Nambu-Goto action which can be interpreted as a perturbed d-
brane in a (d+ 1, 1) spacetime. Bilic et al. [100] mentioned that the generalized Nambu-Goto
action lacks any geometrical interpretation, but that the generalized Chaplygin equation of
state can be obtained from a moving brane in Schwarzschild-anti-de-Sitter bulk [101].

For α = 0, the generalized Chaplygin equation of state (7) reduces to a constant
negative pressure

P = −A. (9)

In that case, the speed of sound vanishes identically (c2
s = 0) and ε/c2 = A/c2 + B/a3.

It can be shown [102,103] that this model is equivalent to the ΛCDM model not only to
0th order in perturbation theory (background) but to all orders, even in the nonlinear
clustering regime (contrary to the initial claim made in Ref. [104]). Therefore, the ΛCDM
model can either be considered as a two-fluid model involving a DM fluid with Pdm = 0
and a DE fluid with Pde = −εde, or as a single dark fluid with a constant negative pressure
P = −εΛ [98]. In this sense, it may be regarded as the simplest UDM model one can
possibly conceive in which DM and DE appear as different manifestations of a single dark
fluid. As a result, the GCG model includes the original Chaplygin gas model (α = 1) and
the ΛCDM model (α = 0) as particular cases.

The GCG model has been successfully confronted with various phenomenological
tests such as high precision Cosmic Microwave Background Radiation data [105–109],
type Ia supernova (SNIa) data [52,94,110–113], age estimates of high-z objects [112] and
gravitational lensing [114]. Although the GCG model is consistent with observations related
to the background cosmology (the Hubble law is almost insensitive to α) [52,110,113],
Sandvik et al. [103] showed that it produces unphysical oscillations or even an exponential
blow-up which are not seen in the observed matter power spectrum calculated at the
present time. This is caused by the behaviour of the sound speed through the GCG fluid.
At early times, the GCG behaves as DM and its sound speed vanishes. In that case,
the GCG clusters like pressureless dust. At late times, when the GCG behaves as DE, its
sound speed becomes relatively large yielding unphysical features in the matter power
spectrum. To avoid such unphysical features, the value of α must be extremely close to zero
(|α| < 10−5), so that the GCG model becomes indistinguishable from the ΛCDM model.
Similar conclusions were reached by Bean and Doré [115], Carturan and Finelli [108] and
Amendola et al. [109] who studied the effect of the GCG on density perturbations and on
CMB anisotropies and found that the GCG strongly increases the amount of integrated
Sachs-Wolfe effect. Therefore, CMB data are more selective than SN Ia data to constrain α.
The GCG is essentially ruled out except for a tiny region of parameter space very close to
the ΛCDM limit. This conclusion is not restricted to the GCG model but is actually valid for
all UDM models8. Some solutions to this problem have been suggested (see a short review
in Section XVI of [116]) but there is no definite consensus at the present time. However,
in a recent paper, Abdullah et al. [117] argued that a cosmological scenario based on the
Chaplygin gas may not be ruled out from the viewpoint of structure formation as usually
claimed. Indeed, a nonlinear analysis may predict collapse rather than a re-expansion
of small-scale perturbations so that nonlinear clustering may occur in the Chaplygin gas.
This is because pressure forces in UDM fluids decrease with increasing density so that
systems that are stable against self-gravitating collapse in the linear regime may become
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unstable in the nonlinear regime. As a result, the problem of acoustic oscillations in the
linear power spectrum of UDM models may not be as serious as usually assumed provided
the hierarchical structure formation process is adequately taken into account.

The previous results suggest that a viable UDM model should be as close as possible to
the ΛCDM model, but sufficiently different from it in order to solve its problems. This is the
basic idea that led us to introduce the logotropic model in Ref. [118] (see also [116,119–122]).
The logotropic dark fluid has an equation of state

P = A ln
(

ρm

ρ∗

)
, (10)

where ρm is the rest-mass density. This equation of state can be obtained from the polytropic
(GCG) equation of state P = Kρ

γ
m by considering the limit γ→ 0 and K → ∞ with A = Kγ

constant (see Section 3 of [118] and Appendix A of [116]). This yields

P = Keγ ln ρm ' K(1 + γ ln ρm + ...) ' K + A ln ρ, (11)

which is equivalent to Equation (10) up to a constant term9. Since the ΛCDM model (viewed
as a UDM model) is equivalent to a polytropic gas of index γ = 0 (constant pressure),
one can say that the logotropic model which has γ → 0 is the simplest extension of the
ΛCDM model. It is argued in Ref. [118] that ρ∗ = ρP = c5/(h̄G2) = 5.16× 1099 g/m3 is
the Planck density. It is also argued that A/c2 = BρΛ = 2.10× 10−26 g m−3 (where B =
3.53× 10−3 and ρΛ = Λ/8πG = 5.96× 10−24 g m−3) is a fundamental constant of physics
that supersedes the cosmological constant Λ. The logotropic model is able to account for the
transition between a DM era and a DE era and is indistinguishable from the ΛCDM model,
for what concerns the evolution of the cosmological background, up to 25 billion years in
the future when it becomes phantom [118–121]. Very interestingly, the logotropic model
implies that DM halos should have a constant surface density and it predicts its universal
value Σth

0 = 0.01955c
√

Λ/G = 133 M�/pc2 [116,118–122] without adjustable parameter.
This theoretical value is in good agreement with the value Σobs

0 = 141+83
−52 M�/pc2 obtained

from the observations [123]. The logotropic model also predicts that the present ratio of
DE and DM is equal to the Euler number Ωth

de,0/Ωth
dm,0 = e = 2.71828... [116,121,122] in

very good agreement with the observations giving Ωobs
de,0/Ωobs

dm,0 = 2.669± 0.0810. Using
the measured present proportion of baryonic matter Ωobs

b,0 = 0.0486± 0.0010, we find that
the values of the present proportions of DM and DE are Ωth

dm,0 = 1
1+e (1−Ωb,0) = 0.2559

and Ωth
de,0 = e

1+e (1−Ωb,0) = 0.6955 in very good agreement with the observational values
Ωobs

dm,0 = 0.2589± 0.0057 and Ωobs
de,0 = 0.6911± 0.0062 within the error bars. This result

is striking because the proportions of DE and DM change with time so it is only at the
present epoch that their ratio is equal to e [122]. Unfortunately, the logotropic model
suffers from the same problems as the GCG model regarding the presence of unphysical
oscillations in the matter power spectrum [116,124]. It is not clear how these problems can
be circumvented (see the discussion in [116]). However, as discussed above, this problem
may not be as insurmountable as previously thought provided that an adequate nonlinear
analysis of structure formation is developed [117]. In any case, the logotropic dark fluid
(LDF) remains an interesting UDM model, especially because of its connection with the
polytropic (GCG) model.

The aim of the present paper is to develop the Lagrangian formulation of the polytropic
(GCG) and logotropic models. We point out that the equation of state can be specified in
different manners, yielding three sorts of models. In model I, the pressure is a function
P(ε) of the energy density; in model II, the pressure is a function P(ρm) of the rest-mass
density; in model III, the pressure is a function P(ρ) of the pseudo rest-mass density
associated with a complex SF (in the sense given below). In the nonrelativistic regime,
these three formulations coincide. However, in the relativistic regime, they lead to different
models. In this paper, we describe these models in detail and show their interrelations.
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For example, given P(ε), we show how one can obtain P(ρm) and P(ρ), and reciprocally.
We also explain how one can obtain the k-essence Lagrangian (action) for each model. We
first provide general results that can be applied to an arbitrary barotropic equation of state.
Then, for illustration, we obtain explicit analytical results for a polytropic and a logotropic
equation of state. We recover the Born-Infeld action of the Chaplygin gas and determine
the expression of the action of the GCG of type I, II and III. We also explicitly obtain the
logotropic action in models II and III. We show that it can be recovered from the polytropic
(GCG) action in the limit γ→ 0 and K → ∞ with A = Kγ constant.

The paper is organized as follows. In Section 2, we consider a nonrelativistic complex
self-interacting SF which may represent the wavefunction of a Bose-Einstein condensate
(BEC) described by the Gross-Pitaevskii (GP) equation. We determine its Madelung hy-
drodynamic representation and show that it is equivalent to an irrotational quantum
fluid with a quantum potential and a barotropic equation of state P(ρ) determined by the
self-interaction potential. In the TF limit, it reduces to an irrotational classical barotropic
fluid. We determine its Lagrangian and “reduced” Lagrangian for an arbitrary equa-
tion of state. The reduced Lagrangian has the form of a k-essence Lagrangian L(x) with
x = θ̇ + (1/2)(∇θ)2, where θ is the potential of the velocity field (the phase of the wave-
function). In Section 3, we consider a relativistic complex self-interacting SF described by
the KG equation which may represent the wavefunction of a relativistic BEC. We determine
its de Broglie hydrodynamic representation and show that it is equivalent to an irrotational
quantum fluid with a covariant quantum potential and a barotropic equation of state P(ρ)
determined by the self-interaction potential. In the TF limit, it reduces to an irrotational
classical barotropic fluid. We determine its Lagrangian and reduced Lagrangian for an
arbitrary equation of state. Its reduced Lagrangian has the form of a k-essence Lagrangian
L(X) with X = (1/2)∂µθ∂µθ, where the real SF θ is played by the phase of the complex SF.
In Section 4, we introduce three types of equations of state (models I, II and III) and explain
their physical meanings. We provide general equations allowing us to connect one model to
the other and to determine the reduced Lagrangian L(X) for an arbitrary equation of state.
In Sections 5 and 6, we illustrate our general results by applying them to a polytropic (GCG)
equation of state and a logotropic equation of state. We recover the Born-Infeld action of
the Chaplygin gas and determine the reduced action of the GCG and of the logotropic
gas. In Appendix A, we establish general identities valid for a nonrelativistic cold gas.
In Appendix B, we consider a general k-essence Lagrangian and specifically discuss the
case of a canonical and tachyonic SF. In Appendix C, we define the equation of state of
model I and detail how one can obtain the potential V(ϕ) of a homogeneous real SF in
an expanding universe. In Appendix D, we define the equation of state of model II and
detail how one can obtain the corresponding internal energy. In Appendix E, we define
the equation of state of model III (see also Section 3) and detail how the basic equations of
the problem can be simplified in the case of a homogeneous SF in a cosmological context.
In Appendix F, we discuss the analogies and the differences between the internal energy
and the potential of a complex SF in the TF limit. In Appendix H, we list some studies
devoted to polytropic and logotropic equations of state of type I, II and III. In Appendix I,
we detail the Lagrangian structure and the conservation laws of a nonrelativistic and rela-
tivistic SF. Applications and generalizations of the results of this paper will be presented in
future works [125].

2. Nonrelativistic Theory
2.1. The Gross-Pitaevskii Equation

We consider a complex SF ψ(r, t) whose evolution is governed by the GP equation

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + mh(|ψ|2)ψ. (12)

This equation describes, for example, the wave function of a BEC at T = 0 [126]. For the
sake of generality, we have introduced an arbitrary nonlinearity determined by the effective
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potential h(|ψ|2) instead of the quadratic potential h(|ψ|2) = g|ψ|2 = (4πas h̄2/m3)|ψ|2,
where as is the s-scattering length of the bosons, arising from pair contact interactions in
the usual GP equation [127–130] (see, e.g., the discussion in Ref. [126]). In this manner, we
can describe a larger class of systems11. The GP Equation (12) can also be derived from the
Klein-Gordon (KG) equation

�ϕ +
m2c2

h̄2 ϕ + 2
dV

d|ϕ|2 ϕ = 0, (13)

which governs the evolution of a complex SF ϕ(r, t) with a self-interaction potential V(|ϕ|2).
The GP Equation (12) is obtained from the KG Equation (13) in the nonrelativistic limit
c→ +∞ after making the Klein transformation

ϕ(r, t) =
h̄
m

e−imc2t/h̄ψ(r, t). (14)

In that case, the effective potential h(|ψ|2) that appears in the GP equation is related to
the self-interaction potential V(|ϕ|2) present in the KG equation by (see Refs. [131,132] and
Appendix C of Ref. [118])

h(|ψ|2) = dV
d|ψ|2 with |ψ|2 =

m2

h̄2 |ϕ|
2. (15)

As a result, the GP Equation (12) can be rewritten as

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + m

dV
d|ψ|2 ψ. (16)

Remark: The GP Equation (16) can also be derived from the KG equation governing
the evolution of a real SF but, in that case, the potential V(|ψ|2) that appears in the GP
equation does not coincide with the potential V(ϕ) present in the KG equation. Indeed,
V(|ψ|2) is an effective potential obtained after averaging V(ϕ) over the fast oscillations of
the SF (see Sections II and III of [133] and Appendix A of [134] for details).

2.2. The Madelung Transformation

We can write the GP Equation (12) under the form of hydrodynamic equations by
using the Madelung [135] transformation. To that purpose, we write the wave function as

ψ(r, t) =
√

ρ(r, t)eiS(r,t)/h̄, (17)

where ρ(r, t) is the density and S(r, t) is the action. They are given by

ρ = |ψ|2 and S = −i
h̄
2

ln
(

ψ

ψ∗

)
. (18)

Following Madelung, we introduce the velocity field

u =
∇S
m

. (19)

Since the velocity derives from a potential, the flow is irrotational: ∇× u = 0. Substi-
tuting Equation (17) into Equation (12) and separating the real and the imaginary parts,
we obtain

∂ρ

∂t
+∇ · (ρu) = 0, (20)

∂S
∂t

+
1

2m
(∇S)2 + mh(ρ) + Q = 0, (21)
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where

Q = − h̄2

2m
∆
√

ρ
√

ρ
= − h̄2

4m

[
∆ρ

ρ
− 1

2
(∇ρ)2

ρ2

]
(22)

is the quantum potential. It takes into account the Heisenberg uncertainty principle.
Equation (20) is similar to the equation of continuity in hydrodynamics. It accounts for the
local conservation of mass M =

∫
ρ dr. Equation (21) has a form similar to the classical

Hamilton-Jacobi equation with an additional quantum potential. It can also be interpreted
as a quantum Bernoulli equation for a potential flow. Taking the gradient of Equation (21),
and using the well-known identity of vector analysis (u · ∇)u = ∇(u2/2)− u× (∇× u)
which reduces to (u · ∇)u = ∇(u2/2) for an irrotational flow, we obtain

∂u
∂t

+ (u · ∇)u = −∇h− 1
m
∇Q. (23)

Since h = h(ρ) we can introduce a function P = P(ρ) satisfying ∇h = (1/ρ)∇P.
Equation (23) can then be rewritten as

∂u
∂t

+ (u · ∇)u = −1
ρ
∇P− 1

m
∇Q. (24)

This equation is similar to the Euler equation with a pressure force −(1/ρ)∇P and
a quantum force − 1

m∇Q. Since P(r, t) = P[ρ(r, t)] is a function of the density, the flow
is barotropic. The equation of state P(ρ) is determined by the potential h(ρ) through
the relation

h′(ρ) =
P′(ρ)

ρ
. (25)

Equation (25) can be integrated into

P(ρ) = ρh(ρ)−V(ρ) = ρV′(ρ)−V(ρ) = ρ2
[

V(ρ)

ρ

]′
, (26)

where V is a primitive of h. This notation is consistent with Equation (15) which can be
rewritten as

h(ρ) = V′(ρ), (27)

where V(ρ) is the potential in the KG Equation (13) or in the GP Equation (16). Equation (26)
determines the pressure P(ρ) as a function of the potential V(ρ). Inversely, the potential is
determined as a function of the pressure by12

V(ρ) = ρ
∫ P(ρ)

ρ2 dρ. (28)

The speed of sound is c2
s = P′(ρ) = ρV′′(ρ). The GP Equation (12) is equivalent to

the hydrodynamic Equations (20), (21) and (24). We shall call them the quantum Euler
equations. Since there is no viscosity, they describe a superfluid. In the TF approximation
h̄→ 0, they reduce to the classical Euler equations.

Remark: We show in Appendix A that the effective potential h appearing in the GP
equation can be interpreted, in the hydrodynamic equations, as the enthalpy (or as the
chemical potential by unit of mass h = µ/m) and that its primitive V(ρ), which is equal to
the potential in the KG equation, can be interpreted as the internal energy density u. Thus,
we have

u(ρ) = V(ρ), h(ρ) =
P(ρ) + V(ρ)

ρ
. (29)
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On the other hand, if we define the energy by

E(r, t) = −∂S
∂t

, (30)

the Hamilton-Jacobi Equation (21) can be rewritten as

E(r, t) =
1
2

mu2 + mh(ρ) + Q. (31)

2.3. Lagrangian of a Quantum Barotropic Gas

The action of the complex SF associated with the GP Equation (16) is given by

S =
∫

L dt (32)

with the Lagrangian

L =
∫ { ih̄

2m

(
ψ∗

∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− h̄2

2m2 |∇ψ|2 −V(|ψ|2)
}

dr. (33)

We can view the Lagrangian (33) as a functional of ψ, ψ̇ and ∇ψ. The least action
principle δS = 0, which is equivalent to the Euler-Lagrange equation

∂

∂t

(
δL
δψ̇

)
+∇ ·

(
δL

δ∇ψ

)
− δL

δψ
= 0, (34)

returns the GP Equation (16). The Hamiltonian (energy) is obtained from the transformation

H =
∫ ih̄

2m

(
ψ∗

∂ψ

∂t
− ψ

∂ψ∗

∂t

)
dr− L (35)

yielding

H =
h̄2

2m2

∫
|∇ψ|2 dr +

∫
V(|ψ|2) dr. (36)

The first term is the kinetic energy Θ = − h̄2

2m2

∫
ψ∗∆ψ dr and the second term is the

self-interaction (internal) energy U. Since the Lagrangian does not explicitly depend on
time, the Hamiltonian (energy) is conserved13. The GP Equation (16) can be written as

ih̄
∂ψ

∂t
= m

δH
δψ∗

, ih̄
∂ψ∗

∂t
= −m

δH
δψ

, (37)

which can be interpreted as the Hamilton equations (see Appendix I.3).
Using the Madelung transformation, we can rewrite the Lagrangian in terms of hydro-

dynamic variables. According to Equations (17) and (18) we have

∂S
∂t

= −i
h̄
2

1
|ψ|2

(
ψ∗

∂ψ

∂t
− ψ

∂ψ∗

∂t

)
(38)

and

|∇ψ|2 =
1

4ρ
(∇ρ)2 +

ρ

h̄2 (∇S)2. (39)
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Substituting these identities into Equation (33), we get

L = −
∫ {

ρ

m
∂S
∂t

+
ρ

2m2 (∇S)2 +
h̄2

8m2
(∇ρ)2

ρ
+ V(ρ)

}
dr. (40)

We can view the Lagrangian (40) as a functional of S, Ṡ, ∇S, ρ, ρ̇, and ∇ρ. The Euler-
Lagrange equation for the action

∂

∂t

(
δL
δṠ

)
+∇ ·

(
δL

δ∇S

)
− δL

δS
= 0 (41)

returns the equation of continuity (20). The Euler-Lagrange equation for the density

∂

∂t

(
δL
δρ̇

)
+∇ ·

(
δL

δ∇ρ

)
− δL

δρ
= 0 (42)

returns the quantum Hamilton-Jacobi (or Bernoulli) Equation (21) leading to the quantum
Euler Equation (24). The Hamiltonian (energy) is obtained from the transformation

H = −
∫

ρ

m
∂S
∂t

dr− L (43)

yielding

H =
∫ 1

2
ρu2 dr +

∫ h̄2

8m2
(∇ρ)2

ρ
dr +

∫
V(ρ) dr. (44)

This expression is equivalent to Equation (36) as can be seen by a direct calculation
using the Madelung transformation [see Equation (39)]. The first term is the classical kinetic
energy Θc, the second term is the quantum kinetic energy ΘQ (we have Θ = Θc + ΘQ),
and the third term is the self-interaction (internal) energy U. The quantum kinetic energy
can also be written as ΘQ =

∫
ρ Q

m dr [136]. The continuity Equation (20) and the Hamilton-
Jacobi (or Bernoulli) Equation (21) can be written as

∂ρ

∂t
= m

δH
δS

,
∂S
∂t

= −m
δH
δρ

, (45)

which can be interpreted as the Hamilton equations (see Appendix I.4).
If we substitute the quantum Hamilton-Jacobi (or Bernoulli) Equation (21) into the

Lagrangian (40) and use Equations (22) and (26) we find that

L =
∫

P dr. (46)

This shows that the Lagrangian density is equal to the pressure: L = P. Actually,
the Lagrangian density is equal to L = P(ρ)− h̄2

4m2 ∆ρ. There is an additional term − h̄2

4m2 ∆ρ
which disappears by integration. The same result is obtained by substituting the GP
Equation (16) into the Lagrangian (33) and using Equation (26).

2.4. Lagrangian of a Classical Barotropic Gas

Introducing the notation θ = S/m, so that ψ =
√

ρeimθ/h̄, 14 and taking the limit h̄→ 0
in Equation (40), we obtain the classical Lagrangian15

L = −
∫ [

ρθ̇ +
1
2

ρ(∇θ)2 + V(ρ)

]
dr. (47)
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We can view the Lagrangian (47) as a functional of θ, θ̇, ∇θ, ρ, ρ̇, and ∇ρ. The Euler-
Lagrange equation for the action leads to the equation of continuity

∂ρ

∂t
+∇ · (ρu) = 0, (48)

with the velocity field
u = ∇θ. (49)

The Euler-Lagrange equation for the density leads to the Bernoulli (or Hamilton-Jacobi)
equation

θ̇ +
1
2
(∇θ)2 + V′(ρ) = 0. (50)

Taking the gradient of Equation (50) and using Equation (26), we obtain the Euler
equation

∂u
∂t

+ (u · ∇)u = −1
ρ
∇P. (51)

The Hamiltonian (energy) is obtained from the transformation

H = −
∫

ρθ̇ dr− L (52)

yielding

H =
∫ 1

2
ρu2 dr +

∫
V(ρ) dr. (53)

The first term is the classical kinetic energy Θc and the second term is the self-
interaction (internal) energy U.

Remark: In our presentation, we started from a quantum fluid (or from the hydrody-
namic representation of the GP equation) and finally considered the classical limit h̄→ 0.
Alternatively, we can obtain the equations of this section directly from the classical Euler
equations by assuming that the fluid is barotropic (so that P = P(ρ)) and that the flow is ir-
rotational (so that the velocity derives from a potential: u = ∇θ) [59]. The Lagrangians (40)
and (47) were first obtained by Eckart [137] for a classical fluid and from the hydrodynamic
representation of the Schrödinger equation (see also [57,138]). The Lagrangian (47) with the
potential V = A/(2ρ) corresponding to the Chaplygin equation of state P = −A/ρ (see
below) also appeared in the theory of membranes (d = 2) [57,66]. It was later generalized
to a d-brane moving in a (d + 1, 1) space-time [58,59].

2.5. Reduced Lagrangian L(x)

We introduce the Lagrangian density

L = −
[

ρθ̇ +
1
2

ρ(∇θ)2 + V(ρ)

]
, (54)

so that L =
∫
L dr and S =

∫
L drdt. Using the Bernoulli Equation (50) and the identity (26),

we can eliminate θ from the Lagrangian and obtain

L = ρV′(ρ)−V(ρ) = P(ρ). (55)

Therefore, the Lagrangian density is equal to the pressure:

L = P. (56)
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We now eliminate ρ from the Lagrangian. Introducing the notation

x = θ̇ +
1
2
(∇θ)2, (57)

the Bernoulli Equation (50) can be written as

x = −V′(ρ). (58)

Assuming V′′ > 0, this equation can be reversed to give

ρ = F(x) (59)

with F(x) = (V′)−1(−x)16. As a result, the equation of continuity (48) can be written in
terms of θ alone as

∂

∂t

{
F
[

θ̇ +
1
2
(∇θ)2

]}
+∇ ·

{
F
[

θ̇ +
1
2
(∇θ)2

]
∇θ

}
= 0. (60)

On the other hand, according to Equations (26) and (59), we have P = P(x). Therefore,
recalling Equation (56), we get

L = P(x). (61)

In this manner, we have eliminated the density ρ from the Lagrangian (54) and we
have obtained a reduced Lagrangian of the form L(x) that depends only on x. This kind of
Lagrangian, called k-essence Lagrangian, is specifically discussed in Appendix B. We show
below that

ρ = F(x) = −L′(x) = −P′(x). (62)

Using Equation (62), we can write Equation (48) in terms of L′(x) as

∂

∂t
[
L′(x)

]
+∇ ·

[
L′(x)∇θ

]
= 0. (63)

Proof of Equation (62): From Equations (26) and (58) we have

P′(ρ) = ρV′′(ρ) (64)

and
dx
dρ

= −V′′(ρ). (65)

Starting from Equation (61) and using Equations (64) and (65) we obtain

L′(x) = P′(x) = P′(ρ)
dρ

dx
= ρV′′(ρ)

dρ

dx
= −ρ

dx
dρ

dρ

dx
= −ρ, (66)

which establishes Equation (62).
The preceding results are general. In the following sections, we consider particular

equations of state.

2.6. Polytropic Gas

We first consider the polytropic equation of state [139]

P = Kργ. (67)

It can be obtained from the potential [136]

V(ρ) =
K

γ− 1
ργ i.e. V(|ψ|2) = K

γ− 1
|ψ|2γ. (68)
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As discussed in [136] this potential is similar to the Tsallis free energy density −Ksγ,
where the polytropic constant K plays the role of a generalized temperature and sγ =
− 1

γ−1 (ρ
γ − ρ) is the Tsallis entropy density. The Lagrangian and the Hamiltonian are given

by Equations (47) and (53) with Equation (68). The Bernoulli Equation (50) takes the form

θ̇ +
1
2
(∇θ)2 +

Kγ

γ− 1
ργ−1 = 0. (69)

From that equation, we obtain

ρ =

[
−γ− 1

Kγ

(
θ̇ +

1
2
(∇θ)2

)] 1
γ−1

, (70)

which is similar to the Tsallis distribution. The reduced Lagrangian L(x) corresponding to
the polytropic gas is

L = P = K
[
−γ− 1

Kγ

(
θ̇ +

1
2
(∇θ)2

)] γ
γ−1

. (71)

The equation of motion is

∂

∂t

(∣∣∣∣θ̇ + 1
2
(∇θ)2

∣∣∣∣ 1
γ−1
)
+∇ ·

(∣∣∣∣θ̇ + 1
2
(∇θ)2

∣∣∣∣ 1
γ−1
∇θ

)
= 0. (72)

We note that the polytropic constant K does not appear in this equation.

2.7. Isothermal Gas

The case γ = 1, corresponding to the isothermal equation of state [139]

P = Kρ, (73)

must be treated specifically (here K plays the role of the temperature kBT/m). It can be
obtained from the potential [136]

V(ρ) = Kρ[ln(ρ/ρ∗)− 1] i.e., V(|ψ|2) = K|ψ|2
[
ln(|ψ|2/ρ∗)− 1

]
. (74)

As discussed in [136] this potential is similar to the Boltzmann free energy density
−KsB, where K plays the role of the temperature and sB = −ρ[ln(ρ/ρ∗)− 1] is the Boltz-
mann entropy density. The Lagrangian and the Hamiltonian are given by Equations (47)
and (53) with Equation (74). The Bernoulli Equation (50) takes the form

θ̇ +
1
2
(∇θ)2 + K ln(ρ/ρ∗) = 0. (75)

From this equation, we obtain

ρ = ρ∗e−
1
K [θ̇+

1
2 (∇θ)2], (76)

which is similar to the Boltzmann distribution. The reduced Lagrangian L(x) correspond-
ing to the isothermal gas is

L = P = Kρ∗e−
1
K [θ̇+

1
2 (∇θ)2]. (77)

The equation of motion is

∂

∂t

(
e−

1
K [θ̇+

1
2 (∇θ)2]

)
+∇ ·

(
e−

1
K [θ̇+

1
2 (∇θ)2]∇θ

)
= 0. (78)



Astronomy 2022, 1 139

We note that the constant K (temperature) cannot be eliminated from this equation
contrary to the case of the polytropic gas.

2.8. Chaplygin Gas

The Chaplygin equation of state reads [53]

P =
K
ρ

. (79)

The ordinary Chaplygin gas corresponds to K < 0. The case K > 0 is called the anti-
Chaplygin gas. Equation (79) is a particular polytropic equation of state (67) corresponding
to γ = −117. It can be obtained from the potential

V(ρ) = − K
2ρ

i.e. V(|ψ|2) = − K
2|ψ|2 . (80)

The Lagrangian and the Hamiltonian are given by Equations (47) and (53) with
Equation (80). The Bernoulli Equation (50) takes the form

θ̇ +
1
2
(∇θ)2 +

K
2ρ2 = 0, (81)

yielding

ρ =

√√√√ −K

2
[
θ̇ + 1

2 (∇θ)2
] . (82)

The reduced Lagrangian L(x) corresponding to the Chaplygin gas is

L = P = K

√
2
−K

[
θ̇ +

1
2
(∇θ)2

]
. (83)

The equation of motion is

∂

∂t

 1√
|θ̇ + 1

2 (∇θ)2|

+∇ ·

 ∇θ√
|θ̇ + 1

2 (∇θ)2|

 = 0. (84)

The Chaplygin constant K does not appear in this equation. If we consider time-
independent solutions, this equation reduces to

∇ ·
(

∇θ√
(∇θ)2

)
= 0. (85)

The same equation is obtained by taking the massless limit (recalling that θ = S/m).
In the theory of d-branes, this equation means that the surface θ(x1, x2, ..., xd) = const has
zero extrinsic mean curvature [68]. This solution exists only when K < 0.

Remark: The Lagrangian (83) was obtained by [58,59] in two different manners: (i) start-
ing from the Lagrangian (47) with Equation (80) and using the Bernoulli Equation (81)
to eliminate ρ as we have done here; (ii) for a d-brane moving in a (d + 1, 1) space-time.
In that second case, it can be obtained from the Nambu-Goto action in the light-cone
parametrization. This explains the connection between d-branes and the hydrodynamics of
the Chaplygin gas.
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2.9. Standard BEC

The potential of a standard BEC described by the ordinary GP equation is

V(|ψ|2) = 2πas h̄2

m3 |ψ|4 i.e. V(ρ) =
2πas h̄2

m3 ρ2, (86)

where as is the scattering length of the bosons (the interaction is repulsive when as > 0
and attractive when as < 0). This quartic potential accounts for two-body interactions in a
weakly interacting microscopic theory of superfluidity [140]. The corresponding equation
of state is

P =
2πas h̄2

m3 ρ2. (87)

This is the equation of state of a polytrope of index γ = 2 and polytropic constant
K = 2πas h̄2/m3. The Lagrangian and the Hamiltonian are given by Equations (47) and (53)
with Equation (86). The Bernoulli Equation (50) takes the form

θ̇ +
1
2
(∇θ)2 + 2Kρ = 0, (88)

yielding

ρ = − 1
2K

[
θ̇ +

1
2
(∇θ)2

]
. (89)

The reduced Lagrangian L(x) corresponding to the standard BEC is

L = P =
1

4K

[
θ̇ +

1
2
(∇θ)2

]2
. (90)

The equation of motion is

∂

∂t

[
θ̇ +

1
2
(∇θ)2

]
+∇ ·

([
θ̇ +

1
2
(∇θ)2

]
∇θ

)
= 0. (91)

The BEC constant K does not appear in this equation.

2.10. DM Superfluid

The potential of a superfluid (BEC) with a sextic self-interaction is

V(|ψ|2) = 1
2

K|ψ|6 i.e. V(ρ) =
1
2

Kρ3. (92)

This potential accounts for three-body interactions in a weakly interacting microscopic
theory of superfluidity [133]. The potential (92) may also describe a more exotic DM
superfluid [141]. In that case, it has a completely different interpretation. The corresponding
equation of state is

P = Kρ3. (93)

This is the equation of state of a polytrope of index γ = 3. The Lagrangian and
the Hamiltonian are given by Equations (47) and (53) with Equation (92). The Bernoulli
Equation (50) takes the form

θ̇ +
1
2
(∇θ)2 +

3K
2

ρ2 = 0, (94)
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yielding

ρ =

√
− 2

3K

[
θ̇ +

1
2
(∇θ)2

]
. (95)

The reduced Lagrangian L(x) corresponding to the superfluid is

L = P = K
{
− 2

3K

[
θ̇ +

1
2
(∇θ)2

]}3/2
. (96)

The equation of motion is

∂

∂t

[√
|θ̇ + 1

2
(∇θ)2|

]
+∇ ·

(√
|θ̇ + 1

2
(∇θ)2|∇θ

)
= 0. (97)

The superfluid constant K does not appear in this equation. If we consider time-
independent solutions, this equation reduces to

∇ · (|∇θ|∇θ) = 0. (98)

This solution exists only when K < 0. Interestingly, there is a connection between a
superfluid described by Equation (98) and the modified Newtonian dynamics (MOND)
theory (see, e.g., [141,142] for more details).

2.11. Logotropic Gas

Finally, we consider the logotropic equation of state [118]

P = A ln
(

ρ

ρ∗

)
, (99)

which can be obtained from the potential [136]

V(ρ) = −A ln
(

ρ

ρ∗

)
− A i.e. V(|ψ|2) = −A ln

(
|ψ|2
ρ∗

)
− A. (100)

The Lagrangian and the Hamiltonian are given by Equations (47) and (53) with
Equation (100). The Bernoulli Equation (50) takes the form

θ̇ +
1
2
(∇θ)2 − A

ρ
= 0, (101)

yielding

ρ =
A

θ̇ + 1
2 (∇θ)2

. (102)

The reduced Lagrangian L(x) corresponding to the logotropic gas is

L = P = −A ln
[

ρ∗
A

(
θ̇ +

1
2
(∇θ)2

)]
. (103)

The equation of motion is

∂

∂t

(
1

|θ̇ + 1
2 (∇θ)2|

)
+∇ ·

(
∇θ

|θ̇ + 1
2 (∇θ)2|

)
= 0. (104)

The logotropic constant A does not appear in this equation.
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Remark: We can recover these results from the polytropic equation of state of Section 2.6
by considering the limit γ → 0, K → ∞ with A = Kγ constant [118,143]. Starting from
Equation (71), we get

L = K
[
−γ− 1

Kγ
x
] γ

γ−1
' Ke−γ ln

(
x

Kγ

)
' K

[
1− γ ln

(
x

Kγ

)
+ ...

]
' K− A ln

( x
A

)
, (105)

which is equivalent to Equation (103) up to a constant term (see notes 9 and 12).

2.12. Summary

For a polytropic equation of state P = Kργ with γ 6= 1, the reduced Lagrangian is

L(x) = K
(
−γ− 1

Kγ
x
) γ

γ−1
. (106)

It is a pure power-law L ∝ x
γ

γ−1 . In particular, for the Chaplygin gas (γ = −1), for the
standard BEC (γ = 2) and for the DM superfluid (γ = 3) we have L ∝ x1/2, L ∝ x2 and
L ∝ x3/2 respectively. For the unitary Fermi gas (γ = 5/3) we have L ∝ x5/2. For an
isothermal equation of state P = Kρ, the reduced Lagrangian is

L(x) = Kρ∗e−x/K. (107)

For a logotropic equation of state P = A ln(ρ/ρ∗), it reads

L(x) = −A ln
(ρ∗

A
x
)

. (108)

3. Relativistic Theory
3.1. Klein-Gordon Equation

We consider a relativistic complex SF ϕ(xµ) = ϕ(x, y, z, t) which is a continuous func-
tion of space and time. It can represent the wavefunction of a relativistic BEC. The action of
the SF can be written as

S =
∫
L
√
−g d4x, (109)

where L = L(ϕ, ϕ∗, ∂µ ϕ, ∂µ ϕ∗) is the Lagrangian density and g = det(gµν) is the determi-
nant of the metric tensor. We consider a canonical Lagrangian density of the form

L =
1
2

gµν∂µ ϕ∗∂ν ϕ−Vtot(|ϕ|2), (110)

where the first term is the kinetic energy and the second term is minus the potential energy.
The potential energy can be decomposed into a rest-mass energy term and a self-interaction
energy term:

Vtot(|ϕ|2) =
1
2

m2c2

h̄2 |ϕ|
2 + V(|ϕ|2). (111)

The least action principle δS = 0 with respect to variations of the SF δϕ (or δϕ∗), which
is equivalent to the Euler-Lagrange equation

Dµ

[
∂L

∂(∂µ ϕ)∗

]
− ∂L

∂ϕ∗
= 0, (112)

yields the KG equation

�ϕ + 2
dVtot

d|ϕ|2 ϕ = 0, (113)
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where � = Dµ∂µ = 1√−g ∂µ(
√−g gµν∂ν) is the d’Alembertian operator in a curved space-

time. It can be written explicitly as

�ϕ = Dµ∂µ ϕ = gµνDµ∂ν ϕ = gµν(∂µ∂ν ϕ− Γσ
µν∂σ ϕ) =

1√−g
∂µ(
√
−g∂µ ϕ). (114)

For a free massless SF (Vtot = 0), the KG equation reduces to �ϕ = 0.
The energy-momentum (stress) tensor is given by

Tµν =
2√−g

δS
δgµν =

2√−g
∂(
√−gL)
∂gµν = 2

∂L
∂gµν − gµνL. (115)

For a complex SF, we have

Tν
µ =

∂L
∂(∂ν ϕ)

∂µ ϕ +
∂L

∂(∂ν ϕ∗)
∂µ ϕ∗ − gν

µL. (116)

For the Lagrangian (110), we obtain

Tµν =
1
2
(∂µ ϕ∗∂ν ϕ + ∂ν ϕ∗∂µ ϕ)− gµν

[
1
2

gρσ∂ρ ϕ∗∂σ ϕ−Vtot(|ϕ|2)
]

. (117)

The conservation of the energy-momentum tensor, which results from the invariance
of the Lagrangian density under continuous translations in space and time (Noether
theorem [144]), reads

DνTµν = 0. (118)

The energy-momentum four vector is Pµ =
∫

Tµ0√−g d3x. Its time component P0 is
the energy while P is the impulse. Each component of Pµ is conserved in time, i.e., it is a
constant of motion. Indeed, we have

Ṗµ =
d
dt

∫
Tµ0√−g d3x = c

∫
∂0(Tµ0√−g) d3x = −c

∫
∂i(Tµi√−g) d3x = 0, (119)

where we have used Equation (118) with DµVµ = 1√−g ∂µ(
√−gVµ) to get the third equality.

The current of charge of a complex SF is given by

Jµ =
m
ih̄

[
ϕ

∂L
∂(∂µ ϕ)

− ϕ∗
∂L

∂(∂µ ϕ∗)

]
. (120)

For the Lagrangian (110), we obtain

Jµ = − m
2ih̄

(ϕ∗∂µ ϕ− ϕ∂µ ϕ∗). (121)

Using the KG Equation (113), one can show that

Dµ Jµ = 0. (122)

This equation expresses the local conservation of the charge. The total charge of the
SF is

Q =
e

mc

∫
J0√−g d3x, (123)

and we easily find from Equation (122) that Q̇ = 0. The charge Q is proportional to the
number N of bosons provided that antibosons are counted negatively [145]. Therefore,
Equation (122) also expresses the local conservation of the boson number (Q = Ne). This
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conservation law results via the Noether theorem from the global U(1) symmetry of the
Lagrangian, i.e., from the invariance of the Lagrangian density under a global phase
transformation ϕ→ ϕe−iθ (rotation) of the complex SF. Note that Jµ vanishes for a real SF
so the charge and the particle number are not conserved in that case.

The Einstein-Hilbert action of general relativity is

Sg =
c4

16πG

∫
R
√
−g d4x, (124)

where R is the Ricci scalar curvature. The least action principle δSg = 0 with respect to
variations of the metric δgµν yields the Einstein field equations

Gµν ≡ Rµν −
1
2

gµνR =
8πG

c4 Tµν. (125)

The contracted Bianchi identity DνGµν = 0 implies the conservation of the energy
momentum tensor (DνTµν = 0).

3.2. The de Broglie Transformation

We can write the KG Equation (113) under the form of hydrodynamic equations by
using the de Broglie [146–148] transformation. To that purpose, we write the SF as

ϕ =
h̄
m
√

ρeiStot/h̄, (126)

where ρ is the pseudo rest-mass density18 and Stot is the action. They are given by

ρ =
m2

h̄2 |ϕ|
2 and Stot =

h̄
2i

ln
(

ϕ

ϕ∗

)
. (127)

For convenience, we define θ = Stot/m so that Equation (126) can be rewritten as19

ϕ =
h̄
m
√

ρeimθ/h̄. (128)

Substituting this expression into the Lagrangian density (110), we obtain

L =
1
2

gµνρ∂µθ∂νθ +
h̄2

8m2ρ
gµν∂µρ∂νρ−Vtot(ρ) (129)

with
Vtot(ρ) =

1
2

ρc2 + V(ρ). (130)

The Euler-Lagrange equations for θ and ρ, expressing the least action principle, are

Dµ

[
∂L

∂(∂µθ)

]
− ∂L

∂θ
= 0, (131)

Dµ

[
∂L

∂(∂µρ)

]
− ∂L

∂ρ
= 0. (132)

They yield

Dµ(ρ∂µθ) = 0, (133)
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1
2

∂µθ∂µθ − h̄2

2m2

�
√

ρ
√

ρ
−V′tot(ρ) = 0. (134)

The same equations are obtained by substituting the de Broglie transformation from
Equation (128) into the KG Equation (113), and by separating the real and the imaginary
parts. Equation (133) can be interpreted as a continuity equation and Equation (134) can
be interpreted as a quantum relativistic Hamilton-Jacobi (or Bernoulli) equation with a
relativistic covariant quantum potential

Q =
h̄2

2m
�
√

ρ
√

ρ
. (135)

Introducing the pseudo quadrivelocity20

vµ = −
∂µStot

m
= −∂µθ, (136)

we can rewrite Equations (133) and (134) as

Dµ(ρvµ) = 0, (137)

1
2

mvµvµ −Q−mV′tot(ρ) = 0. (138)

Taking the gradient of the quantum Hamilton-Jacobi Equation (138) we obtain [132]

dvν

dt
≡ vµDµvν =

1
m

∂νQ + ∂νV′(ρ), (139)

which can be interpreted as a relativistic quantum Euler equation (with the limitations of
note 20). The first term on the right hand side can be interpreted as a quantum force and
the second term as a pressure force (1/ρ)∂νP such that (1/ρ)P′(ρ) = h′(ρ) = V′′(ρ), where
h is the pseudo enthalpy. We note that the pressure is determined by Equations (25)–(28) as
in the nonrelativistic case.

The energy-momentum tensor is given by Equation (115) or, in the hydrodynamic
representation, by

Tν
µ =

∂L
∂(∂νθ)

∂µθ +
∂L

∂(∂νρ)
∂µρ− gν

µL. (140)

For the Lagrangian (129) we obtain

Tµν = ρ∂µθ∂νθ +
h̄2

4m2ρ
∂µρ∂νρ− gµνL. (141)

The current of charge of a complex SF is given by

Jµ = − ∂L
∂(∂µθ)

(142)

For the Lagrangian (110), we obtain

Jµ = − ρ

m
∂µStot = −ρ∂µθ = ρvµ. (143)

This result can also be obtained from Equation (121) by using Equation (126) coming
from the de Broglie transformation. We then see that the continuity Equation (133) or (137)
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is equivalent to Equation (122). It expresses the conservation of the charge Q of the SF (or
the conservation of the boson number N)

Q = Ne = − e
mc

∫
ρ∂0θ

√
−g d3x. (144)

Assuming ∂µθ∂µθ > 0, we can introduce the fluid quadrivelocity21

uµ = −
∂µθ√
∂µθ∂µθ

c, (145)

which satisfies the identity

uµuµ = c2. (146)

Using Equations (143) and (145), we can write the current as

Jµ =
ρ

c

√
∂µθ∂µθ uµ (147)

and the continuity equation as

Dµ

[
ρ
√

∂µθ∂µθ uµ
]
= 0. (148)

The rest-mass density ρm = nm (which is proportional to the charge density ρe) is
defined by

Jµ = ρmuµ. (149)

Using Equation (146), we see that ρmc2 = uµ Jµ. The continuity Equation (122) can be
written as

Dµ(ρmuµ) = 0. (150)

Comparing Equation (147) with Equation (149), we find that the rest-mass density
ρm = nm of the SF is given by

ρm =
ρ

c

√
∂µθ∂µθ. (151)

Using the Bernoulli Equation (134), we get

ρm =
ρ

c

√
h̄2

m2

�
√

ρ
√

ρ
+ 2V′tot(ρ). (152)

Remark: More generally, we can define the quadrivelocity by

uµ =
Jµ√
Jµ Jµ

c, (153)

which satisfies the identity (146). Using Equation (149) we find that the rest-mass (or charge)
density is given by

ρm =
1
c

√
Jµ Jµ. (154)

We note that J0 is not equal to the rest-mass density in general (ρm 6= J0/c), except if
the SF is static in which case uµ = c δ

µ
0 and J0 = ρmc.
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3.3. TF Approximation

In the classical or TF limit (h̄→ 0), the Lagrangian from Equation (129) reduces to

L =
1
2

gµνρ∂µθ∂νθ −Vtot(ρ). (155)

The Euler-Lagrange Equations (131) and (132) yield the equations of motion

Dµ(ρ∂µθ) = 0, (156)

1
2

∂µθ∂µθ −V′tot(ρ) = 0. (157)

The same equations are obtained by making the TF approximation in Equation (134),
i.e., by neglecting the quantum potential. Equation (156) can be interpreted as a continuity
equation and Equation (157) can be interpreted as a classical relativistic Hamilton-Jacobi (or
Bernoulli) equation. In order to determine the rest mass density, we can proceed as before.
Assuming V′tot > 0, and using Equation (157), we introduce the fluid quadrivelocity

uµ = −
∂µθ√

2V′tot(ρ)
c, (158)

which satisfies the identity (146). Using Equations (143) and (158), we can write the current
as

Jµ =
ρ

c

√
2V′tot(ρ) uµ (159)

and the continuity Equation (156) as

Dµ

[
ρ
√

2V′tot(ρ)u
µ

]
= 0. (160)

Comparing Equation (159) with Equation (149), we find that the rest-mass density
ρm = nm is given, in the TF approximation, by

ρm =
ρ

c

√
2V′tot(ρ). (161)

In general, ρm 6= ρ except (i) for a noninteracting SF (V = 0), (ii) when V is con-
stant, corresponding to the ΛCDM model (see below), and (iii) in the nonrelativistic limit
c→ +∞.

The energy-momentum tensor is given by Equation (115) or, in the hydrodynamic
representation, by Equation (140). For the Lagrangian (155) we obtain

Tµν = ρ∂µθ∂νθ − gµνL (162)

or, using Equation (158),

Tµν = 2ρV′tot(ρ)
uµuν

c2 − gµνL. (163)

The energy-momentum tensor (163) can be written under the perfect fluid form22

Tµν = (ε + P)
uµuν

c2 − Pgµν, (165)
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where ε is the energy density and P is the pressure, provided that we make the identifica-
tions

P = L, ε + P = 2ρV′tot(ρ). (166)

Therefore, the Lagrangian plays the role of the pressure of the fluid. Combining
Equation (155) with the Bernoulli Equation (157), we get

L = ρV′tot(ρ)−Vtot(ρ). (167)

Therefore, according to Equations (166) and (167), the energy density and the pressure
derived from the Lagrangian (155) are given by

ε = ρV′tot(ρ) + Vtot(ρ) = ρc2 + ρV′(ρ) + V(ρ), (168)

P = ρV′tot(ρ)−Vtot(ρ) = ρV′(ρ)−V(ρ), (169)

where we have used Equation (130) to get the second equalities. Eliminating ρ between
these equations, we obtain the equation of state P(ε). Equation (169) for the pressure is
exactly the same as Equation (26) obtained in the nonrelativistic limit. Therefore, knowing
P(ρ), we can obtain the SF potential V(ρ) by the formula [see Equation (28)] 23

V(ρ) = ρ
∫ P(ρ)

ρ2 dρ. (170)

The squared speed of sound is

c2
s = P′(ε)c2 =

ρV′′(ρ)c2

c2 + ρV′′(ρ) + 2V′(ρ)
. (171)

Remark: In [149] we have considered a spatially homogeneous complex SF in an
expanding universe described by the Klein-Gordon-Friedmann (KGF) equations. In the
fast oscillation regime ω � H, where ω is the pulsation of the SF and H the Hubble
constant, we can average the KG equation over the oscillations of the SF (see Appendix
A of [149] and references therein) and obtain a virial relation leading to Equations (168)
and (169). These equations can also be obtained by transforming the KG equation into
hydrodynamic equations, taking the limit h̄ → 0, and using the Bernoulli equation (see
Section II of [149])24. This is similar to the derivation given here. However, the present
derivation is more general since it applies to a possibly inhomogeneous SF [71]. An interest
of the results of [149] is to show that the fast oscillation approximation in cosmology is
equivalent to the TF approximation.

3.4. Reduced Lagrangian L(X)

In the previous section, we have used the Bernoulli Equation (157) to eliminate θ
from the Lagrangian, leading to Equation (167). Here, we eliminate ρ from the Lagrangian.
Introducing the notation

X =
1
2

∂µθ∂µθ, (172)

the Bernoulli Equation (157) can be written as

X = V′tot(ρ). (173)
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Assuming V′′tot > 0, this equation can be reversed to give

ρ = G(X) (174)

with G(X) = (V′tot)
−1(X). As a result, the equation of continuity (156) can be written as

Dµ[G(X)∂µθ] = 0. (175)

On the other hand, according to Equations (168), (169) and (174), we have ε = ε(X)
and P = P(X). Therefore,

L = P(X). (176)

In this manner, we have eliminated the pseudo rest-mass density ρ from the La-
grangian (155) and we have obtained a reduced Lagrangian of the form L(X) that depends
only on X. This kind of Lagrangian, called k-essence Lagrangian, is specifically discussed
in Appendix B. We show below that

ρ = G(X) = P′(X) = L′(X). (177)

Using Equation (177), we can rewrite Equation (175) in terms of L′(X) as

Dµ

[
L′(X)∂µθ

]
= 0. (178)

We also show below that

ε = 2XP′(X)− P. (179)

If we know ε = ε(P) we can solve this differential equation to obtain P(X), hence
L(X).

Proof of Equations (177) and (179): According to Equations (169) and (173), we have

P′(ρ) = ρV′′tot(ρ) (180)

and

dX
dρ

= V′′tot(ρ). (181)

Starting from Equation (176) and using Equations (180) and (181) we obtain

L′(X) = P′(X) = P′(ρ)
dρ

dX
= ρV′′tot(ρ)

dρ

dX
= ρ

dX
dρ

dρ

dX
= ρ, (182)

which establishes Equation (177). On the other hand, according to Equations (168) and (169),
we have

ε + P = 2ρV′tot(ρ). (183)

Using Equations (173) and (182), we obtain

ε + P = 2ρX = 2XP′(X), (184)

which establishes Equation (179).
Remark: We can obtain the preceding results in a more direct and more general manner

from a k-essence Lagrangian L(X) by using the results of Appendix B. The present calcula-
tions show how a k-essential Lagrangian arises from the canonical Lagrangian of a complex
SF ϕ in the TF limit. In that case, the real SF θ represents the phase of the complex SF ϕ.
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3.5. Nonrelativistic Limit

To obtain the nonrelativistic limit of the foregoing equations, we first have to make the
Klein transformation (14) then take the limit c→ +∞. In this manner, the KG Equation (113)
reduces to the GP Equation (12) and the relativistic hydrodynamic Equations (137)–(139)
reduce to the nonrelativistic Equations (20)–(24). These transformations are discussed in
detail in [131,132,150] for self-gravitating BECs. Here, we consider the nongravitational
case and we focus on the nonrelativistic limit of the Lagrangien L(X) from Section 3.4
leading to the Lagrangian L(x) from Section 2.5.

Since L = P in the two cases, we just have to find the relation between X and x when
c→ +∞. Making the Klein transformation25

θ = θNR − c2t (185)

in Equation (172), we obtain

X =
1
2

∂µθ∂µθ

' 1
2c2

(
∂θ

∂t

)2
− 1

2
(∇θ)2

' 1
2c2

(
∂θNR

∂t

)2
− ∂θNR

∂t
+

c2

2
− 1

2
(∇θNR)

2. (186)

When c→ +∞, we find that

X ∼ c2

2
. (187)

The nonrelativistic limit is then given by

c2

2
− X → θ̇NR +

1
2
(∇θNR)

2. (188)

Therefore, when c→ +∞, we can write

X ' c2

2
− x, (189)

where x is defined by Equation (57).
Using Equation (189) we can easily check that the equations of Section 3.4 return the

equations of Section 2.5 in the nonrelativistic limit. For example, using Equation (130),
the relation X = V′tot(ρ) reduces to x = −V′(ρ). On the other hand, using ε ∼ ρc2,
Equation (179) reduces to

ρ ∼ P′(x)
dx
dX
∼ −P′(x) ∼ −L′(x), (190)

which, together with Equation (177), returns Equation (62).

3.6. Enthalpy

Using Equations (A163), (168) and (169) we find that the enthalpy is given by

h = 2
ρ

ρm
V′tot(ρ). (191)

Using Equation (161), we obtain

h =
√

2V′tot(ρ) c. (192)
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According to Equation (157), the enthalpy can be written as

h = c
√

∂µθ∂µθ = c
√

2X. (193)

Substituting Equation (130) into Equation (192), subtracting c2, and taking the nonrela-
tivistic limit c→ +∞, we recover Equation (27).

4. General Equation of State

In this section, we provide general results valid for an arbitrary equation of state. We
consider three different manners to specify the equation of state depending on whether the
pressure P is expressed as a function of (i) the energy density ε; (ii) the rest-mass density ρm;
(iii) the pseudo rest-mass density ρ. In each case, we determine the pressure P, the energy
density ε, the rest-mass density ρm, the internal energy u, the pseudo rest-mass density ρ,
the SF potential Vtot(ρ), and the k-essence Lagrangian L(X).

4.1. Equation of State of Type I

We first consider an equation of state of type I (see Appendix C) where the pressure is
given as a function of the energy density: P = P(ε).

4.1.1. Determination of ρm, P(ρm) and u(ρm)

Using the results of Appendix D, we can obtain the rest-mass density ρm = nm and
the internal energy u as follows. According to Equation (A162), we have

ln ρm =
∫ dε

P(ε) + ε
, (194)

which determines ρm(ε). Eliminating ε between P(ε) and ρm(ε) we obtain P(ρm). On the
other hand, according to Equation (A160), we have

u = ε− ρm(ε)c2. (195)

Eliminating ε between Equations (194) and (195), we obtain u(ρm). We can also obtain
u(ρm) from P(ρm), or the converse, by using Equations (A165) and (A166).

4.1.2. Determination of ρ, P(ρ) and Vtot(ρ)

Using the results of Section 3.3, we can obtain the pseudo rest-mass density ρ and the
SF potential Vtot as follows. According to Equations (168) and (169), we have

ε− P = 2Vtot(ρ), (196)

ε + P = 2ρV′tot(ρ). (197)

Differentiating Equation (196) and using Equation (197), we get

d(ε− P) = 2V′tot(ρ)dρ =
ε + P

ρ
dρ. (198)

This yields

ln ρ =
∫ 1− P′(ε)

ε + P(ε)
dε, (199)
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which determines ρ(ε). Eliminating ε between P(ε) and ρ(ε) we obtain P(ρ). On the other
hand, according to Equation (196), we have

Vtot =
1
2
[ε− P(ε)]. (200)

Eliminating ε between Equations (199) and (200), we obtain Vtot(ρ). We can also obtain
V(ρ) from P(ρ), or the converse, by using Equations (169) and (170).

Remark: If the relation ε(P) is more explicit than P(ε), we can use

ln ρ =
∫

ε′(P)− 1
ε(P) + P

dP (201)

and

Vtot =
1
2
[ε(P)− P], (202)

instead of Equations (199) and (200). The first equation gives ρ(P). Eliminating P between
Equations (201) and (202), we obtain Vtot(ρ).

4.1.3. Lagrangian L(X)

If we know ε = ε(P) then, according to Equation (179), we have

ln X = 2
∫ dP

ε(P) + P
, (203)

which determines X(P). If this function can be inverted we get P(X), hence L(X). If we
know P = P(ε), we can rewrite Equation (203) as

ln X = 2
∫ P′(ε)

ε + P(ε)
dε, (204)

which determines X(ε). If this function can be inverted we get ε(X), then P(X) = P[ε(X)],
hence L(X).

4.2. Equation of State of Type II

We now consider an equation of state of type II (see Appendix D) where the pressure
is given as a function of the rest-mass density: P = P(ρm). We can then determine the
internal energy u(ρm) from Equation (A165). Inversely, we can specify the internal energy
u(ρm) as a function of the rest-mass density and obtain the equation of state P(ρm) from
Equation (A166).

4.2.1. Determination of ε and P(ε)

According to Equations (A160) and (A166), the energy density and the pressure are
given by

ε = ρmc2 + u(ρm), (205)

P = ρmu′(ρm)− u(ρm). (206)

Eliminating ρm between Equations (205) and (206), we obtain P(ε).
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4.2.2. Determination of ρ, P(ρ) and Vtot(ρ)

According to Equation (199), we have

ln ρ =
∫

ε′(ρm)− P′(ρm)

ε(ρm) + P(ρm)
dρm. (207)

Then, using Equations (205) and (206), we obtain

ln ρ =
∫ c2 + u′(ρm)− ρmu′′(ρm)

ρmc2 + ρmu′(ρm)
dρm, (208)

which determines ρ(ρm). This equation can be integrated into

ρ =
ρm

1 + 1
c2 u′(ρm)

, (209)

where the constant of integration has been determined in order to obtain ρ = ρm in the
nonrelativistic limit. Identifying ε + P = 2ρV′tot(ρ) from Equations (168) and (169) with
ε + P = ρm(c2 + u′(ρm)) from Equations (205) and (206) we see that Equation (209) is
equivalent to Equation (161). Eliminating ρm between P(ρm) and ρ(ρm), we obtain P(ρ).
On the other hand, according to Equations (200), (205) and (206), we get

Vtot =
1
2

[
ρmc2 + 2u(ρm)− ρmu′(ρm)

]
. (210)

Eliminating ρm between Equations (208) and (210) we obtain Vtot(ρ). We can also
obtain V(ρ) from P(ρ), or the converse, by using Equations (169) and (170).

4.2.3. Lagrangian L(X)

According to Equation (203), we have

ln X = 2
∫ P′(ρm)

ε(ρm) + P(ρm)
dρm. (211)

Using Equations (205) and (206), we obtain

ln X = 2
∫ u′′(ρm)

c2 + u′(ρm)
dρm, (212)

which can be integrated into

X =
1

2c2

[
c2 + u′(ρm)

]2
. (213)

We have determined the constant of integration so that, in the nonrelativistic limit,
X ∼ c2/2 (see Section 3.5). From Equation (213) we obtain X(ρm). If this function can be
inverted we get ρm(X), then P(X) = P[ρm(X)], hence L(X).

4.3. Equation of State of Type III

Finally, we consider an equation of state of type III (see Section 3 and Appendix E)
where the pressure is given as a function of the pseudo rest-mass density: P = P(ρ). We
can then determine the SF potential V(ρ) from Equation (170)26. Inversely, we can specify
the SF potential V(ρ) and obtain the equation of state P(ρ) from Equation (169).
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4.3.1. Determination of ε and P(ε)

According to Equations (168) and (169), the energy density and the pressure are
given by

ε = ρV′tot(ρ) + Vtot(ρ), (214)

P = ρV′tot(ρ)−Vtot(ρ). (215)

Eliminating ρ between Equations (214) and (215), we obtain P(ε).

4.3.2. Determination of ρm, P(ρm) and u(ρm)

According to Equation (A162), we have

ln ρm =
∫

ε′(ρ)

ε + P(ρ)
dρ. (216)

Using Equations (214) and (215), we obtain

ln ρm =
∫

ρV′′tot(ρ) + 2V′tot(ρ)

2ρV′tot(ρ)
dρ, (217)

which determines ρm(ρ). This equation can be integrated into

ρm =
ρ

c

√
2V′tot(ρ), (218)

where the constant of integration has been determined in order to obtain ρm = ρ in the
nonrelativistic limit. This relation is equivalent to Equation (161). Eliminating ρ between
P(ρ) and ρm(ρ) we obtain P(ρm). On the other hand, according to Equation (A160), we have

u = ε− ρmc2. (219)

Using Equations (214) and (218), we obtain

u = ρV′tot(ρ) + Vtot(ρ)− ρm(ρ)c2

= ρV′tot(ρ) + Vtot(ρ)− ρc
√

2V′tot(ρ). (220)

Eliminating ρ between Equations (217) and (220) we obtain u(ρm). We can also obtain
u(ρm) from P(ρm), or the converse, by using Equations (A165) and (A166).

4.3.3. Lagrangian L(X)

According to Equation (173) we have

X = V′tot(ρ), (221)

which determines X(ρ). If this function can be inverted we get ρ(X), then P(X) = P[ρ(X)],
hence L(X).

5. Polytropes

In this section, we apply the general results of Section 4 to the case of a polytropic
equation of state.
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5.1. Polytropic Equation of State of Type I

The polytropic equation of state of type I reads [151]

P = K
( ε

c2

)γ
, (222)

where K is the polytropic constant and γ = 1 + 1/n is the polytropic index. This is the
equation of state of the GCG [95]. In the nonrelativistic regime, using ε ∼ ρc2, we recover
Equation (67).

(i) For γ = −1, we obtain

P =
Kc2

ε
. (223)

This is the equation of state of the Chaplygin (K < 0) or anti-Chaplygin (K > 0)
gas [50,71,86,98].

(ii) For γ = 2, we obtain

P = K
( ε

c2

)2
. (224)

This is the equation of state of the standard BEC with repulsive (K > 0) or attractive
(K < 0) self-interaction27. In that case, K = 2πas h̄2/m3 (see Section 2.9).

(iii) For γ = 0, we obtain

P = K. (225)

This is the equation of state of the ΛCDM (K < 0) or anti-ΛCDM (K > 0)
model [86,98,102,103]. In that case K = −ρΛc2, where ρΛ = Λ/(8πG) is the cosmo-
logical density.

(iv) For γ = 3, we obtain

P = K
( ε

c2

)3
. (226)

This is the equation of state of a superfluid with repulsive (K > 0) or attractive (K < 0)
self-interaction (see Section 2.10).

(v) The case γ = 1 must be treated specifically. In that case, we have a linear equation
of state [157–161]

P = αε, (227)

where we have defined

α =
K
c2 . (228)

This linear equation of state describes pressureless matter (α = 0), radiation (α = 1/3)
and stiff matter (α = 1). The nonrelativistic limit corresponds to α→ 0. Using ε ∼ ρc2, we
recover the isothermal equation of state (73).

5.1.1. Determination of ρm, P(ρm) and u(ρm)

The rest-mass density is determined by Equation (194) with the equation of state (222).
We have

ln ρm =
∫ dε

K
(

ε
c2

)γ
+ ε

. (229)
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The integral can be calculated analytically yielding

ρmc2 =
ε[

1 + K
c2

(
ε
c2

)γ−1
]1/(γ−1)

. (230)

We have determined the constant of integration so that ε ∼ ρmc2 in the nonrelativistic
limit. Equation (230) can be inverted to give

ε =
ρmc2(

1− Kρ
γ−1
m
c2

) 1
γ−1

. (231)

Substituting this result into Equation (222), we obtain

P =
Kρ

γ
m(

1− Kρ
γ−1
m
c2

) γ
γ−1

. (232)

The internal energy is given by Equations (195) and (231) giving

u =
ρmc2(

1− Kρ
γ−1
m
c2

) 1
γ−1
− ρmc2. (233)

These results are consistent with those obtained in Appendix B.3 of [154]. In the
nonrelativistic limit, using ε ∼ ρmc2[1 + K

(γ−1)c2 ρ
γ−1
m ], we recover Equations (67) and (68)

[recalling Equation (29)].
(i) For γ = −1 (Chaplygin gas), we obtain

ε =
√
(ρmc2)2 − Kc2, (234)

P =
Kc2√

(ρmc2)2 − Kc2
, (235)

u =
√
(ρmc2)2 − Kc2 − ρmc2. (236)

(ii) For γ = 2 (BEC), we obtain

ε =
ρmc2

1− Kρm
c2

, (237)

P =
Kρ2

m(
1− Kρm

c2

)2 , (238)

u =
Kρ2

m

1− Kρm
c2

. (239)

For K > 0 there is a maximum density (ρm)max = c2/K. The equation of state (238)
was first obtained in [154].
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(iii) For γ = 0 (ΛCDM model), we obtain

ε = ρmc2 − K, (240)

P = K, (241)

u = −K. (242)

(iv) For γ = 3 (superfluid), we obtain

ε =
ρmc2(

1− Kρ2
m

c2

)1/2 , (243)

P =
Kρ3

m(
1− Kρ2

m
c2

)3/2 , (244)

u =
ρmc2(

1− Kρ2
m

c2

)1/2 − ρmc2. (245)

For K > 0 there is a maximum density (ρm)max = c/
√

K.
(v) For γ = 1, Equation (194) can be integrated into

ρm =

[
αε

K(α)

] 1
1+α

, (246)

where K(α) is a constant that depends on α. In the nonrelativistic limit α→ 0, the condition
ε ∼ ρmc2 implies K(α) → αc2 = K. Combining Equation (246) with Equation (227),
we obtain

P = K(α)ρ1+α
m . (247)

This is the equation of state of a polytrope of type II (see Section 5.2) with a polytropic
index Γ = 1 + α (i.e. n = 1/α) and a polytropic constant K(α)28. In the nonrelativistic
limit α → 0, we obtain an isothermal equation of state P = Kρm with a “temperature” K.
The internal energy (195) is given by

u = ρmc2
[
K(α)
αc2 ρα

m − 1
]

. (248)

It is similar to the Tsallis free energy density −Ksq (where sq = − 1
q−1 ρ

q
m is the Tsallis

entropy density) of index q = 1 + α with a “polytropic” temperature K(α). In the non-
relativistic limit α → 0 (i.e. q → 1), Equation (248) reduces to u = Kρm ln ρm (up to an
additive constant) and we recover Equation (74) [recalling Equation (29)]. It is similar to
the Boltzmann free energy density −KsB (where sB = −ρm ln ρm is the Boltzmann entropy
density) with the temperature K. In the present context, the Tsallis entropy arises from
relativistic effects (α 6= 0⇒ q 6= 1).
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5.1.2. Determination of ρ, P(ρ) and Vtot(ρ)

The pseudo rest-mass density and the SF potential are determined by Equations (199)
and (200) with the equation of state (222). We have

ln ρ =
∫ 1− Kγ

c2

(
ε
c2

)γ−1

ε + K
(

ε
c2

)γ dε. (249)

The integral can be calculated analytically yielding

ρc2 = ε

[
1 +

K
c2

( ε

c2

)γ−1
](1+γ)/(1−γ)

. (250)

We have determined the constant of integration so that ε ∼ ρc2 in the nonrelativistic
limit. The SF potential is given by

Vtot =
1
2

[
ε− K

( ε

c2

)γ]
. (251)

Equations (222), (250) and (251) define P(ρ) and Vtot(ρ) in parametric form with
parameter ε. In the nonrelativistic limit, using ε ∼ ρc2[1− K(1+γ)

(1−γ)c2 ργ−1] and Equation (130),
we recover Equations (67) and (68).

(i) For γ = −1 (Chaplygin gas), we obtain

ε = ρc2, (252)

P =
K
ρ

, (253)

Vtot(ρ) =
1
2

(
ρc2 − K

ρ

)
. (254)

Expression (254) of the SF potential was first given in [71]. We note that the energy
density ε coincides with the pseudo rest-mass energy density ρc2 [see Equation (252)].
As a result, P(ρ) is a Chaplygin equation of state of type III (see Section 5.3). Therefore,
the models I and III coincide in that case.

(ii) For γ = 2 (BEC), the energy density is determined by a cubic equation

ρc2 =
ε(

1 + Kε
c4

)3 . (255)

The solution ε(ρ) can be obtained by standard means. The total potential Vtot(ρ) is
then given by

Vtot =
1
2

[
ε− K

( ε

c2

)2
]

(256)

with ε replaced by ε(ρ). Equations (255) and (256) also determine Vtot(ρ) in parametric form.
(iii) For γ = 0 (ΛCDM model), we obtain

ε = ρc2 − K, (257)

P = K, (258)

Vtot(ρ) =
1
2

ρc2 − K. (259)
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Comparing these results with Equations (240)–(242), we note that ρ = ρm and V =
u = −K. The potential V is constant.

(iv) For γ = 3 (superfluid), the total potential Vtot(ρ) is given in parametric form by

ρc2 =
ε[

1 + K
c2

(
ε
c2

)2
]2 , (260)

Vtot =
1
2

[
ε− K

( ε

c2

)3
]

. (261)

It is not possible to obtain more explicit expressions.
(v) For γ = 1, Equation (199) can be integrated into

ρ =

[
αε

K(α)

](1−α)/(1+α)

, (262)

where K(α) is a constant that depends on α. In the nonrelativistic limit α→ 0, the condition
ε ∼ ρc2 implies K(α) → αc2 = K. Combining Equation (262) with Equation (227), we
obtain

P = K(α)ρ(1+α)/(1−α). (263)

This is the equation of state of a polytrope of type III (see Section 5.3) with a polytropic
index Γ = (1 + α)/(1− α) (i.e. n = (1− α)/(2α)) and a polytropic constant K(α)29. In
the nonrelativistic limit α → 0, we obtain an isothermal equation of state P = Kρ with a
“temperature” K. The SF potential (200) is given by

Vtot =
1− α

2α
K(α)ρ(1+α)/(1−α). (264)

This is a power-law potential30. In the nonrelativistic limit α → 0, Equation (264)
reduces to Vtot = Kρ ln ρ (up to an additive constant) and we recover Equation (74). For
α = 1 (stiff matter) we obtain Vtot = 0, corresponding to a free massless SF satisfying
�ϕ = 0.

5.1.3. Lagrangian L(X)

The Lagrangian L(X) is determined by Equation (203) or Equation (204) with the
equation of state (222). We have

ln X = 2
∫ dP(

P
K

)1/γ
c2 + P

(265)

or

ln X = 2
∫ Kγ

c2

(
ε
c2

)γ−1

ε + K
(

ε
c2

)γ dε. (266)

The integrals can be calculated analytically yielding

L(X) = P = K

 c2

−K

1−
(

2X
c2

) γ−1
2γ


γ

γ−1

. (267)

We have determined the constant of integration so that, in the nonrelativistic limit,
X ∼ c2/2 (see Section 3.5). In the nonrelativistic limit, using Equation (189), we recover
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Equation (71). The Lagrangian (267) was first obtained in [95] in relation to the GCG by
using the procedure of [71] that we have followed.

(i) For γ = −1 (Chaplygin gas), we obtain

L(X) = P = K

√
c2

−K

(
1− 2X

c2

)
. (268)

The Lagrangian of the Chaplygin gas (K < 0) is of the Born-Infeld type. Indeed, setting
K = −A so that P = −Ac2/ε we get the Born-Infeld Lagrangian

LBI = −(Ac2)1/2

√
1− 1

c2 ∂µθ∂µθ. (269)

In the nonrelativistic limit, using Equation (189), it reduces to

LNR = −(2A)1/2

√
θ̇ +

1
2
(∇θ)2, (270)

corresponding to Equation (83). Using Equation (175) or Equation (178), we obtain the
equation of motion

Dµ

 ∂µθ√
|1− 1

c2 ∂νθ∂νθ|

 = 0. (271)

In the nonrelativistic limit, it reduces to Equation (84). The Born-Infeld Lagrangian (269)
was obtained by [58,59] in two different manners: (i) starting from a heuristic relativistic
Lagrangian

L = −
∫ [

ρθ̇ + ρc2

√
1 +

A
ρ2c2

√
1 +

(∇θ)2

c2

]
dr (272)

which generalizes the nonrelativistic Lagrangian from Equations (47) and (80), writing the
equations of motion, and eliminating ρ with the aid of the Bernoulli equation; (ii) for a
d-brane moving in a (d + 1, 1) space-time. In the second case, it can be obtained from the
Nambu-Goto action in the Cartesian parametrization. The Born-Infeld Lagrangian (269)
was also obtained in [71] for a complex SF in the TF regime by developing the procedure
that we have followed. It can also be directly obtained from the k-essence formalism
applied to the Chaplygin equation of state (see Appendix B).

(ii) For γ = 2 (BEC), we obtain

L(X) = P = K

{
c2

−K

[
1−

(
2X
c2

)1/4
]}2

. (273)

(iii) For γ = 0 (ΛCDM model) the k-essence Lagrangian is constant.
(iv) For γ = 3 (superfluid), we obtain

L(X) = P = K

{
c2

−K

[
1−

(
2X
c2

)1/3
]}3/2

. (274)

(v) For γ = 1, Equation (203) or Equation (204) can be easily integrated yielding

L(X) = P = A(α)
(

2X
c2

) α+1
2α

, (275)
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where A(α) is a constant that depends on α. The Lagrangian is a pure power-law. It was
first given in [41]. Using Equation (175) or Equation (178), we obtain the equation of motion

Dµ

[(
1
c2 ∂νθ∂νθ

)(1−α)/2α

∂µθ

]
= 0. (276)

In the nonrelativistic limit corresponding to α→ 0, using Equation (189), we recover
Equations (77) and (78) with A(α)→ Kρ∗. In the case α = 1, we obtain L ∝ X and �θ = 0
(free massless SF).

5.2. Polytropic Equation of State of Type II

The polytropic equation of state of type II reads [162]

P = Kρ
γ
m. (277)

Using Equation (A165), the internal energy is

u =
K

γ− 1
ρ

γ
m. (278)

It is similar to the Tsallis free energy. In the nonrelativistic limit, using ρm ∼ ρ, we
recover Equations (67) and (68) [recalling Equation (29)]. Actually, Equations (277) and (278)
coincide with Equations (67) and (68) with ρm in place of ρ. We note that P = (γ− 1)u.

(i) For γ = −1 (Chaplygin gas), we obtain

P =
K
ρm

, u = − K
2ρm

. (279)

(ii) For γ = 2 (BEC), we obtain

P = Kρ2
m, u = Kρ2

m. (280)

(iii) For γ = 0 (ΛCDM model), we obtain

P = K, u = −K. (281)

(iv) For γ = 3 (superfluid), we obtain

P = Kρ3
m, u =

1
2

Kρ3
m. (282)

(v) The case γ = 1, corresponding to an isothermal equation of state

P = Kρm, (283)

must be treated specifically. Using Equation (A165), the internal energy is

u = Kρm

[
ln
(

ρm

ρ∗

)
− 1
]

. (284)

It is similar to the Boltzmann free energy. In the nonrelativistic limit, using ρm ∼ ρ, we
recover Equations (73) and (74) [recalling Equation (29)]. Actually, Equations (283) and (284)
coincide with Equations (73) and (74) with ρm in place of ρ.
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5.2.1. Determination of ε and P(ε)

The energy density is determined by Equation (205) with Equation (278). We obtain

ε = ρmc2 +
K

γ− 1
ρ

γ
m. (285)

The pressure is determined by Equation (206) with Equation (278). This returns
Equation (277). Eliminating ρm between Equation (277) and Equation (285) we obtain P(ε)
under the inverse form ε(P) as

ε =

(
P
K

)1/γ

c2 +
P

γ− 1
. (286)

In the nonrelativistic limit, using ε ∼ ρc2, we recover Equation (67).
(i) For γ = −1 (Chaplygin gas), we obtain

ε = ρmc2 − K
2ρm

, (287)

ε =
Kc2

P
− P

2
, (288)

ρmc2 =
ε±
√

ε2 + 2Kc2

2
, (289)

P = −ε±
√

ε2 + 2Kc2. (290)

We note that the Chaplygin gas of type II is different from the Chaplygin gas of type I.
(ii) For γ = 2 (BEC), we obtain

ε = ρmc2 + Kρ2
m, (291)

ε =

√
P
K

c2 + P, (292)

ρm =
−c2 ±

√
c4 + 4Kε

2K
, (293)

P =
1

4K

[
−c2 ±

√
c4 + 4Kε

]2
. (294)

The equation of state (294) was first obtained in [154,163].
(iii) For γ = 0 (ΛCDM model), we obtain

ε = ρmc2 − K, (295)

P = K. (296)

(iv) For γ = 3 (superfluid), we obtain

ε = ρmc2 +
1
2

Kρ3
m, (297)



Astronomy 2022, 1 163

ε =

(
P
K

)1/3
c2 +

1
2

P. (298)

This is a third degree equation for P1/3 which can be solved by standard means to
obtain P(ε).

(v) For γ = 1, the energy density is determined by Equation (205) with Equation (284).
We obtain

ε = ρmc2 + Kρm

[
ln
(

ρm

ρ∗

)
− 1
]

. (299)

The pressure is determined by Equation (206) with Equation (284). This returns
Equation (283). Eliminating ρm between Equation (283) and Equation (299) we obtain P(ε)
under the inverse form ε(P) as

ε =
P
K

c2 + P
[

ln
(

P
Kρ∗

)
− 1
]

. (300)

Remark: For the index γ = 1/2, we can inverse Equation (286) to obtain

P =
K2

c2 ± K

√
K2

c4 +
ε

c2 . (301)

For the index γ = 3/2, Equation (285) becomes

ε = ρmc2 + 2Kρ3/2
m . (302)

This is a third degree equation for
√

ρm which can be solved by standard means. One
can then obtain P(ε) explicitly.

5.2.2. Determination of ρ, P(ρ) and Vtot(ρ)

The pseudo rest-mass density and the SF potential are determined by Equations (209)
and (210) with Equation (278). We get

ρ =
ρm

1 + γ
γ−1

K
c2 ρ

γ−1
m

, (303)

Vtot =
1
2

[
ρmc2 − K

γ− 2
γ− 1

ρ
γ
m

]
. (304)

Equations (277), (303) and (304) determine P(ρ) and Vtot(ρ) in parametric form with
parameter ρm. In the nonrelativistic limit, using ρm ∼ ρ[1 + γ

γ−1
K
c2 ργ−1] and Equation (130),

we recover Equations (67) and (68).
(i) For γ = −1 (Chaplygin gas), ρm is determined by a cubic equation

2ρ3
m − 2ρρ2

m −
Kρ

c2 = 0, (305)

which can be solved by standard means. The SF potential is given by

Vtot =
1
2

(
ρmc2 +

3K
2ρm

)
. (306)

One can then obtain P(ρ) and Vtot(ρ) explicitly.
(ii) For γ = 2 (BEC), we obtain

ρ =
ρm

1 + 2K
c2 ρm

, (307)
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ρm =
ρ

1− 2K
c2 ρ

, (308)

P =
Kρ2(

1− 2K
c2 ρ
)2 , (309)

Vtot =
1
2

ρc2 +
Kρ2

1− 2Kρ

c2

. (310)

(iii) For γ = 0 (ΛCDM model), we obtain

ρ = ρm, P = K, (311)

Vtot =
1
2

ρc2 − K. (312)

(iv) For γ = 3 (superfluid), we obtain

ρ =
ρm

1 + 3K
2c2 ρ2

m
, (313)

ρm =
c2

3Kρ

(
1±

√
1− 6K

c2 ρ2

)
, (314)

P = K
(

c2

3Kρ

)3(
1±

√
1− 6K

c2 ρ2

)3

, (315)

Vtot =
c4

6Kρ

(
1±

√
1− 6K

c2 ρ2

)[
4
3
− c2

9Kρ2

(
1±

√
1− 6K

c2 ρ2

)]
. (316)

(v) For γ = 1, the pseudo rest-mass density and the SF potential are determined by
Equations (209) and (210) with Equation (284). We get

ρ =
ρm

1 + K
c2 ln

(
ρm
ρ∗

) , (317)

Vtot =
1
2

[
ρmc2 + Kρm ln

(
ρm

ρ∗

)
− 2Kρm

]
. (318)

Equations (283), (317) and (318) determine P(ρ) and Vtot(ρ) in parametric form with
parameter ρm. In the nonrelativistic limit, using ρm ' ρ[1 + (K/c2) ln(ρ/ρ∗)] and Equa-
tion (130), we recover Equation (74).

Remark: For the index γ = 1/2, Equation (303) can be written as

ρ3/2
m − ρρ1/2

m +
Kρ

c2 = 0. (319)

This is a third degree equation for
√

ρm which can be solved by standard means. One
can then obtain P(ρ) and Vtot(ρ) explicitly. For the index γ = 3/2 we find that

P = K

(
3K
2c2 ρ±

√
9K2

4c4 ρ2 + ρ

)3

, (320)
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Vtot =
1
2

(
3K
2c2 ρ±

√
9K2

4c4 ρ2 + ρ

)2

c2

[
1 +

K
2c2 ρ

(
3K
c2 ±

√
9K2

c4 +
4
ρ

)]
. (321)

5.2.3. Lagrangian L(X)

The Lagrangian L(X) is determined by Equations (213), (277) and (278). We get

X =
1

2c2

[
c2 +

Kγ

γ− 1
ρ

γ−1
m

]2
. (322)

This equation can be inverted to give

ρ
γ−1
m = −γ− 1

γ

c2

K

[
1−

(
2X
c2

)1/2
]

. (323)

We then obtain

L(X) = P = K

{
−γ− 1

γ

c2

K

[
1−

(
2X
c2

)1/2
]} γ

γ−1

. (324)

In the nonrelativistic limit, using Equation (189), we recover Equation (71).
(i) For γ = −1 (Chaplygin gas), we obtain

L(X) = P = K

√√√√ 2c2

−K

[
1−

(
2X
c2

)1/2
]

. (325)

(ii) For γ = 2 (BEC), we obtain

L(X) = P = K

{
c2

−2K

[
1−

(
2X
c2

)1/2
]}2

. (326)

(iii) For γ = 0 (ΛCDM model), the k-essence Lagrangian is constant.
(iv) For γ = 3 (superfluid), we obtain

L(X) = P = K

{
2c2

−3K

[
1−

(
2X
c2

)1/2
]}3/2

. (327)

(v) For γ = 1, the Lagrangian L(X) is determined by Equations (213), (283) and (284).
This yields

X =
1

2c2

[
c2 + K ln

(
ρm

ρ∗

)]2
. (328)

This equation can be inverted to give

ρm = ρ∗e
− c2

K

[
1−
(

2X
c2

)1/2
]
. (329)

We then obtain

L(X) = P = Kρ∗e
− c2

K

[
1−
(

2X
c2

)1/2
]
. (330)

In the nonrelativistic limit, using Equation (189), we recover Equation (77).
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5.3. Polytropic Equation of State of Type III

The polytropic equation of state of type III reads [149,156]

P = Kργ. (331)

Using Equation (170), the SF potential is

Vtot(ρ) =
1
2

ρc2 +
K

γ− 1
ργ. (332)

It is similar to the Tsallis free energy. In the nonrelativistic limit, we recover Equa-
tions (67) and (68) [recalling Equation (130)]. Actually, Equations (331) and (332) coincide
with Equations (67) and (68). The SF potential V(ρ) corresponds to a pure power-law. We
note that P = (γ− 1)V.

(i) For γ = −1 (Chaplygin gas), we obtain

P =
K
ρ

, Vtot =
1
2

ρc2 − K
2ρ

, (333)

as found in [149,156]. We recover the potential from Equation (254) for the reason explained
in Section 5.3.1.

(ii) For γ = 2 (BEC), we obtain

P = Kρ2, Vtot =
1
2

ρc2 + Kρ2. (334)

The SF potential V(ρ) = Kρ2 from Equation (334) with K = 2πas h̄2/m3 corresponds
to the standard |ϕ|4 potential of a BEC [149,152,156].

(iii) For γ = 0 (ΛCDM model), we obtain

P = K, Vtot =
1
2

ρc2 − K. (335)

The SF potential V(ρ) = −K from Equation (335) is constant. Using K = −ρΛc2, we
see that V(ρ) = ρΛc2 is equal to the cosmological density [156].

(iv) For γ = 3 (superfluid), we obtain

P = Kρ3, Vtot =
1
2

ρc2 +
1
2

Kρ3. (336)

The SF potential V(ρ) = Kρ3 from Equation (336) corresponds to the |ϕ|6 potential of
a BEC.

(v) The case γ = 1, corresponding to a linear equation of state

P = Kρ, (337)

must be treated specifically. Using Equation (170), the SF potential is

Vtot(ρ) =
1
2

ρc2 + Kρ

[
ln
(

ρ

ρ∗

)
− 1
]

. (338)

It is similar to the Boltzmann free energy. In the nonrelativistic limit, we recover
Equations (73) and (74) [recalling Equation (130)]. Actually, Equations (337) and (338)
coincide with Equations (73) and (74). The potential (338) was first obtained in [134,156].



Astronomy 2022, 1 167

5.3.1. Determination of ε and P(ε)

The energy density is determined by Equation (214) with Equation (332). This yields

ε = ρc2 +
γ + 1
γ− 1

Kργ. (339)

The pressure is determined by Equation (215) with Equation (332). This returns
Equation (331). Eliminating ρ between Equations (331) and (339), we obtain P(ε) under the
inverse form ε(P) as

ε =

(
P
K

)1/γ

c2 +
γ + 1
γ− 1

P. (340)

In the nonrelativistic limit, using ε ∼ ρc2, we recover Equation (67).
(i) For γ = −1 (Chaplygin gas), we obtain

ε = ρc2, (341)

P =
Kc2

ε
. (342)

This returns the Chaplygin gas of type I (see Section 5.1). Therefore, the Chaplygin
gas models of type I and III coincide.

(ii) For γ = 2 (BEC), we obtain

ε = ρc2 + 3Kρ2, (343)

ε =

√
P
K

c2 + 3P, (344)

ρ =
−c2 ±

√
c4 + 12Kε

6K
, (345)

P =
1

36K

[
−c2 ±

√
c4 + 12Kε

]2
. (346)

This equation of state was first obtained in [152] (see also [149,150,156]).
(iii) For γ = 0 (ΛCDM model), we obtain

P = K, ε = ρc2 − K. (347)

(iv) For γ = 3 (superfluid), we obtain

ε = ρc2 + 2Kρ3, (348)

ε =

(
P
K

)1/3
c2 + 2P. (349)

This is a third degree equation which can be solved by standard means to obtain P(ε).
(v) For γ = 1, the energy density is determined by Equation (214) with Equation (338).

This yields

ε = ρc2 + 2Kρ ln
(

ρ

ρ∗

)
− Kρ. (350)
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The pressure is determined by Equation (215) with Equation (338). This returns
Equation (337). Eliminating ρ between Equations (337) and (350), we obtain P(ε) under the
inverse form ε(P) as

ε =
P
K

c2 + 2P ln
(

P
Kρ∗

)
− P. (351)

In the nonrelativistic limit, using ε ∼ ρc2, we recover Equation (73).
Remark: For the index γ = 1/2, we can inverse Equation (340) to obtain

P =
3K2

2c2 ± K

√
9K2

4c4 +
ε

c2 . (352)

For the index γ = 3/2, Equation (339) becomes

ε = ρc2 + 5Kρ3/2. (353)

This is a third degree equation for
√

ρm which can be solved by standard means. One can
then obtain P(ε) explicitly.

5.3.2. Determination of ρm, P(ρm) and u(ρm)

The rest-mass density and the internal energy are determined by Equations (218) and (220)
with Equation (332). We get

ρm = ρ

√
1 +

2γ

γ− 1
K
c2 ργ−1, (354)

u = ρc2 +
γ + 1
γ− 1

Kργ − ρm(ρ)c2. (355)

Equations (331), (354) and (355) define P(ρm) and u(ρm) in parametric form
with parameter ρ. In the nonrelativistic limit, using ρm ∼ ρ[1 + γ

γ−1
K
c2 ργ−1], we

recover Equations (67) and (68) [recalling Equation (29)].
(i) For γ = −1 (Chaplygin gas), we obtain

ρmc2 =
√
(ρc2)2 + Kc2, (356)

ρc2 =
√
(ρmc2)2 − Kc2, (357)

P =
Kc2√

(ρmc2)2 − Kc2
, (358)

u =
√
(ρmc2)2 − Kc2 − ρmc2. (359)

(ii) For γ = 2 (BEC), ρ is determined by a cubic equation

4K
c2 ρ3 + ρ2 − ρ2

m = 0, (360)

which can be solved by standard means. The internal energy is given by

u = ρc2 + 3Kρ2 − ρm(ρ)c2. (361)

One can then obtain P(ρm) and u(ρm) explicitly.
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(iii) For γ = 0 (ΛCDM model), we obtain

P = K, ρm = ρ, u = −K. (362)

We note that the rest-mass density coincides with the pseudo rest-mass density (one
has ρm = ρ).

(iv) For γ = 3 (superfluid), we obtain

ρm = ρ

√
1 +

3K
c2 ρ2, (363)

ρ =

(
− c2

6K
± c2

6K

√
1 +

12K
c2 ρ2

m

)1/2

, (364)

P = K

(
− c2

6K
± c2

6K

√
1 +

12K
c2 ρ2

m

)3/2

, (365)

u = c2

(
− c2

6K
± c2

6K

√
1 +

12K
c2 ρ2

m

)1/2(
2
3
± 1

3

√
1 +

12K
c2 ρ2

m

)
− ρmc2. (366)

(v) For γ = 1 the rest-mass density and the internal energy are determined by Equa-
tions (218) and (220) with Equation (338). This gives

ρm = ρ

√
1 +

2K
c2 ln

(
ρ

ρ∗

)
, (367)

u = ρc2 + 2Kρ ln
(

ρ

ρ∗

)
− Kρ− ρm(ρ)c2. (368)

Equations (337), (367) and (368) determine P(ρm) and u(ρm) in parametric form
with parameter ρ. In the nonrelativistic limit, using ρm ∼ ρ[1 + K

c2 ln(ρ/ρ∗)], we recover
Equations (73) and (74) [recalling Equation (29)].

5.3.3. Lagrangian L(X)

The Lagrangian L(X) is determined by Equation (221) with Equation (332). We get

X =
1
2

c2 +
Kγ

γ− 1
ργ−1. (369)

This relation can be reversed to give

ργ−1 = −γ− 1
2γ

c2

K

(
1− 2X

c2

)
. (370)

We then obtain

L(X) = P = K
[
−γ− 1

2γ

c2

K

(
1− 2X

c2

)] γ
γ−1

. (371)

In the nonrelativistic limit, using Equation (189), we recover Equation (71). Actually,
Equation (371) coincides with Equation (71) with c2/2− X in place of x. Interestingly,
the Lagrangian (371) corresponds to the Lagrangian introduced heuristically in [164] in
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relation to the GCG [see their Equation (33)]. In [164] it was obtained from a heuristic
relativistic Lagrangian

L = −
∫ [

ρθ̇ + ρc2

√
1 +

2K
γ− 1

1
ρ1−γc2

√
1 +

(∇θ)2

c2

]
dr (372)

which generalizes the Lagrangian from Equation (272). Our approach provides therefore
a justification of the Lagrangian (371) from a more rigorous relativistic theory. We note
that this Lagrangian differs from the Lagrangian (267) introduced in [95] except for the
particular index γ = −1 corresponding to the Chaplygin gas (see below). It is also different
from the Lagrangian (324) even for γ = −1. This is an effect of the inequivalence between
the equations of state of types I, II and III.

(i) For γ = −1 (Chaplygin gas), we obtain

L(X) = P = K

√
c2

−K

(
1− 2X

c2

)
, (373)

like in Equation (268).
(ii) For γ = 2 (BEC), we obtain

L(X) = P = K
[

c2

−4K

(
1− 2X

c2

)]2

. (374)

(iii) For γ = 0 (ΛCDM model), the k-essence Lagrangian is constant.
(iv) For γ = 3 (superfluid), we obtain

L(X) = P = K
[

c2

−3K

(
1− 2X

c2

)]3/2

. (375)

(v) For γ = 1, the Lagrangian L(X) is determined by Equation (221) with
Equation (338). We get

X =
1
2

c2 + K ln
(

ρ

ρ∗

)
. (376)

This relation can be reversed to give

ρ = ρ∗e
− c2

2K

(
1− 2X

c2

)
. (377)

We then obtain

L(X) = P = Kρ∗e
− c2

2K

(
1− 2X

c2

)
. (378)

In the nonrelativistic limit, using Equation (189), we recover Equation (77). Actually,
Equation (378) coincides with Equation (77) with c2/2− X in place of x.

6. Logotropes

In this section, we apply the general results of Section 4 to the case of a logotropic
equation of state.

6.1. Logotropic Equation of State of Type I

The logotropic equation of state of type I reads [118]

P = A ln
(

ε

ε∗

)
. (379)
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6.1.1. Determination of ρm, P(ρm) and u(ρm)

The rest-mass density and the internal energy are determined by Equations (194) and (195)
with the equation of state (379) yielding

ln ρm =
∫ dε

A ln
(

ε
ε∗

)
+ ε

, (380)

u = ε− ρm(ε)c2. (381)

Equations (379)–(381) determine P(ρm) and u(ρm) in parametric form with parameter ε.
Unfortunately, the integral in Equation (380) cannot be calculated analytically.

6.1.2. Determination of ρ, P(ρ) and Vtot(ρ)

The pseudo rest-mass density and the SF potential are determined by
Equations (199) and (200) with the equation of state (379) yielding

ln ρ =
∫ 1− A

ε

ε + A ln
(

ε
ε∗

) dε, (382)

Vtot =
1
2

[
ε− A ln

(
ε

ε∗

)]
. (383)

They can also be determined by Equations (201) and (202) with Equation (379) yielding

ln ρ =
∫ ε∗

A eP/A − 1
ε∗eP/A + P

dP, (384)

Vtot =
1
2

(
ε∗eP/A − P

)
. (385)

Equations (379) and (382)–(385) determine P(ρ) [or ρ(P)] and Vtot(ρ) in parametric
form with parameter ε or P. Unfortunately, the integrals in Equations (382) and (384) cannot
be calculated analytically.

6.1.3. Lagrangian L(X)

The Lagrangian L(X) is determined by Equation (203) or Equation (204) with
Equation (379) yielding

ln X = 2
∫ dP

ε∗eP/A + P
(386)

or

ln X = 2
∫ A

ε

ε + A ln
(

ε
ε∗

) dε. (387)

These equations determine P(X), thus L(X). Unfortunately, the integrals in
Equations (386) and (387) cannot be calculated analytically.

6.2. Logotropic Equation of State of Type II

The logotropic equation of state of type II reads [118]

P = A ln
(

ρm

ρ∗

)
. (388)

Using Equation (A165), the internal energy is

u = −A ln
(

ρm

ρ∗

)
− A. (389)
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In the nonrelativistic limit, using ρm ∼ ρ, we recover Equations (99) and (100) [recalling
Equation (29)]. Actually, Equations (388) and (389) coincide with Equations (99) and (100)
with ρm in place of ρ.

6.2.1. Determination of ε and P(ε)

The energy density is determined by Equation (205) with Equation (389). We obtain

ε = ρmc2 − A ln
(

ρm

ρ∗

)
− A. (390)

The pressure is determined by Equation (206) with Equation (389). This returns
Equation (388). Eliminating ρm between Equations (388) and (390) we obtain P(ε) under
the inverse form ε(P) as

ε = ρ∗c2eP/A − P− A. (391)

In the nonrelativistic limit, using ε ∼ ρc2, we recover Equation (99).

6.2.2. Determination of ρ, P(ρ) and Vtot(ρ)

The pseudo rest-mass density and the SF potential are determined by
Equations (209) and (210) with Equation (389). We get

ρ =
ρ2

m

ρm − A
c2

, (392)

Vtot =
1
2

[
ρmc2 − 2A ln

(
ρm

ρ∗

)
− A

]
. (393)

Equation (392) can be inverted to give

ρm =
ρ±

√
ρ2 − 4Aρ

c2

2
. (394)

Combined with Equations (388) and (393) we explicitly obtain P(ρ) and Vtot(ρ) under
the form

P = A ln

ρ±
√

ρ2 − 4Aρ

c2

2ρ∗

, (395)

Vtot =
ρ±

√
ρ2 − 4Aρ

c2

4
c2 − A ln

ρ±
√

ρ2 − 4Aρ

c2

2ρ∗

− A
2

. (396)

In the nonrelativistic limit, using ρm ∼ ρ(1− A/ρc2) and Equation (130), we recover
Equations (99) and (100).

6.2.3. Lagrangian L(X)

The Lagrangian L(X) is determined by Equations (213), (388) and (389). We get

X =
c2

2

(
1− A

ρmc2

)2
. (397)
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This relation can be inverted to give

ρm =
A/c2

1−
(

2X
c2

)1/2 . (398)

We then obtain

L(X) = P = −A ln

[
ρ∗c2

A

(
1−

√
2X
c2

)]
. (399)

In the nonrelativistic limit, using Equation (189), we recover Equation (103).
Remark: Starting from Equation (324), taking the limit γ→ 0, K → +∞ with Kγ = A

constant, and proceeding as in Equation (105), we obtain Equation (399) up to an additional
constant. More generally, we can recover in the same manner the other equations of
this section.

6.3. Logotropic Equation of State of Type III

The logotropic equation of state of type III reads [116]

P = A ln
(

ρ

ρ∗

)
. (400)

Using Equation (170), the SF potential is

Vtot(ρ) =
1
2

ρc2 − A ln
(

ρ

ρ∗

)
− A. (401)

In the nonrelativistic limit, we recover Equations (99) and (100) [recalling
Equation (130)]. Actually, Equations (400) and (401) coincide with Equations (99) and (100).
The SF potential V(ρ) is logarithmic.

6.3.1. Determination of ε and P(ε)

The energy density is determined by Equations (214) with Equation (401). This yields

ε = ρc2 − A ln
(

ρ

ρ∗

)
− 2A. (402)

The pressure is determined by Equation (215) with Equation (401). This returns
Equation (400). Eliminating ρ between Equations (400) and (402), we obtain P(ε) under the
inverse form ε(P) as

ε = ρ∗c2eP/A − P− 2A. (403)

In the nonrelativistic limit, using ε ∼ ρc2, we recover Equation (99).

6.3.2. Determination of ρm, P(ρm) and u(ρm)

The rest-mass density and the internal energy are determined by Equations (218) and (220)
with Equation (401). We get

ρm =

√
ρ

(
ρ− 2A

c2

)
, (404)

u = ρc2 − A ln
(

ρ

ρ∗

)
− 2A− ρm(ρ)c2. (405)
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Equation (404) can be inverted to give

ρ =
A
c2 +

√
A2

c4 + ρ2
m. (406)

Combined with Equations (400) and (405) we explicitly obtain P(ρm) and u(ρm) under
the form

P = A ln

(
A

ρ∗c2 +

√
A2

ρ2∗c4 +
ρ2

m
ρ2∗

)
, (407)

u =
√

A2 + ρ2
mc4 − A ln

(
A

ρ∗c2 +

√
A2

ρ2∗c4 +
ρ2

m
ρ2∗

)
− A− ρmc2. (408)

In the nonrelativistic limit, using ρm ' ρ− A/c2, we recover Equations (99) and (100)
[recalling Equation (29)].

6.3.3. Lagrangian L(X)

The Lagrangian L(X) is determined by Equation (221) with Equation (401). We get

X =
1
2

c2 − A
ρ

. (409)

This equation can be reversed to give

ρ =
A

1
2 c2 − X

. (410)

We then obtain

L(X) = P = −A ln
[

ρ∗c2

2A

(
1− 2X

c2

)]
. (411)

In the nonrelativistic limit, using Equation (189), we recover Equation (103). Actu-
ally, Equation (411) coincides with Equation (103) with c2/2 − X in place of x. Using
Equation (175) or Equation (178), we obtain the equation of motion

Dµ

[
∂µθ

1− 1
c2 ∂νθ∂νθ

]
= 0. (412)

Remark: Starting from Equation (371), taking the limit γ→ 0, K → +∞ with Kγ = A
constant, and proceeding as in Equation (105), we obtain Equation (411) up to an additional
constant. More generally, we can recover in the same manner the other equations of
this section.

7. Conclusions

In this paper, we have shown that the equation of state of a relativistic barotropic fluid
could be specified in different manners depending on whether the pressure P is expressed
in terms of the energy density ε (model I), the rest-mass density ρm (model II), or the
pseudo rest-mass density ρ (model III). In model II, specifying the equation of state P(ρm) is
equivalent to specifying the internal energy u(ρm). In model III, specifying the equation of
state P(ρ) is equivalent to specifying the potential V(ρ) of the complex SF to which the fluid
is associated in the TF limit. In the nonrelativistic limit, these three formulations coincide.

We have shown how these different models are connected to each other. We have
established general equations allowing us to determine [ε, P(ε)], [ρm, P(ρm), u(ρm)] and
[ρ, P(ρ) V(ρ)] once an equation of state is specified under the form I, II or III.
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In model III, we have determined the hydrodynamic representation of a complex
SF with a potential V(|ϕ|2) and the form of its Lagrangian. In the TF approximation, we
can use the Bernoulli equation to obtain a reduced Lagrangian of the form L(X) with
X = 1

2 ∂µθ∂µθ, where θ is the phase of the SF. This is a k-essence Lagrangian whose
expression is determined by the potential of the complex SF. We have established general
equations allowing us to obtain L(X) once an equation of state is specified under the form
I, II or III.

For illustration, we have applied our formalism to polytropic, isothermal and lo-
gotropic equations of state of type I, II and III that have been proposed as UDM models.
We have recovered previously obtained results, and we have derived new results. For
example, we have established the general analytical expression of the k-essence Lagrangian
of polytropic and isothermal equations of state of type I, II and III. For γ = −1 (Chaplygin
gas), the models of type I and III are equivalent and return the Born-Infeld action, while the
model of type II leads to a different action. We have also established the general analytical
expression of the k-essence Lagrangian associated with a logotrope of type II and III (the
k-essence Lagrangian associated with a logotrope of type I cannot be obtained analytically).

In a future contribution [165], we will apply our general formalism to more compli-
cated equations of state which can be viewed as a superposition of polytropic, isothermal
(linear) and logotropic equations of state.

The mixed equation of state of type I generically reads

P = K
( ε

c2

)γ
+ αε− εΛ + A ln

(
ε

εP

)
, (413)

where we can add several polytropic terms with different indices γ. More specifically, we
can consider generalized polytropic models of type I of the form

P = −(α + 1)ε
(

ε

εP

)1/|ne |
+ αε− (α + 1)ε

( εΛ

ε

)1/|nl |
, (414)

or

P = −(α + 1)
ε2

εP
+ αε− (α + 1)εΛ. (415)

Polytropic, isothermal (linear) and logotropic equations of state of type I have been studied
in the context of relativistic stars [151,154,155,157–161] and cosmology [50,86,95,97–99,122].
Mixed models of type I of the form of Equations (413)–(415) have been introduced and
studied in cosmology in Refs. [97–99,166–170]. In particular, the equations of state (414)
and (415) describe the early inflation, the intermediate decelerating expansion, and the late
accelerating expansion of the universe in a unified manner [168,170].

The mixed equation of state of type II generically reads

P = Kρ
γ
m + αρmc2 − ρΛc2 + A ln

(
ρm

ρP

)
, (416)

where we can add several polytropic terms with different indices γ. It is associated with an
internal energy of the form

u =
K

γ− 1
ρ

γ
m + αρmc2

[
ln
(

ρm

ρ∗

)
− 1
]
+ ρΛc2 − A ln

(
ρm

ρP

)
− A. (417)

Polytropic, isothermal (linear) and logotropic equations of state of type II have been
studied in the context of relativistic stars [154,162] and cosmology [118,122,163]. It is often
assumed that DM is pressureless (P = 0) so that α = 0. However, a nonvanishing value of
α can account for thermal effects as in [171–173]. In that case αc2 = kBT/m. Mixed models
of type II of the form of Equations (416) and (417) have been introduced and studied in
Refs. [118,163].
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The mixed equation of state of type III generically reads

P = Kργ + αρc2 − ρΛc2 + A ln
(

ρ

ρP

)
, (418)

where we can add several polytropic terms with different indices γ. It is associated with a
complex SF potential of the form

Vtot =
1
2

ρc2 +
K

γ− 1
ργ + αρc2

[
ln
(

ρ

ρ∗

)
− 1
]
+ ρΛc2 − A ln

(
ρ

ρP

)
− A, (419)

where we recall that ρ = (m/h̄)2|ϕ|2. Polytropic, isothermal (linear) and logotropic equa-
tions of state of type III have been studied in the context of relativistic stars [152,154,155] and
cosmology [116,122,149,153,156]. Mixed models of type III of the form of Equations (418)
and (419) have been introduced and studied in Refs. [116,156].

The aim of the present paper was to develop a general SF theory that can be applied to
different situations of physical, astrophysical, and cosmological interest. BECs with repul-
sive or attractive self-interactions have many applications in condensed matter physics [140].
On the other hand, self-gravitating BECs can describe boson stars [152,174,175], axion
stars [176], and DM halos [177]. A SF can also be used to describe the primordial infla-
tion [34] or the dark energy [24]. This SF is respectively called inflaton or quintessence.
A single SF called vacuumon may even drive the whole evolution of the universe from its
early inflation to its late accelerating expansion [170]. Recently, using the general formalism
developed in this paper, we have specifically studied polytropic and logotropic equations
of state of type III in Refs. [156] and [116] respectively. They are associated with a complex
SF possessing a power-law or a logarithmic potential. Depending on the value of the poly-
tropic index γ and on the sign of the polytropic constant K, the polytropic equation of state
of type III can generate different models of universe which are either always expanding or
oscillating. However, as discussed in detail in [156], only a few models are consistent with
the observations. A viable model corresponds to a polytropic index γ = 2 and a positive
polytropic constant K > 0. It is associated with a repulsive |ϕ|4 SF potential. In that case,
the universe undergoes a stiff matter era in the slow oscillation regime followed, in the fast
oscillation regime, by a dark radiation era (due to the self-interaction of the SF), and finally
a DM (matterlike) era [149,153]. However, this model does not account for the present
acceleration of the universe. This could be remedied by considering a mixed equation of
state of the form

P = Kρ2 − ρΛc2, (420)

corresponding to a SF potential [116]

Vtot =
m2c2

2h̄2 |ϕ|
2 +

Km4

h̄4 |ϕ|
4 + ρΛc2 (421)

including a cosmological constant ρΛc2. The energy density reads

ε = ρc2 + 3Kρ2 + ρΛc2. (422)

The associated equation of state of type I is

P =
1

36K

[
−c2 +

√
c4 + 12K(ε− ρΛc2)

]2
− ρΛc2 (423)

and the associated k-essence Lagrangian is

L(X) =
c4

16K

(
1− 2X

c2

)2
− ρΛc2. (424)
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This model describes a universe undergoing, in the fast oscillation regime, a dark
radiation era, a DM (matterlike) era, and a DE era. The |ϕ|4 model studied in [149,153,156]
is recovered for ρΛ = 0 and the ΛCDM model (in its complex SF interpretation [116]) is
recovered for K = 0. On the other hand, polytropic models with γ ≤ 0 and K < 0 (including
the Chaplygin gas model and the logotropic model) display, in the fast oscillation regime,
a DM (matterlike) era followed by a DE era. These models can account for the evolution
of the cosmological background but fail to reproduce the formation of structures and the
matter power spectrum unless γ is extremely close to γ = 0, returning the ΛCDM model.
If we use a two-fluid representation of these models (see Appendix D.3), we can correctly
describe not only the cosmological background but also the formation of structures and
the matter power spectrum. However, in that case, we lose the original interest of UDM
models (see the Remark at the end of Appendix D.3). In conclusion, our general formalism
allows us to deal with various situations. It may help us selecting the most interesting
models and rule out the others.
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Appendix A. General Identities for a Nonrelativistic Cold Gas

The first principle of thermodynamics for a nonrelativistic gas can be written as

d
(

u
ρ

)
= −Pd

(
1
ρ

)
+ Td

(
s
ρ

)
, (A1)

where u is the density of internal energy, s the density of entropy, ρ = nm the mass density,
P the pressure, and T the temperature. For a cold (T = 0) or isentropic (s/ρ = cst) gas,
Equation (A1) reduces to

d
(

u
ρ

)
= −Pd

(
1
ρ

)
=

P
ρ2 dρ. (A2)

Introducing the enthalpy per particle

h =
P + u

ρ
, (A3)

we get

du = hdρ and dh =
dP
ρ

. (A4)

For a barotropic gas for which P = P(ρ), the foregoing equations can be written as

P(ρ) = −d(u/ρ)

d(1/ρ)
= ρ2

[
u(ρ)

ρ

]′
= ρu′(ρ)− u(ρ), (A5)

c2
s = P′(ρ) = ρu′′(ρ), h(ρ) =

P(ρ) + u(ρ)
ρ

, (A6)

h(ρ) = u′(ρ), h′(ρ) =
P′(ρ)

ρ
, (A7)
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where c2
s = P′(ρ) is the squared speed of sound. Equation (A5) determines the equation

of state P(ρ) as a function of the internal energy u(ρ). Inversely, the internal energy is
determined by the equation of state according to the relation

u(ρ) = ρ
∫ P(ρ)

ρ2 dρ, (A8)

which is the solution of the differential equation

ρ
du
dρ
− u(ρ) = P(ρ). (A9)

Comparing Equation (A8) with Equation (28), we see that the potential V(ρ) represents
the density of internal energy:

u(ρ) = V(ρ). (A10)

We then have

P(ρ) = ρ2
[

V(ρ)

ρ

]′
= ρV′(ρ)−V(ρ), (A11)

c2
s = P′(ρ) = ρV′′(ρ), h(ρ) =

P(ρ) + V(ρ)

ρ
, (A12)

h(ρ) = V′(ρ), h′(ρ) =
P′(ρ)

ρ
, (A13)

V(ρ) = ρ
∫ P(ρ)

ρ2 dρ. (A14)

Remark: The first principle of thermodynamics can be written as

du = Tds + µdn, (A15)

where µ is the local chemical potential. This can be viewed as the variational principle
(δs/kB− βδu+ αδn = 0 with β = 1/kBT and α = µ/kBT) associated with the maximization
of the entropy density s at fixed energy density u and particle density n [178]. Combined
with the Gibbs-Duhem relation [178]

s =
u + P− µn

T
, (A16)

we obtain Equation (A1) and
sdT − dP + ndµ = 0. (A17)

If T = cst, then dP = ndµ. For T = 0, the foregoing equations reduce to

du = µdn, µ =
u + P

n
, dP = ndµ, (A18)

which are equivalent to Equations (A3) and (A4) with µ = mh. Therefore, the enthalpy h(r)
is equal to the local chemical potential µ(r) by unit of mass: h(r) = µ(r)/m.

Appendix B. K-Essence Lagrangian of a Real SF

Appendix B.1. General Results

We consider a relativistic real SF ϕ(xµ) = ϕ(x, y, z, t) characterized by the action

S =
∫
L
√
−g d4x, (A19)
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where L = L(ϕ, ∂µ ϕ) is the Lagrangian density and g = det(gµν) is the determinant
of the metric tensor. The Lagrangian of a relativistic real SF ϕ is usually written in the
canonical form

L = X−V(ϕ), (A20)

where

X =
1
2

∂µ ϕ∂µ ϕ (A21)

is the kinetic energy and V is the potential energy31. In that case, all the physics of the
problem is contained in the potential term. However, some authors have proposed to take
V = 0 and modify the kinetic term. This leads to a Lagrangian of the form

L = L(X) (A22)

that is called a k-essence Lagrangian [38]. In that case, the physics of the problem is
encapsulated in the noncanonical kinetic term L(X)32. Equation (A22) is a pure k-essence
Lagrangian. More general Lagrangians

L = L(X, ϕ) (A23)

can depend both on X and ϕ [40,41]. The particular forms L = V(ϕ)F(X) and L =
F(X)−V(ϕ) have been specifically introduced in Refs. [40] and [179–181] respectively.

The least action principle δS = 0, which is equivalent to the Euler-Lagrange equation

Dµ

[
∂L

∂(∂µ ϕ)

]
− ∂L

∂ϕ
= 0, (A24)

yields the equation of motion

Dµ

(
∂L
∂X

∂µ ϕ

)
− ∂L

∂ϕ
= 0. (A25)

For the Lagrangian (A22), it reduces to

Dµ

[
L′(X)∂µ ϕ

]
= 0. (A26)

For the Lagrangian (A22) the current is given by

Jµ = − ∂L
∂(∂µ ϕ)

, (A27)

yielding
Jµ = −L′(X)∂µ ϕ. (A28)

Equation (A26) can then be written as Dµ Jµ = 0. It can therefore be viewed as a conti-
nuity equation expressing the local conservation of the charge (or the local conservation of
the boson number) given by Q = e

mc
∫

J0√−g d3x, i.e.,

Q = − e
mc

∫
L′(X)∂0 ϕ

√
−g d3x. (A29)
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In the present context, the conservation of the charge (or boson number) arises from
the invariance of the Lagrangian density under the constant shift ϕ → ϕ + cst of the SF
(Noether theorem)33. Introducing the quadrivelocity

uµ = −
∂µ ϕ
√

2X
c, (A30)

which satisfies by construction the identity uµuµ = c2, we get

Jµ = L′(X)
√

2X
uµ

c
. (A31)

We can therefore rewrite the continuity equation as

Dµ

[
L′(X)

√
2Xuµ

]
= 0. (A32)

The rest-mass density ρm is defined by

Jµ = ρmuµ, (A33)

and the continuity equation can be written as

Dµ(ρmuµ) = 0. (A34)

Comparing Equations (A31) and (A32) with Equations (A33) and (A34), we find that
the rest-mass density is given by

ρm = L′(X)
√

2X
1
c

. (A35)

The energy-momentum tensor is given by Equation (115). It satisfies the conservation
law DµTµν = 0. For a real SF we have

Tν
µ =

∂L
∂(∂ν ϕ)

∂µ ϕ− gν
µL. (A36)

The energy-momentum tensor associated with the Lagrangian (A23) is

Tµν =
∂L
∂X

∂µ ϕ∂ν ϕ− gµνL. (A37)

Introducing the quadrivelocity from Equation (A30) we get

Tµν = 2X
∂L
∂X

uµuν

c2 − gµνL. (A38)

The energy-momentum tensor (A37) can be written under the perfect fluid form

Tµν = (ε + P)
uµuν

c2 − Pgµν, (A39)

where ε is the energy density and P is the pressure, provided that we make the identifications

P = L and ε + P = 2X
∂L
∂X

. (A40)

As a result, the pressure and the energy density associated with the Lagrangian (A23)
are given by

P = L(X, ϕ), (A41)
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ε = 2X
∂P
∂X
− P. (A42)

The Lagrangian plays the role of an effective pressure. If the Lagrangian satisfies
the condition X∂P/∂X � P for some range of X and ϕ, then the equation of state is
P ' −ε (vacuum energy) and we have an inflationary solution [182]. On the other hand,
for the Lagrangian L = V(ϕ)X corresponding to P ∝ X i.e., X∂P/∂X = P we obtain
the stiff equation of state P = ε. In that case, the equation of motion (A25) becomes
Dµ(V(ϕ)∂µ ϕ)− 1

2 V′(ϕ)∂µ ϕ∂µ ϕ = 0. It reduces to �ϕ = 0 when L = AX.
The equation of state parameter and the squared speed of sound are given by [41]

w =
P
ε
=

P
2X ∂P

∂X − P
(A43)

and

c2
s =

∂P
∂X
∂ε
∂X

c2 =
∂P
∂X

∂P
∂X + 2X ∂2P

∂X2

c2. (A44)

We note that cs ' c if 2X∂2P/∂X2 � ∂P/∂X. This is the case in particular for the
Lagrangian L = V(ϕ)X discussed above for which cs = c exactly.

In the general case, we have P = P(X, ϕ) and ε = ε(X, ϕ) so that the fluid is not
necessarily barotropic. However, for a k-essence SF described by a Lagrangian of the form
of Equation (A22), we have P = P(X) and ε = ε(X) implying P = P(ε). In that case,
the fluid is barotropic and c2

s = P′(ε)c2. On the other hand, using Equations (A35), (A41),
(A42) and (A163), we find that the enthalpy is given by

h = c
√

2X. (A45)

Remark: For the Lagrangian L = V(ϕ)X(α+1)/2α, we obtain the linear equation of state
P = αε. This includes stiff matter (α = 1; L = V(ϕ)X), radiation (α = 1/3; L = V(ϕ)X2)
and a cosmological constant (α = −1; L = V(ϕ)). The equation of motion (A25) becomes

α + 1
2α

Dµ

[
V(ϕ)X

1−α
2α ∂µ ϕ

]
−V′(ϕ)X

α+1
2α = 0. (A46)

It reduces to

Dµ

(
X

1−α
2α ∂µ ϕ

)
= 0 (A47)

when L = AX(α+1)/2α. For the Lagrangian L = V(ϕ) ln X (which can be viewed as a
limit of the Lagrangian V(ϕ)X(α+1)/2α for α→ −1 and V → +∞ with (α + 1)V finite), we
obtain P = 2V(ϕ)− ε which reduces to the affine equation of state P = 2A− ε [98,99]
when V(ϕ) = A. In that case, the equation of motion (A25) becomes

Dµ

[
V(ϕ)

X
∂µ ϕ

]
−V′(ϕ) ln X = 0. (A48)

It reduces to

Dµ

(
1
X

∂µ ϕ

)
= 0 (A49)

when L = A ln X.
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Appendix B.2. Canonical SF

The Lagrangian of a real canonical SF is

L =
1
2

gµν∂µ ϕ∂ν ϕ−V(ϕ), (A50)

where the first term is the kinetic energy and the second term is minus the potential energy.
It is of the form L = X −V(ϕ). The least action principle δS = 0, which is equivalent to
the Euler-Lagrange Equation (A24), leads to the KG equation

�ϕ +
dV
dϕ

= 0, (A51)

where � = Dµ∂µ is the d’Alembertian. A canonical real SF does not conserve the charge.
The energy-momentum tensor (A36) associated with the canonical Lagrangian (A50) is

Tµν = ∂µ ϕ∂ν ϕ− gµνL. (A52)

Repeating the procedure of Appendix B.1 we find that the energy density and the
pressure are given by

ε =
1
2

∂µ ϕ∂µ ϕ + V(ϕ), (A53)

P =
1
2

∂µ ϕ∂µ ϕ−V(ϕ). (A54)

Since ε = X + V(ϕ) and P = X − V(ϕ), we find that P = ε − 2V(ϕ), w = [X −
V(ϕ)]/[X + V(ϕ)] and cs = c. For a canonical SF, the speed of sound is equal to the speed
of light.

When X � V, we obtain ε = X and P = X leading to the equation of state P = ε
corresponding to stiff matter. This is the so-called kination regime [183]. This regime
is achieved in particular when V = 0. In that case, the Lagrangian L = X describes a
noninteracting massless SF and the KG equation reduces to �ϕ = 0. When X � V, we
obtain ε = V and P = −V leading to the equation of state P = −ε corresponding to the
vacuum energy. This regime is achieved in particular when ϕ = ϕ0 is constant (X = 0) and
lies at an extremum of the potential (V′(ϕ0) = 0). In cosmology, this equation of state leads
to a de Sitter era where ε = V(ϕ0) is constant and the scale factor increases exponentially
rapidly with time as a ∝ exp[(8πGε/3c2)1/2t]. The condition X � V corresponds to the
slow-roll regime [182].

When V(ϕ) = V0 is constant, the Lagrangian L = X−V0 describes a massless SF in
the presence of a cosmological constant (εΛ = V0). In that case, ε = X +V0 and P = X−V0
leading to the affine equation of state P = ε− 2V0 = ε− 2εΛ [98]. In cosmology, when
V0 > 0, this equation of state generically leads to a stiff matter era followed by a de Sitter
era (or a de Sitter era alone when X = 0, i.e., ϕ = cst). When V0 = 0 we recover the
Lagrangian L = X of a free massless SF. In that case, ε = X and P = X leading to the stiff
equation of state P = ε. In cosmology, it describes a pure stiff matter era.

Remark: The Lagrangian of a particle of mass m and position q(t) in Newtonian
mechanics is L = (1/2)mq̇2 − V(q). Its impulse is p = ∂L/∂q̇ = mq̇ and its energy is
E = pq̇ − L = q̇∂L/∂q̇ − L = (1/2)mq̇2 + V(q), i.e., E = p2/(2m) + V(q). Its equation
of motion is given by the Euler-Lagrange equation (d/dt)(∂L/∂q̇)− ∂L/∂q = 0 yielding
mq̈ = −V′(q). The Lagrangian equations of a canonical SF are similar to the Lagrangian
equations of a nonrelativistic particle in which the SF ϕ(xµ) plays the role of q(t) and the
SF potential V(ϕ) the role of V(q).
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Appendix B.3. Tachyonic SF

The Lagrangian of a real tachyonic SF is

L = −V(ϕ)

√
1− 1

c2 gµν∂µ ϕ∂ν ϕ. (A55)

This corresponds to the Born-Infeld Lagrangian (5) multiplied by V(ϕ). It is of the form
L = −V(ϕ)

√
1− 2X/c2. This Lagrangian was introduced by Sen [77–79] in the context

of string theory and d-branes and further discussed in [80–87]. The relation to k-essence
fields was made in [81,83,87]. The least action principle δS = 0, which is equivalent to the
Euler-Lagrange Equation (A24), leads to the equation of motion

Dµ

 V(ϕ)/c2√
1− 1

c2 ∂µ ϕ∂µ ϕ
∂µ ϕ

+ V′(ϕ)

√
1− 1

c2 ∂µ ϕ∂µ ϕ = 0 (A56)

or, equivalently,

Dµ∂µ ϕ +
Dµ∂ν ϕ

1− ∂µ ϕ∂µ ϕ
∂µ ϕ∂ν ϕ + (ln V)′c2 = 0. (A57)

A real tachyonic SF does not conserve the charge.
The energy-momentum tensor (A36) associated with the tachyonic Lagrangian (A55) is

Tµν =
V(ϕ)/c2√

1− 1
c2 ∂µ ϕ∂µ ϕ

∂µ ϕ∂ν ϕ− gµνL. (A58)

Repeating the procedure of Appendix B.1 we find that the energy density and the
pressure are given by

ε =
V(ϕ)√

1− 1
c2 ∂µ ϕ∂µ ϕ

, (A59)

P = −V(ϕ)

√
1− 1

c2 ∂µ ϕ∂µ ϕ. (A60)

Since ε = V(ϕ)/
√

1− 2X/c2 and P = −V(ϕ)
√

1− 2X/c2, we find that P = −V(ϕ)2/ε,
w = −(1− 2X/c2) and c2

s = (1− 2X/c2)c2 = −wc2.
When V(ϕ) = V0 is constant, the Lagrangian (A55) reduces to the Born-Infeld La-

grangian (5) and we obtain ε = V0/
√

1− 2X/c2 and P = −V0
√

1− 2X/c2 leading to
the Chaplygin equation of state P = −V2

0 /ε (inversely, the Chaplygin equation of state
P = −Ac2/ε leads to the Born-Infeld Lagrangian (5) corresponding to Equation (A55)
with V(ϕ) = V0 constant). Therefore, the Chaplygin gas can be considered as the simplest
tachyon model where the tachyon field is associated with a purely kinetic Lagrangian.
The relation between the tachyonic Lagrangian with a constant potential (reducing to the
Born-Infeld Lagrangian) and the Chaplygin gas [50] was first made by [81]. The fact
that the Chaplygin gas is associated with the Born-Infeld Lagrangian was understood
by [58,59,70,71]. The relation between the Chaplygin gas, the Born-Infeld Lagrangian,
k-essence Lagrangians and tachyon fields were further discussed in [86,88,89,94,184].

Remark: The Lagrangian of a particle of mass m and position q(t) in special rela-
tivity is L = −mc2

√
1− q̇2/c2. Its impulse is p = mq̇/

√
1− q̇2/c2 and its energy is

E = mc2/
√

1− q̇2/c2 implying E2 = p2c2 + m2c4. Its equation of motion is given by the
Euler-Lagrange equation (d/dt)(∂L/∂q̇)− ∂L/∂q = 0 yielding (d/dt)(mq̇/

√
1− q̇2/c2) +

m′(q)c2
√

1− q̇2/c2 = 0. The Lagrangian equations of a tachyonic SF are similar to the
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Lagrangian equations of a relativistic particle in which the SF ϕ(xµ) plays the role of q(t)
and the SF potential V(ϕ) the role of the mass m which may depend on q in the general case.

Appendix B.4. Nonrelativistic Limit

The action of a nonrelativistic real SF is

S =
∫
L d3xdt, (A61)

whereL = L(ϕ, ϕ̇,∇ϕ) is the Lagrangian density. We consider a pure k-essence Lagrangian
of the form

L = L(x), (A62)

where

x = ϕ̇ +
1
2
(∇ϕ)2. (A63)

More general k-essence Lagrangians

L = L(x, ϕ) (A64)

can depend both on x and ϕ. The least action principle δS = 0, which is equivalent to the
Euler-Lagrange equation

∂

∂t

(
∂L
∂ϕ̇

)
+∇ ·

(
∂L

∂∇ϕ

)
− ∂L

∂ϕ
= 0, (A65)

yields the equation of motion

∂

∂t

(
∂L
∂x

)
+∇ ·

(
∂L
∂x
∇ϕ

)
− ∂L

∂ϕ
= 0. (A66)

For the Lagrangian (A62), it reduces to

∂

∂t
[
L′(x)

]
+∇ ·

[
L′(x)∇ϕ

]
= 0. (A67)

For the Lagrangian (A62) the current is given by

Jµ = − ∂L
∂(∂µ ϕ)

. (A68)

It determines the mass density

ρ ≡ −∂L
∂ϕ̇

= −L′(x) (A69)

and the mass flux

J ≡ − ∂L
∂(∇ϕ)

= −L′(x)∇ϕ. (A70)

Equation (A67) can be written as

∂ρ

∂t
+∇ · J = 0. (A71)
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It expresses the local conservation of mass. This conservation law is associated with
the invariance of the Lagrangian density under the transformation ϕ→ ϕ + cst (Noether
theorem). Introducing the velocity

u = ∇ϕ, (A72)

we get

J = ρu, (A73)

and the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0. (A74)

The energy-momentum tensor is given by

Tν
µ = ∂µ ϕ

∂L
∂(∂ν ϕ)

−Lδν
µ. (A75)

The local conservation of energy and impulse can be written as

∂T00

∂t
− ∂iT0i = 0, (A76)

−∂Ti0
∂t

+ ∂jTij = 0. (A77)

For the Lagrangian (A64) we obtain the energy density

T00 ≡ ϕ̇
∂L
∂ϕ̇
−L =

∂L
∂x

ϕ̇−L(x), (A78)

the momentum density

−Ti0 ≡ −∂i ϕ
∂L
∂ϕ̇

= −∂L
∂x

∂i ϕ, (A79)

the energy flux

−T0i ≡ ϕ̇
∂L

∂(∂i ϕ)
=

∂L
∂x

ϕ̇∂i ϕ, (A80)

and the momentum fluxes (stress tensor)

Tij ≡ −∂i ϕ
∂L

∂(∂j ϕ)
+ Lδij = −

∂L
∂x

∂i ϕ∂j ϕ + Lδij. (A81)

Introducing the velocity from Equation (A72), we get

Tij = −
∂L
∂x

uiuj + Lδij. (A82)

The energy-momentum tensor Tij can be written under the perfect fluid form

Tij = ρuiuj + Pδij (A83)

provided that we make the identifications

P = L(x, ϕ) (A84)
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and

ρ = −∂L
∂x

= −∂P
∂x

. (A85)

The equation of state parameter and the squared speed of sound are given by

w =
P

ρc2 = − P
∂P
∂x c2

, (A86)

c2
s =

∂P
∂x
∂ρ
∂x

= −
∂P
∂x

∂2P
∂x2

. (A87)

Using Equations (A84) and (A85), we can rewrite Equation (A66) and Equations (A78)–
(A80) as

∂ρ

∂t
+∇ · (ρu) +

∂L
∂ϕ

= 0, (A88)

T00 = −ρϕ̇−L(x), (A89)

−Ti0 = ρui, (A90)

−T0i = −ρϕ̇ui. (A91)

For the Lagrangian (A62), Equation (A88) reduces to the continuity Equation (A74).
In that case, the momentum density is equal to the mass flux: −Ti0 = Ji. On the other hand,
using Equation (A63), the energy density can be written as

T00 =
1
2

ρu2 + V(ρ), (A92)

where we have defined the potential V(ρ) by the Legendre transform V(ρ) = −ρx−L(x).
Using Equation (A85), we get V′(ρ) = −x. Then, using Equation (A84), we obtain P(ρ) =
ρV′(ρ) − V(ρ) returning Equations (26) and (58). Therefore, V(ρ) coincides with the
potential introduced in Section 2. Similarly, the energy flux can be written as

−T0i = ρ

[
1
2

u2 + V′(ρ)
]

ui, (A93)

where h(ρ) = V′(ρ) is the enthalpy. These results are consistent with the results obtained
in Appendix I when h̄ = 0.

Remark: Equations (A84) and (A85) are the counterparts of Equations (A41) and (A42)
in the relativistic case. Indeed, using Equations (189) and ε ∼ ρc2 valid in the nonrelativistic
limit, Equations (A41) and (A42) imply P = L(x, ϕ) and

ρ ∼ ε

c2 ∼ −
∂P
∂x
∼ −∂L

∂x
, (A94)

returning Equations (A84) and (A85).
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Appendix B.5. Cosmological Evolution

We now consider a spatially homogeneous real SF described by a k-essence Lagrangian
in an expanding universe. In that case34

X =
1
2

ϕ̇2. (A95)

On the other hand, the energy-momentum tensor is diagonal Tν
µ = diag(ε,−P,−P,−P)35

using Equation (A39) with u0 = c and ui = 0, we get T0
0 = ε and Ti

i = −P.. The energy
density and the pressure of the SF are given by

ε = T0
0 =

∂L
∂ϕ̇

ϕ̇−L, P = −Ti
i = L, (A96)

returning Equations (A41) and (A42).
For a Lagrangian density of the form L = L(X, ϕ), the equation of motion (A25) of

the SF becomes (
∂L
∂X

+ 2X
∂2L
∂X2

)
ϕ̈ + 3H

∂L
∂X

ϕ̇ + 2X
∂2L

∂X∂ϕ
− ∂L

∂ϕ
= 0. (A97)

This equation is equivalent to the energy conservation Equation (A108). Indeed, taking
the time derivative of ε from Equation (A42) and substituting the result into Equation (A108)
we get (

∂L
∂X

+ 2X
∂2L
∂X2

)
Ẋ +

(
2X

∂2L
∂X∂ϕ

− ∂L
∂ϕ

)
ϕ̇ + 6HX

∂L
∂X

= 0. (A98)

Recalling Equation (A95), we obtain Equation (A97). We can check that this equation
returns Equations (A116) and (A140) for a canonical and a tachyonic SF respectively.

For a Lagrangian density of the form L = V(ϕ)F(X), Equation (A97) reduces to

(FX + 2XFXX)ϕ̈ + 3HFX ϕ̇ + (2XFX − F)
V′

V
= 0. (A99)

In the particular case L = V(ϕ)X, corresponding to a stiff equation of state [see the
comment after Equation (A41)], we get

ϕ̈ + 3H ϕ̇ + X
V′

V
= 0. (A100)

For a Lagrangian density of the form L = F(X)−V(ϕ), Equation (A97) reduces to

(FX + 2XFXX)ϕ̈ + 3HFX ϕ̇ + V′(ϕ) = 0. (A101)

For a pure k-essence Lagrangian L = L(X), Equation (A97) reduces to

(L′ + 2XL′′)ϕ̈ + 3HL′ ϕ̇ = 0. (A102)

We also have [see Equation (A98)]

(L′ + 2XL′′)dX
da

+
6
a

XL′ = 0. (A103)

This equation integrates to give

√
XL′(X) =

k
a3 . (A104)



Astronomy 2022, 1 188

Using Equation (A35), we see that this equation is equivalent to the conservation
of the rest-mass: ρm ∝ a−3. Equation (A104) was first obtained by Chimento [185] and
Scherrer [186] but they did not realize the relation with the rest-mass density. Our approach
provides therefore a physical interpretation of their result.

Appendix C. Equation of State of Type I

In this Appendix, we consider a barotropic fluid described by an equation of state of
type I where the pressure P = P(ε) is specified as a function of the energy density. We
show that, in a cosmological context, it is possible to associate to this fluid a real SF with a
potential V(ϕ) which is fully determined by the equation of state. As an illustration, we
determine the real SF potential associated with a polytropic equation of state of type I.

Appendix C.1. Friedmann Equations

If we consider an expanding homogeneous background and adopt the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric, the Einstein field equations reduce to the
Friedmann equations

H2 =
8πG
3c2 ε, (A105)

2Ḣ + 3H2 = −8πG
c2 P, (A106)

where H = ȧ/a is the Hubble parameter and a(t) is the scale factor. To obtain Equation (A105),
we have assumed that the universe is flat (k = 0) in agreement with the inflation paradigm [5]
and the observations of the cosmic microwave background (CMB) [1,2]. On the other
hand, we have set the cosmological constant to zero (Λ = 0) since dark energy can be
taken into account in the equation of state P(ε) or in the SF potential V(ϕ) (quintessence).
Equation (A106) can also be written as

ä
a
= −4πG

3c2 (3P + ε), (A107)

showing that the expansion of the universe is decelerating when P > −ε/3 and accelerating
when P < −ε/3.

Using Equations (A105) and (A106), we obtain the energy conservation equation

dε

dt
+ 3H(ε + P) = 0. (A108)

This equation can be directly deduced from the conservation of the energy-momentum
tensor DµTµν = 0 which results from the Bianchi identities. The energy density decreases
with the scale factor when P > −ε and increases with the scale factor when P < −ε.
The latter case corresponds to a phantom behavior.

For a given equation of state P(ε) we can solve Equation (A108) to get

ln a = −1
3

∫ dε

ε + P(ε)
. (A109)

This equation determines ε(a). We can then solve the Friedmann Equation (A105) to
obtain the temporal evolution of the scale factor a(t).

A polytropic equation of state of type I is defined by

P = K
( ε

c2

)γ
with γ = 1 + 1/n. (A110)
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Assuming 1 + (K/c2)(ε/c2)1/n ≥ 0, i.e., P ≥ −ε corresponding to a nonphantom
universe36, the energy conservation Equation (A108) can be integrated into [97,98]

ε =
ρ∗c2[

(a/a∗)3/n ∓ 1
]n , (A111)

where ρ∗ = (c2/|K|)n and a∗ is a constant of integration. The upper sign corresponds to
K > 0 and the lower sign to K < 0.

The case γ = 1, corresponding to a linear equation of state

P = αε (A112)

with α = K/c2, must be treated specifically. In that case, the solution of Equation (A108)
can be written as

ε =
ρ∗c2

(a/a∗)
3(1+α)

, (A113)

where ρ∗a
3(1+α)
∗ is a constant of integration.

Remark: Unfortunately, for the logotropic equation of state of type I [see Equation (379)],
the energy conservation equation

ln a = −1
3

∫ dε

ε + A ln(ε/ε∗)
(A114)

cannot be integrated explicitly.

Appendix C.2. Canonical SF

We consider a spatially homogeneous real canonical SF in an expanding universe with
a Lagrangian

L =
1
2

ϕ̇2 −V(ϕ). (A115)

It evolves according to the KG equation [see Equation (A97)]

ϕ̈ + 3H ϕ̇ +
dV
dϕ

= 0 (A116)

coupled to the Friedmann Equation (A105). The SF tends to run down the potential towards
lower energies while experiencing a Hubble friction. The energy-momentum tensor is
diagonal Tν

µ = diag(ε,−P,−P,−P). The energy density and the pressure of the SF are
given by [see Equation (A96)]

ε =
1
2

ϕ̇2 + V(ϕ), (A117)

P =
1
2

ϕ̇2 −V(ϕ). (A118)

We note that, here, V represents the total SF potential including the rest-mass term.
When the kinetic term dominates we obtain the stiff equation of state P = ε. When the
potential term dominates, we obtain the equation of state P = −ε corresponding to the
vacuum energy. We can easily check that the KG Equation (A116) with Equations (A117)
and (A118) implies the energy conservation Equation (A108) (see Appendix G). Inversely,
the energy conservation Equation (A108) with Equations (A117) and (A118) implies the KG
Equation (A116). The equation of state parameter w = P/ε is given by

w =
1
2 ϕ̇2 −V(ϕ)
1
2 ϕ̇2 + V(ϕ)

. (A119)
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It satisfies −1 ≤ w ≤ 1. The speed of sound is equal to the speed of light (cs = c) [see
Equation (A44)].

Using standard techniques [83,187–189], we can obtain the canonical SF potential
associated with a given equation of state of type I as follows [98]. From Equations (A117)
and (A118), we get

ϕ̇2 = (w + 1)ε. (A120)

Then, using ϕ̇ = (dϕ/da)Ha and the Friedmann Equation (A105), we find that the
relation between the SF and the scale factor is given by

dϕ

da
=

(
3c4

8πG

)1/2√1 + w
a

. (A121)

We note that ϕ is a monotonic function of a. We have selected the solution + for which
ϕ increases with a. On the other hand, according to Equations (A117) and (A118), we have

V =
1
2
(1− w)ε. (A122)

Therefore, the potential V(ϕ) of the canonical SF is determined in parametric form by
the equations

ϕ(a) =
(

3c4

8πG

)1/2 ∫ √
1 + w(a)

da
a

, (A123)

V(a) =
1
2
[1− w(a)]ε(a). (A124)

We note that ϕ is defined up to an additive constant.
The canonical SF potential corresponding to a polytropic equation of state of type I

[see Equation (A105)] has been determined in Section 8.1. of [98]. It is given by

V =
1
2

ρ∗c2 cosh2 ψ + 1

cosh
2γ

γ−1 ψ
(K < 0), (A125)

V =
1
2

ρ∗c2 sinh2 ψ− 1

sinh
2γ

γ−1 ψ
(K > 0), (A126)

where

ψ =

(
8πG
3c4

)1/2 3
2
(γ− 1)ϕ. (A127)

The relation between the scale factor and the SF is

a
a∗

= sinh
2

3(γ−1) ψ (K < 0), (A128)

a
a∗

= cosh
2

3(γ−1) ψ (K > 0). (A129)

These expressions are valid for ψ ≥ 0.
(i) For γ = −1 (Chaplygin gas), we get

V =
1
2

ρ∗c2
(

cosh ψ +
1

cosh ψ

)
(K < 0), (A130)
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V =
1
2

ρ∗c2
(

sinh ψ− 1
sinh ψ

)
(K > 0), (A131)

with ρ∗ =
√
|K|/c2. This SF potential was first obtained in [50].

(ii) For γ = 2 (BEC), we get

V =
1
2

ρ∗c2 cosh2 ψ + 1

cosh4 ψ
(K < 0), (A132)

V =
1
2

ρ∗c2 sinh2 ψ− 1

sinh4 ψ
(K > 0), (A133)

with ρ∗ = c2/|K|. This SF potential was first obtained in [98].
(iii) For γ = 0 (ΛCDM model), we get

V =
1
2

ρ∗c2(cosh2 ψ + 1) (K < 0), (A134)

V =
1
2

ρ∗c2(sinh2 ψ− 1) (K > 0), (A135)

with ρ∗ = |K|/c2. This SF potential was first obtained in [86] and rediscovered indepen-
dently in [98].

(iv) For γ = 3 (superfluid), we get

V =
1
2

ρ∗c2 cosh2 ψ + 1
cosh3 ψ

(K < 0), (A136)

V =
1
2

ρ∗c2 sinh2 ψ− 1
sinh3 ψ

(K > 0), (A137)

with ρ∗ =
√

c2/|K|. To our knowledge, this SF potential is new.
(v) For γ = 1, we get

V(ϕ) =
1
2

ρ∗c2(1− α)e−3
√

α+1
(

8πG
3c4

)1/2
ϕ. (A138)

This exponential potential was obtained in [83] but it appeared in earlier works on
inflation and quintessence [26,27,33,190,191]. In that case, the relation between the scale
factor and the SF is

ϕ(a) =
(

3c4

8πG

)1/2√
1 + α ln

(
a
a∗

)
. (A139)

For α = 1 (stiff matter), we find that V(ϕ) = 0. On the other hand, for α = −1
(vacuum energy), we find that ϕ̇ = 0 so that ϕ = ϕ0 is constant. This is consistent with
the equation of motion (A116) provided that V′(ϕ0) = 0. Therefore, ϕ0 must be at an
extremum of the potential V(ϕ). In that case, ε = V(ϕ0) = V0 and P = −V(ϕ0) = −V0,
yielding P = −ε. Note that the SF potential V(ϕ) is not necessarily constant but it must
have an extremum at ϕ0 such that V0 > 0.
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Appendix C.3. Tachyonic SF

We consider a spatially homogeneous real tachyonic SF [80–87] in an expanding
universe with a Lagrangian

L = −V(ϕ)
√

1− ϕ̇2. (A140)

It evolves according to the equation [see Equation (A97)]

ϕ̈

1− ϕ̇2 + 3H ϕ̇ +
1
V

dV
dϕ

= 0 (A141)

coupled to the Friedmann Equation (A105). The SF tends to run down the potential
towards lower energies while experiencing a Hubble friction. The energy-momentum
tensor is diagonal Tν

µ = diag(ε,−P,−P,−P). The density and the pressure of the SF are
given by [see Equation (A96)]

ε =
V(ϕ)√
1− ϕ̇2

, (A142)

P = −V(ϕ)
√

1− ϕ̇2. (A143)

We can easily check that the equation of motion (A141) with Equations (A142) and (A143)
implies the energy conservation Equation (A108) (see Appendix G). Inversely, the energy
conservation Equation (A108) with Equations (A142) and (A143) implies the equation of
motion (A141). The equation of state parameter w = P/ε is given by

w = ϕ̇2 − 1. (A144)

It satisfies −1 ≤ w ≤ 0. The squared speed of sound is given by c2
s /c2 = 1− ϕ̇2 = −w

[see Equation (A44)]. It satisfies 0 ≤ c2
s /c2 ≤ 1.

Using standard techniques [83,187–189], we can obtain the tachyonic SF potential
associated with a given equation of state of type I as follows [98]. From Equations (A142)
and (A143), we obtain

ϕ̇2 = 1 + w. (A145)

Using ϕ̇ = (dϕ/da)Ha, and the Friedmann Equation (A105), we get

dϕ

da
=

(
3c4

8πG

)1/2√1 + w√
εa

. (A146)

We note that ϕ is a monotonic function of a. We have selected the solution + for which
ϕ increases with a. On the other hand, from Equations (A142) and (A143), we have

V2 = −wε2. (A147)

Therefore, the potential V(ϕ) of the tachyonic SF is determined in parametric form by
the equations

ϕ(a) =
(

3c4

8πG

)1/2 ∫ √
1 + w(a)√

ε(a)
da
a

, (A148)

V(a) =
√
−w(a)ε(a). (A149)
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The tachyonic SF potential corresponding to a polytropic equation of state of type I
[see Equation (A105)] has been determined in Section 8.2. of [98]. It is defined only for
K < 0. It is given in parametric form by

V =
ρ∗c2

(x2 + 1)
1+γ

2(γ−1)

, (A150)

ψ =
∫
(x2 + 1)

2−γ
2(γ−1) dx, (A151)

where we have introduced the variable

ψ =
√

ρ∗c2
(

8πG
3c4

)1/2 3
2
(γ− 1)ϕ. (A152)

The relation between the scale factor and the SF is given by Equation (A151) with

x =

(
a
a∗

) 3
2 (γ−1)

. (A153)

The integral in Equation (A151) can be expressed in terms of hypergeometric functions.
Simple analytical expressions can be obtained in special cases.

(i) For γ = −1 and K < 0 (Chaplygin gas), we find that V(ϕ) = ρ∗c2 with ρ∗ =√
|K|/c2. In that case, the potential is constant [86]. This leads to the Born-Infeld Lagrangian

(see Appendix B.3).
(ii) For γ = 2 and K < 0 (BEC), we get

V(ψ) =
ρ∗c2

(ψ2 + 1)3/2 (A154)

with ρ∗ = c2/|K|. We have a/a∗ = ψ2/3 with ψ ≥ 0. This potential was first obtained
in [98].

(iii) For γ = 0 and K < 0 (ΛCDM model), we get

V(ψ) =
ρ∗c2

cos ψ
(A155)

with ρ∗ = |K|/c2. We have a/a∗ = 1/ tan(ψ)2/3 with 0 ≤ ψ ≤ π/2. This potential was
first obtained in [86] and rediscovered independently in [98].

(iv) For γ = 3 and K < 0 (superfluid), it is not possible to obtain explicit expressions.
(v) For γ = 1 and −1 < α < 0, we get

V(ϕ) =

√
−α

1 + α

c4

6πG
1
ϕ2 . (A156)

This inverse square law potential was first obtained in [83,87]. In that case, the relation
between the scale factor and the SF is

ϕ =
2
3

1√
ρ∗c2

(
3c4

8πG

)1/2 1√
1 + α

(
a
a∗

)3(1+α)/2
. (A157)

For α = −1 (vacuum energy), we find that ϕ̇ = 0 so that ϕ = ϕ0 is constant. This
is consistent with the equation of motion (A141) provided that V′(ϕ0) = 0. Therefore,
ϕ0 must be at an extremum of the potential V(ϕ). In that case, ε = V(ϕ0) = V0 and
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P = −V(ϕ0) = −V0, yielding P = −ε. Note that the SF potential V(ϕ) is not necessarily
constant but it must have an extremum at ϕ0 such that V0 > 0.

Remark: For γ = 1/2 and K < 0, we get

V(ψ) =
ρ∗c2

(1− ψ2)3/2 (A158)

with ρ∗ = (|K|/c2)2. The relation between the scale factor and the SF is (a/a∗)3/4 =√
1− ψ2/ψ with 0 ≤ ψ ≤ 1. This potential was first obtained in [98].

Appendix D. Equation of State of Type II

In this Appendix, we consider a barotropic fluid described by an equation of state of
type II where the pressure P = P(ρm) is specified as a function of the rest-mass density.
After recalling general results, we apply this equation of state to a cosmological context.

Appendix D.1. General Results

The first principle of thermodynamics for a relativistic gas can be written as

d
(

ε

ρm

)
= −Pd

(
1

ρm

)
+ Td

(
s

ρm

)
, (A159)

where

ε = ρmc2 + u(ρm) (A160)

is the energy density including the rest-mass energy density ρmc2 (where ρm = nm is the
rest-mass density) and the internal energy density u(ρm), s is the density of entropy, P is
the pressure, and T is the temperature. We assume that Td(s/ρm) = 0. This corresponds to
cold (T = 0) or isentropic (s/ρm = cst) gases. In that case, Equation (A159) reduces to

d
(

ε

ρm

)
= −Pd

(
1

ρm

)
=

P
ρ2

m
dρm. (A161)

This equation can be rewritten as

dε

dρm
=

P + ε

ρm
, (A162)

where the term in the right hand side is the enthalpy h. We have

h =
P + ε

ρm
, h =

dε

dρm
, dh =

dP
ρm

. (A163)

Equation (A161) can be integrated into

ε = ρmc2 + ρm

∫ P(ρm)

ρ2
m

dρm (A164)

establishing that

u(ρm) = ρm

∫ P(ρm)

ρ2
m

dρm. (A165)
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This equation determines the internal energy density as a function of the equation of
state P(ρm). Inversely, the equation of state is determined by the internal energy density
u(ρm) from the relation

P(ρm) = −
d(u/ρm)

d(1/ρm)
= ρ2

m

[
u(ρm)

ρm

]′
= ρmu′(ρm)− u(ρm). (A166)

We note that

P′(ρm) = ρmu′′(ρm). (A167)

The squared speed of sound is

c2
s = P′(ε)c2 =

ρmε′′(ρm)

ε′(ρm)
c2 =

ρmu′′(ρm)c2

c2 + u′(ρm)
. (A168)

Remark: The first principle of thermodynamics can be written as

dε = Tds + µdn, (A169)

where µ is the local chemical potential. This can be viewed as the variational principle
(δs/kB− βδε+ αδn = 0 with β = 1/kBT and α = µ/kBT) associated with the maximization
of the entropy density s at fixed energy density ε and particle density n [178]. Combined
with the Gibbs-Duhem relation [178]

s =
ε + P− µn

T
, (A170)

we obtain Equation (A159) and

sdT − dP + ndµ = 0. (A171)

If T = cst, then dP = ndµ. For T = 0, the foregoing equations reduce to

dε = µdn, µ =
ε + P

n
, dP = ndµ, (A172)

which are equivalent to Equation (A163) with µ = mh. Therefore, the enthalpy h(r) is equal
to the local chemical potential µ(r) by unit of mass: h(r) = µ(r)/m.

Appendix D.2. Cosmology

Let us apply these equations in a cosmological context, namely for a spatially homo-
geneous fluid in an expanding background. Combining the energy conservation Equa-
tion (A108) with Equation (A162), we obtain

dρm

dt
+ 3Hρm = 0. (A173)

This equation expresses the conservation of the particle number (or rest-mass). It can
be integrated into ρm ∝ a−3. Inserting this relation into Equation (A160), we see that ρm

represents DM while u represents DE37. This decomposition provides therefore a simple
(and nice) interpretation of DM and DE in terms of a single dark fluid [118,119]. DM
corresponds to the rest-mass energy density of the dark fluid and DE corresponds to its
internal energy density. Owing to this interpretation, we can write

ρmc2 =
Ωm,0ε0

a3 (A174)
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and

ε =
Ωm,0ε0

a3 + u
(

Ωm,0ε0

c2a3

)
, (A175)

where ε0 is the present energy density of the universe and Ωm,0 is the present proportion of
DM. For given P(ρm) or u(ρm) we can get ε(a) from Equation (A175). We can then solve
the Friedmann Equation (A105) to obtain the temporal evolution of the scale factor a(t).

Remark: Equations (A160) and (A166) determine the equation of state P = P(ε).
As a result, we can obtain Equation (A174) directly from Equations (A160), (A166) and
the energy conservation Equation (A108). Indeed, combining these equations we obtain
Equation (A173) which integrates to give Equation (A174).

Appendix D.3. Two-Fluid Model

In the model of type II, we have a single dark fluid with an equation of state P = P(ρm).
Still, the energy density (A160) is the sum of two terms, a rest-mass density term ρm which
mimics DM and an internal energy term u(ρm) which mimics DE. It is interesting to consider
a two-fluid model which leads to the same results as the single dark fluid model, at least
for what concerns the evolution of the homogeneous background. In this two-fluid model,
one fluid corresponds to pressureless DM with an equation of state Pm = 0 and a density
ρmc2 = Ωm,0ε0/a3 determined by the energy conservation equation for DM, and the other
fluid corresponds to DE with an equation of state Pde(εde) and an energy density εde(a)
determined by the energy conservation equation for DE. We can obtain the equation of
state of DE yielding the same results as the one-fluid model by taking

Pde = P(ρm), εde = u(ρm), (A176)

and eliminating ρm from these two relations. In other words, the equation of state Pde(εde)
of DE in the two-fluid model corresponds to the relation P(u) in the single fluid model.
Explicit examples of the correspondance between the one and two-fluid models are given
below. Although the one and two-fluid models are equivalent for the evolution of the
homogeneous background, they may differ for what concerns the formation of the large-
scale structures of the Universe and for inhomogeneous systems in general.

In the two-fluid model associated with the Chaplygin gas of type I (or III), the DE has
an equation of state

Pde =
2Kc2εde

ε2
de − Kc2

, (A177)

which is obtained by eliminating ρm between Equations (235) and (236), and by identifying
P(u) with Pde(εde).

In the two-fluid model associated with the BEC of type I, the DE has an equation
of state

Pde =
4Kε2

de[
−Kεde

c2 ±
√(

Kεde
c2

)2
+ 4Kεde

]2 , (A178)

which is obtained by eliminating ρm between Equations (238) and (239), and by identifying
P(u) with Pde(εde).

In the two-fluid model associated with the ΛCDM model, the DE has an equation
of state

Pde = −εde. (A179)
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In the two-fluid model associated with a polytrope of type II, the DE has an equation
of state

Pde = (γ− 1)εde, (A180)

which is obtained by eliminating ρm between Equations (277) and (278), and by identifying
P(u) with Pde(εde).

In the two-fluid model associated with a logotrope of type II, the DE has an equation
of state [120]

Pde = −εde − A, (A181)

which is obtained by eliminating ρm between Equations (388) and (389), and by identifying
P(u) with Pde(εde).

By integrating the energy conservation equation for DE with these equations of state
Pde(εde) we recover the DE density εde(a) given by u(Ωm,0ε0/c2a3) [see Equation (A175)].

Remark: Using a sort of inverse approach, we have shown that UDM models like
the polytropic and logotropic models are equivalent, for what concerns the evolution of
the cosmological background, to a two-fluid model made of pressureless DM and DE.
In certain cases, we have determined the corresponding equation of state of DE analytically.
As far as we know, this inverse approach has not been developed before. It is of interest
because, in the two-fluid model, there is no problem with the formation of structures since
DM is pressureless. This approach therefore solves the problem discussed at the end of
the introduction. It is a bit unconventional to pass from a one fluid model to a two-fluid
model since, originally, the one fluid model aimed at a unification of DM and DE but this
procedure is well defined and yields new types of equations of state for DE that may be
of interest.

Appendix E. Equation of State of Type III

In this Appendix, we consider a barotropic fluid described by an equation of state
of type III where the pressure P = P(ρ) is specified as a function of the pseudo rest-mass
density. As explained in Section 3.3 this hydrodynamic description arises naturally when
considering a complex SF with a potential V(|ϕ|2) in the TF approximation. Here, we
consider the case of a spatially homogeneous complex SF in an expanding background.

Appendix E.1. General Results

Let us first establish general results that are valid beyond the TF approximation.
We consider a spatially homogeneous complex SF in an expanding universe with a

Lagrangian

L =
1

2c2 |ϕ̇|
2 −Vtot(ϕ). (A182)

Its cosmological evolution obtained from the least action principle (δS = 0) is governed
by the KGF equations

1
c2

d2 ϕ

dt2 +
3H
c2

dϕ

dt
+ 2

dVtot

d|ϕ|2 ϕ = 0, (A183)

H2 =
8πG
3c2 ε. (A184)

The energy density ε(t) and the pressure P(t) of the SF are given by

ε ≡ T0
0 =

∂L
∂ϕ̇

ϕ̇ +
∂L

∂ϕ̇∗
ϕ̇∗ − L, P ≡ −Ti

i = L, (A185)
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yielding

ε =
1

2c2

∣∣∣∣dϕ

dt

∣∣∣∣2 + Vtot(|ϕ|2), (A186)

P =
1

2c2

∣∣∣∣dϕ

dt

∣∣∣∣2 −Vtot(|ϕ|2). (A187)

When the kinetic term dominates we obtain the stiff equation of state P = ε. When
the potential term dominates, we obtain the equation of state P = −ε corresponding to the
vacuum energy.

In the following, we use the hydrodynamic representation of the SF (see Section 3.3
and [149]). The Lagrangian is

L =
1

2c2 ρθ̇2 +
h̄2

8m2ρc2 ρ̇2 −Vtot(ρ). (A188)

The energy density ε(t) and the pressure P(t) of the SF are given by

ε ≡ T0
0 =

∂L
∂θ̇

θ̇ +
∂L
∂ρ̇

ρ̇− L, P ≡ −Ti
i = L, (A189)

yielding

ε =
1

2c2 ρθ̇2 +
h̄2

8m2ρc2 ρ̇2 + Vtot(ρ), (A190)

P =
1

2c2 ρθ̇2 +
h̄2

8m2ρc2 ρ̇2 −Vtot(ρ). (A191)

The equation DνTµν = 0 leads to the energy conservation equation

dε

dt
+ 3H(ε + P) = 0. (A192)

This equation can also be obtained from the KG Equation (A183) with Equations (A186)
and (A187) (see Appendix G). Inversely, the energy conservation Equation (A192) with
Equations (A186) and (A187) implies the KG Equation (A183).

The equation Dµ Jµ = 0, which is equivalent to the continuity Equation (133), can be
written as

d
dt

(
Etotρa3

)
= 0, (A193)

where

Etot = h̄ω = −mθ̇ = −Ṡtot (A194)

is the energy of the SF (ω = −Θ̇ with Θ = mθ/h̄ is its pulsation). Equation (A193) expresses
the conservation of the charge of the complex SF (or equivalently the conservation of the
boson number). It can be written as

ρEtot =
Qm2c2

a3 , (A195)

where Q = Ne is a constant of integration representing the charge of the SF which is propor-
tional to the boson number N [149,150,153,192–195]. Indeed, according to Equation (123),
the charge of the SF is defined by38

Q =
1

mc

∫
J0√−g d3x, (A196)
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where J0 is the time component of the quadricurrent Jµ = −ρ∂µθ (see Section 3.2). For a
spatially homogeneous SF in an expanding background, we have

J0 = −1
c

ρθ̇ =
h̄

mc
ρω =

1
mc

ρEtot (A197)

and Q = J0a3/mc = ρEtota3/m2c2 yielding Equation (A195).
The quantum Hamilton-Jacobi (or Bernoulli) Equation (134) takes the form

E2
tot = h̄2 1

√
ρ

d2√ρ

dt2 + 3Hh̄2 1
√

ρ

d
√

ρ

dt
+ 2m2c2V′tot(ρ). (A198)

Finally, we have established in the general case (see Section 3.2) that the rest-mass
density is given by

ρm =
ρ

c

√
∂µθ∂µθ. (A199)

For a spatially homogeneous SF in an expanding background, we get

ρm = −ρ

c
∂0θ = − 1

c2 ρθ̇ =
h̄

mc2 ρω =
1

mc2 ρEtot. (A200)

Using Equation (A200), Equations (A193) and (A195) can be rewritten as

dρm

dt
+ 3Hρm = 0 (A201)

and

ρm =
Qm
a3 , (A202)

respectively. Equations (A201) and (A202) can also be obtained from the first law of thermody-
namics for a cold fluid (T = 0) in a homogeneous background (see Appendix D). They express
the conservation of the particle number. Inversely, Equation (A200) can be directly obtained
from Equation (A195) using Equation (A202). Comparing Equations (A197) and (A200), we
note that

ρm =
J0

c
. (A203)

This relation is not generally valid (see Section 3.2). In the present case, it arises from
the general identity Jµ = ρmuµ and the fact that uµ = cδ

µ
0 since the fluid (SF) is static in the

expanding background.

Appendix E.2. TF Approximation

In the TF approximation (h̄→ 0), the Lagrangian (A188) reduces to

L =
1

2c2 ρθ̇2 −Vtot(ρ), (A204)

the energy density ε(t) and the pressure P(t) of the SF reduce to

ε =
1

2c2 ρθ̇2 + Vtot(ρ), (A205)

P =
1

2c2 ρθ̇2 −Vtot(ρ), (A206)
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and the quantum Hamilton-Jacobi (or Bernoulli) Equation (A198) reduces to39

E2
tot = 2m2c2V′tot(ρ). (A207)

Combining Equations (A195) and (A207), we obtain

Qmc
a3 = ρ

√
2V′tot(ρ). (A208)

This equation determines the relation between the pseudo rest-mass density ρ and the
scale factor a. On the other hand, according to Equations (A200) and (A207), the rest-mass
densitity is given by

ρm =
ρ

c

√
2V′tot(ρ). (A209)

Finally, according to Equations (A194), (A205) and (A206) the energy density and the
pressure of the SF in the TF approximation are given by

ε = ρV′tot(ρ) + Vtot(ρ), (A210)

P = ρV′tot(ρ)−Vtot(ρ). (A211)

Equation (A211) determines the equation of state P(ρ) as a function of the SF potential
Vtot(ρ). Inversely, the SF potential is determined by the equation of state according to
the relation

Vtot(ρ) = ρ
∫ P(ρ)

ρ2 dρ. (A212)

Equations (A209)–(A212) are always valid in the TF approximation even for inho-
mogeneous systems (see Section 3.3). For given P(ρ) or Vtot(ρ), we can obtain ρ(a) from
Equation (A208) and ε(a) from Equation (A210). We can then solve the Friedmann Equa-
tion (A184) with ε(a) to obtain the temporal evolution of the scale factor a(t). Actually,
since it is not always possible to invert Equation (A208), it is better to proceed differently
(see [149]). Taking the logarithmic derivative of Equation (A208), we get

ȧ
a
= −1

3
ρ̇

ρ

[
1 +

ρV′′tot(ρ)

2V′tot(ρ)

]
. (A213)

Then, using Equations (A184) and (A210), we obtain

c2

24πG

(
ρ̇

ρ

)2
=

ρV′tot(ρ) + Vtot(ρ)[
1 + ρV′′tot(ρ)

2V′tot(ρ)

]2 . (A214)

For given Vtot(ρ), Equation (A214) is just a first order differential equation which can
be solved by a simple integration.

Remark: Equations (A210) and (A211) determine the equation of state P = P(ε). As a
result, we can obtain Equation (A208) directly from Equations (A210) and (A211) and the
energy conservation Equation (A192). Indeed, combining these equations we obtain

[
2V′tot(ρ) + ρV′′tot(ρ)

]dρ

dt
= −6HρV′tot(ρ). (A215)
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leading to ∫ 2V′tot(ρ) + ρV′′tot(ρ)

ρV′tot(ρ)
= −6 ln a. (A216)

Equation (A216) integrates to give Equation (A208).

Appendix F. Analogies and Differences between u and V

For a relativistic fluid of type II, we have established the identities (see Appendix D)

ε = ρmc2 + u(ρm), (A217)

P = ρmu′(ρm)− u(ρm), (A218)

u(ρm) = ρm

∫ P(ρm)

ρ2
m

dρm, (A219)

where ρm is the rest-mass density and u is the internal energy.
For a relativistic fluid of type III, we have established the identities (see Section 3.3)

ε = ρc2 + ρV′(ρ) + V(ρ), (A220)

P = ρV′(ρ)−V(ρ), (A221)

V(ρ) = ρ
∫ P(ρ)

ρ2 dρ, (A222)

where ρ is the pseudo rest-mass density and V is the potential of the complex SF.
We note that Equations (A221) and (A222) are identical to Equations (A218) and (A219)

with ρ instead of ρm and V instead of u. In general, the variables ρ and V are different
from the variables ρm and u. However, they coincide in the nonrelativistic limit. For a
nonrelativistic complex SF (BEC), Equations (A217)–(A222) reduce to

ε ∼ ρc2, (A223)

P = ρV′(ρ)−V(ρ), (A224)

V(ρ) = ρ
∫ P(ρ)

ρ2 dρ, (A225)

where ρ = ρm is the mass density and V = u is the potential of the SF or the internal energy
of the corresponding barotropic fluid (see Appendix A).

Appendix G. Energy Conservation Equation for a SF

Appendix G.1. Complex SF

We consider a spatially homogeneous complex SF in an expanding background (see
Appendix E). Taking the time derivative of the energy density given by Equation (A186),
we get

dε

dt
=

1
2c2

d2 ϕ

dt2
dϕ∗

dt
+ V′tot(|ϕ|2)

dϕ

dt
ϕ∗ + c.c. (A226)
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Using the KG Equation (A183), we obtain after simplification

dε

dt
= −3H

c2

∣∣∣∣dϕ

dt

∣∣∣∣2. (A227)

From Equations (A186) and (A187) we have

ε + P =
1
c2

∣∣∣∣dϕ

dt

∣∣∣∣2. (A228)

Combining Equations (A227) and (A228), we obtain the energy conservation Equa-
tion (A192). Inversely, from Equations (A186), (A187) and (A192), we can directly derive
the KG Equation (A183).

Appendix G.2. Real Canonical SF

We consider a spatially homogeneous real canonical SF in an expanding background
(see Appendix C.2). Taking the time derivative of the energy density given by
Equation (A117), we get

dε

dt
=

d2 ϕ

dt2
dϕ

dt
+ V′(ϕ)

dϕ

dt
. (A229)

Using the KG Equation (A116), we obtain after simplification

dε

dt
= −3H ϕ̇2. (A230)

From Equations (A117) and (A118) we have

ε + P = ϕ̇2. (A231)

Combining Equations (A230) and (A231), we obtain the energy conservation
Equation (A108). Inversely, from Equations (A108), (A117) and (A118) we can directly
derive the KG Equation (A116).

Appendix G.3. Real Tachyonic SF

We consider a spatially homogeneous real tachyonic SF in an expanding background
(see Appendix C.3). Taking the time derivative of the energy density given by
Equation (A142), we get

dε

dt
=

V′(ϕ)√
1− ϕ̇2

ϕ̇ +
V(ϕ)

(1− ϕ̇2)3/2 ϕ̇ϕ̈. (A232)

Using the field Equation (A141), we obtain after simplification

dε

dt
= −3H

V(ϕ)√
1− ϕ̇2

ϕ̇2. (A233)

From Equations (A142) and (A143) we have

ε + P =
V(ϕ)√
1− ϕ̇2

ϕ̇2. (A234)

Combining Equations (A233) and (A234), we obtain the energy conservation Equa-
tion (A108). Inversely, from Equations (A108), (A142) and (A143), we can directly derive
the field Equation (A141).
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Appendix H. Some Studies Devoted to Polytropic and Logotropic Equations of State
of Type I, II and III

In this Appendix, we briefly mention studies devoted to polytropic and logotropic
equations of state of type I, II and III in the context of stars, DM halos and cosmology.

The study of nonrelativistic stars described by a polytropic equation of state dates
back to the paper of Lane [196]. Isothermal stars were first considered by Zöllner [197].
A very complete study of polytropic and isothermal stars is presented in the books of
Emden [198] and Chandrasekhar [139]. Nonrelativistic logotropic stars were studied by
McLaughlin and Pudritz [199]. The logotropic equation of state was applied to DM halos
by Chavanis [116,118,122,143].

General relativistic stars described by a polytropic equation of state of type I were first
considered by Tooper [151]. Polytropes of type I with index γ = 2 were specifically studied
by Chavanis and Harko [154,155] in relation to general relativistic BEC stars (however, this
is not the correct equation of state for these systems—see below). General relativistic stars
described by a linear equation of state, extending the models of Newtonian isothermal
stars, were studied by Chandrasekhar [157] (see also [158–161] and references therein).
Cosmological models based on a polytropic equation of state of type I with an arbitrary
index γ were studied in [97–99]. The specific index γ = −1 corresponds to the Chaplygin
gas [50,86] and the indices −1 ≤ γ ≤ 0 correspond to the GCG [95]. A cosmological model
based on the logotropic equation of state of type I was studied in Appendix B of [116] (see
also [122]).

General relativistic stars described by a polytropic equation of state of type II were
first considered by Tooper [162]. Polytropes of type II with index γ = 2 were specifically
studied by Chavanis [154] and Latifah et al. [200] in relation to general relativistic BEC
stars (however, this is not the correct equation of state for these systems—see below).
Cosmological models based on a polytropic equation of state of type II with an arbitrary
index γ were studied in [163] (the index γ = 2 of a BEC is specifically treated in the
main text of [163] and the case of a general index is treated in Appendix D of [163]).
A cosmological model based on the logotropic equation of state of type II was studied
in [118] (see also [122]).

General relativistic stars described by a polytropic equation of state of type III were
studied by Colpi et al. [152] and Chavanis and Harko [154,155] for the particular index
γ = 2 corresponding to BECs. This is the hydrodynamic representation, valid in the
TF regime, of a complex SF with a repulsive |ϕ|4 self-interaction described by the KGE
equations [152]. Therefore, a polytropic equation of state of type III with index γ = 2,
leading to the equation of state (346), is the correct equation of state of a relativistic BEC
with a quartic self-interaction in the TF regime. Cosmological models based on a polytropic
equation of state of type III with an arbitrary index γ were studied in [149,156] (the index
γ = 2 of a BEC is specifically treated in the main text of [149] and the case of an arbitrary
index is treated in Appendix I of [149]). This is the hydrodynamic representation, valid in
the TF regime or in the fast oscillation regime, of a complex SF with an algebraic potential
|ϕ|2γ described by the KGE equations (the |ϕ|4 potential [153] corresponds to γ = 2).
A cosmological model based on the logotropic equation of state of type III has been studied
recently in [116] (see also [122]).

Appendix I. Conservation Laws for a Nonrelativistic SF

In this Appendix, we establish the local conservation laws of mass, impulse and energy
for a nonrelativistic SF (see Section 2).

Appendix I.1. Conservation Laws in Terms of Hydrodynamic Variables

The equation of continuity (20) can be written as

∂ρ

∂t
+∇ · J = 0, (A235)
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where ρ is the mass density and

J = ρu (A236)

is the density current. This equation expresses the local conservation of mass M =
∫

ρ dr.
Using the continuity Equation (20), the quantum Euler Equation (24) can be rewritten as

∂

∂t
(ρu) +∇(ρu⊗ u) +∇P +

ρ

m
∇Q = 0. (A237)

On the other hand, the quantum force can be written under the form (see Section 2.5
of [136])

− ρ

m
∂iQ = −∂jP

Q
ij , (A238)

where the anisotropic quantum pressure tensor PQ
ij is given by

PQ
ij = − h̄2

4m2 ρ∂i∂j ln ρ =
h̄2

4m2

(
1
ρ

∂iρ∂jρ− ∂i∂jρ

)
(A239)

or, alternatively, by

PQ
ij =

h̄2

4m2

(
1
ρ

∂iρ∂jρ− δij∆ρ

)
. (A240)

Substituting Equation (A238) into Equation (A237), we obtain

∂

∂t
(ρu) +∇(ρu⊗ u) +∇P + ∂jP

Q
ij = 0. (A241)

Introducing the momentum density

−Ti0 = ρu, (A242)

we can rewrite Equation (A241) as

−∂Ti0
∂t

+ ∂jTij = 0, (A243)

where

Tij = ρuiuj + Pδij + PQ
ij (A244)

is the stress tensor. Using Equations (A239) and (A240), we get

Tij = ρuiuj + Pδij −
h̄2

4m2 ρ∂i∂j ln ρ

= ρuiuj + Pδij +
h̄2

4m2

(
1
ρ

∂iρ∂jρ− ∂i∂jρ

)
(A245)

or, alternatively,

Tij = ρuiuj +

[
P(ρ)− h̄2

4m2 ∆ρ

]
δij +

h̄2

4m2
1
ρ

∂iρ∂jρ. (A246)

Equation (A243) expresses the local conservation of the momentum P =
∫

ρu dr.
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Introducing the energy density

T00 = ρe = ρ
u2

2
+ ρ

Q
m

+ V(ρ) (A247)

and combining the equation of continuity (20) and the quantum Euler Equation (24), we
obtain (see Appendix E of [136])

∂

∂t
(ρe) +∇ · (ρeu) +∇ · (Pu) +∇ · JQ = 0, (A248)

where

JQ =
h̄2

4m2 ρ
∂∇ ln ρ

∂t
(A249)

is the quantum current. Introducing the energy current

−T0i = ρeu + Pu + JQ

= ρ

[
u2

2
+

Q
m

+
V(ρ) + P

ρ

]
u + JQ

= ρ

[
u2

2
+

Q
m

+ V′(ρ)
]

u + JQ, (A250)

where we have used Equation (26) to obtain the last equality, we can rewrite Equation (A248)
as

∂T00

∂t
− ∂iT0i = 0. (A251)

This equation expresses the local conservation of energy E =
∫

ρe dr. We also recall
that h(ρ) = V′(ρ) is the enthalpy.

For classical systems (h̄ = 0), or for BECs in the TF limit, the foregoing equations
reduce to

T00 = ρe = ρ
u2

2
+ V(ρ), (A252)

−T0i = ρ

[
u2

2
+ V′(ρ)

]
u, (A253)

−Ti0 = ρu, (A254)

Tij = ρuiuj + Pδij. (A255)

Remark: We note that T0i 6= Ti0 because the theory is not Lorentz invariant. By contrast,
Tij = Tji because the theory is invariant against spatial rotations. We also note that the
momentum density is equal to the mass flux:

−Ti0 = ρu = J. (A256)
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Appendix I.2. Conservation Laws in Terms of the Wave Function

Using Equations (17)–(19), the density current (A236) can be expressed in terms of the
wave function as

J =
h̄

2im
(ψ∗∇ψ− ψ∇ψ∗). (A257)

As a result, the equation of continuity (A235) takes the form

∂|ψ|2
∂t

+
h̄

2im
∇ · (ψ∗∇ψ− ψ∇ψ∗) = 0. (A258)

Similarly, the momentum density (A242) and the stress tensor (A246) can be written in
terms of the wave function as (see Appendix A of [136])

−Ti0 = J =
h̄

2im
(ψ∗∇ψ− ψ∇ψ∗) (A259)

and

Tij =
h̄2

m2 Re

(
∂ψ

∂xi

∂ψ∗

∂xj

)
+

[
P(|ψ|2)− h̄2

4m2 ∆|ψ|2
]

δij (A260)

or, alternatively,

Tij =
h̄2

2m2 Re

(
∂ψ

∂xi

∂ψ∗

∂xj
− ψ

∂2ψ∗

∂xi∂xj

)
+ Pδij. (A261)

Finally, the energy density (A247) and the energy current (A250) can be written in
terms of the wave function as

T00 =
h̄2

2m2 |∇ψ|2 + V(|ψ|2) (A262)

and

−T0i =

[
h̄2

2m2
|∇ψ|2
|ψ|2 + V′(|ψ|2)

]
J + JQ (A263)

with

JQ =
h̄2

4m2 |ψ|
2 ∂∇ ln |ψ|2

∂t
. (A264)

Appendix I.3. Conservation Laws from the Lagrangian Expressed in Terms of the Wave Function

The current of a complex SF is given by

Jµ =
m
ih̄

[
ψ

∂L
∂(∂µψ)

− ψ∗
∂L

∂(∂µψ∗)

]
. (A265)

For the Lagrangian (33) we obtain the mass density

J0 = |ψ|2 = ρ (A266)

and the mass flux

J = − ih̄
2m

(ψ∗∇ψ− ψ∇ψ∗). (A267)
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The energy-momentum tensor of a complex SF is given by

Tν
µ = ∂µψ

∂L
∂(∂νψ)

+ ∂µψ∗
∂L

∂(∂νψ∗)
−Lδν

µ. (A268)

For the Lagrangian (33) we obtain the energy density

T00 =
h̄2

2m2 |∇ψ|2 + V(|ψ|2), (A269)

the momentum density

−Ti0 = − ih̄
2m

(ψ∗∇ψ− ψ∇ψ∗) = J, (A270)

the energy flux

−T0i = −
h̄2

2m2 (ψ̇∇ψ∗ + ψ̇∗∇ψ), (A271)

and the momentum fluxes (stress tensor)

Tij =
h̄2

m2 Re(∂iψ∂jψ
∗) + Lδij. (A272)

These are their general expressions. If we use the GP Equation (16), which is obtained
after extremizing the action, we can rewrite Equation (A271) as Equation (A263). Similarly,
if we use the expression (46) of the Lagrangian which relies on the GP Equation (16), we
can rewrite Equation (A272) as Equation (A260). In this manner, we recover the equations
of Appendix I.2 (up to terms that vanish by integration).

Remark: The energy density is

T00 = ψ̇
∂L
∂ψ̇

+ ψ̇∗
∂L
∂ψ̇∗
−L

= πψ̇ + π∗ψ̇∗ −L

=
ih̄
2m

(ψ∗ψ̇− ψψ̇∗)−L, (A273)

where π = ∂L/∂ψ̇ = ih̄
2m ψ∗ is the conjugate momentum to ψ. This leads to

Equations (35) and (36). On the other hand, Equation (37) can be rewritten in the form of
Hamilton equations

∂ψ

∂t
=

1
2

δH
δπ

,
∂π

∂t
= −1

2
δH
δψ

. (A274)

They are equivalent to the GP Equation (16) and its complex conjugate.

Appendix I.4. Conservation Laws from the Lagrangian Expressed in Terms of
Hydrodynamic Variables

The current of a complex SF in its hydrodynamic representation is given by

Jµ = −m
∂L

∂(∂µS)
. (A275)

For the Lagrangian (40) we obtain the mass density

J0 = ρ (A276)
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and the mass flux

J = ρ
∇S
m

= ρu. (A277)

The energy-momentum tensor of a complex SF in its hydrodynamic representation is
given by

Tν
µ = ∂µρ

∂L
∂(∂νρ)

+ ∂µS
∂L

∂(∂νS)
−Lδν

µ. (A278)

For the Lagrangian (40) we obtain the energy density

T00 =
ρ

2m2 (∇S)2 +
h̄2

8m2
(∇ρ)2

ρ
+ V(ρ)

=
1
2

ρu2 + ρ
Q
m

+ V(ρ), (A279)

the momentum density

−Ti0 =
ρ

m
∇S = ρu = J, (A280)

the energy flux

−T0i = −
∂ρ

∂t
h̄2

4m2
∇ρ

ρ
− ∂S

∂t
ρ

m2∇S, (A281)

and the momentum fluxes

Tij =
h̄2

4m2
1
ρ

∂iρ∂jρ +
ρ

m2 ∂iS∂jS + Lδij

= ρuiuj +
h̄2

4m2
1
ρ

∂iρ∂jρ + Lδij. (A282)

These are their general expressions. If we use the quantum Hamilton-Jacobi (or
Bernoulli) Equation (21), which is obtained after extremizing the action, we can rewrite
Equation (A281) as Equation (A250). Similarly, if we use the expression (46) of the La-
grangian which relies on the quantum Hamilton-Jacobi (or Bernoulli) Equation (21), we
can rewrite Equation (A282) as Equation (A246). In this manner, we recover the equations
of Appendix I.1 (up to terms that vanish by integration).

Remark: The energy density is

T00 = Ṡ
∂L
∂Ṡ
−L = πṠ−L = − ρ

m
Ṡ−L, (A283)

where π = ∂L/∂Ṡ = −ρ/m is the conjugate momentum to S. This leads to Equations (43)
and (44). On the other hand, Equation (45) can be rewritten in the form of Hamilton
equations

∂S
∂t

=
δH
δπ

,
∂π

∂t
= − δH

δS
. (A284)

They are equivalent to the continuity Equation (20) and to the quantum Hamilton-
Jacobi (or Bernoulli) Equation (21).
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Appendix J. Conservation Laws for a Relativistic Complex SF

In this Appendix, we establish the local conservation laws of boson number (charge),
impulse and energy for a relativistic complex SF (see Section 3). For simplicity, we consider
a flat metric and a static background.

Appendix J.1. Conservation Laws from the Lagrangian Expressed in Terms of the Wave Function

The density Lagrangian of a complex SF is [see Equation (110)]

L =
1

2c2

∣∣∣∣∂ϕ

∂t

∣∣∣∣2 − 1
2
|∇ϕ|2 −Vtot(|ϕ|2). (A285)

The components of the current (120) or (121) are

J0 = − m
2ih̄c

(
ϕ∗

∂ϕ

∂t
− ϕ

∂ϕ∗

∂t

)
, (A286)

Ji =
m

2ih̄
(ϕ∗∂i ϕ− ϕ∂i ϕ

∗). (A287)

The local conservation of the boson number (charge) can be written as

1
c

∂J0

∂t
+ ∂i Ji = 0. (A288)

The components of the energy-momentum tensor (116) are

T00 =
1

2c2

∣∣∣∣∂ϕ

∂t

∣∣∣∣2 + 1
2
|∇ϕ|2 + Vtot(|ϕ|2), (A289)

T0i = − 1
2c

∂ϕ∗

∂t
∂i ϕ−

1
2c

∂ϕ

∂t
∂i ϕ
∗, (A290)

Tij =
1
2

∂i ϕ
∗∂j ϕ +

1
2

∂i ϕ∂j ϕ
∗ + δijL. (A291)

We note that Tii = |∇ϕ|2 + 3L. The conservation of the energy-momentum tensor
[see Equation (118)] can be written as

1
c

∂T00

∂t
+ ∂iT0i = 0, (A292)

1
c

∂Ti0

∂t
+ ∂jTij = 0. (A293)

The Euler-Lagrange Equation (112) yields the KG equation

1
c2

∂2 ϕ

∂t2 − ∆ϕ + 2
dVtot

d|ϕ|2 ϕ = 0 (A294)

which involves the d’Alembertian operator � = 1
c2

∂2

∂t2 − ∆.
In the homogeneous case, the foregoing equations reduce to

L =
1

2c2

∣∣∣∣∂ϕ

∂t

∣∣∣∣2 −Vtot(|ϕ|2), (A295)
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T00 =
1

2c2

∣∣∣∣∂ϕ

∂t

∣∣∣∣2 + Vtot(|ϕ|2), (A296)

T0i = 0, (A297)

Tij = δijL, (A298)

1
c2

∂2 ϕ

∂t2 + 2
dVtot

d|ϕ|2 ϕ = 0. (A299)

The energy-momentum tensor is diagonal Tµν = diag(ε, P, P, P). The energy density
and the pressure are given by

ε =
1

2c2

∣∣∣∣∂ϕ

∂t

∣∣∣∣2 + Vtot(|ϕ|2), (A300)

P =
1

2c2

∣∣∣∣∂ϕ

∂t

∣∣∣∣2 −Vtot(|ϕ|2). (A301)

To obtain the nonrelativistic limit, we first make the Klein transformation (14) and use
Equation (111). We get

L =
h̄2

2m2c2

∣∣∣∣∂ψ

∂t

∣∣∣∣2 + ih̄
2m

(
ψ∗

∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− h̄2

2m2 |∇ψ|2 −V(|ψ|2), (A302)

J0 = − h̄
2icm

(
ψ∗

∂ψ

∂t
− ψ

∂ψ∗

∂t
− 2imc2

h̄
|ψ|2

)
, (A303)

Ji =
h̄

2im
(ψ∗∂iψ− ψ∂iψ

∗), (A304)

T00 =
h̄2

2m2c2

∣∣∣∣∂ψ

∂t

∣∣∣∣2 + h̄2

2m2 |∇ψ|2 + c2|ψ|2 + V(|ψ|2) + ih̄
2m

(
∂ψ

∂t
ψ∗ − ψ

∂ψ∗

∂t

)
, (A305)

T0i = − h̄2

2m2c

(
∂ψ∗

∂t
∂iψ +

∂ψ

∂t
∂iψ
∗
)
− ih̄c

2m
(ψ∗∂iψ− ψ∂iψ

∗), (A306)

Tij =
h̄2

m2 Re
(
∂iψ∂jψ

∗)+ δijL. (A307)

If we take the limit c → +∞ in Equation (A302) we recover Equation (33). If we
divide Equation (A303) by c and take the limit c → +∞, we obtain J0/c = |ψ|2 leading
to Equation (A266). Equation (A304) is equivalent to Equation (A267). To leading order,
Equation (A305) gives T00 ∼ ρc2. If we subtract the rest mass term cJ0 (see Ref. [145]) and
take the limit c→ +∞ in Equation (A305), we recover Equation (A269). If we multiply or
divide Equation (A306) by c and consider the terms that are independent of c (see Ref. [145]),
we get

T0i

c
= − ih̄

2m
(ψ∗∂iψ− ψ∂iψ

∗), (A308)

T0ic = − h̄2

2m2

(
∂ψ∗

∂t
∂iψ +

∂ψ

∂t
∂iψ
∗
)

. (A309)
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This returns Equations (A270) and (A271). Equation (A307) returns Equation (A272).
Finally, the KG Equation (A294) becomes

ih̄
∂ψ

∂t
− h̄2

2mc2
∂2ψ

∂t2 +
h̄2

2m
∆ψ−m

dV
d|ψ|2 ψ = 0. (A310)

In the nonrelativistic limit c→ +∞, we recover the GP Equation (16).
Remark: We note that the energy-momentum tensor is symmetric in relativity theory

(Tµν = Tνµ) while it is not symmetric in Newtonian theory (T0i 6= Ti0). This is because
space and time are not treated on equal footing in Newtonian theory. This is also why we
have to consider the two terms T0i/c and T0ic individually in the nonrelativistic limit [see
Equations (A308) and (A309)].

Appendix J.2. Conservation Laws from the Lagrangian Expressed in Terms of
Hydrodynamic Variables

The density Lagrangian of a complex SF in its hydrodynamic representation is [see
Equation (129)]

L =
h̄2

8ρm2c2

(
∂ρ

∂t

)2
+

1
2c2 ρ

(
∂θ

∂t

)2
− h̄2

8ρm2 (∇ρ)2 − 1
2

ρ(∇θ)2 −Vtot(ρ). (A311)

The components of the current (143) are

J0 = −ρ

c
∂θ

∂t
, Ji = ρ∂iθ, (A312)

and they satisfy the conservation of boson number (charge) from Equation (A288).
The components of the energy-momentum tensor (140) are

T00 =
h̄2

8ρm2c2

(
∂ρ

∂t

)2
+

1
2c2 ρ

(
∂θ

∂t

)2
+

h̄2

8ρm2 (∇ρ)2 +
1
2

ρ(∇θ)2 + Vtot(ρ), (A313)

T0i = −1
c

ρ
∂θ

∂t
∂iθ −

h̄2

4ρm2c
∂ρ

∂t
∂iρ, (A314)

Tij =
h̄2

4ρm2 ∂iρ∂jρ + ρ∂iθ∂jθ + δijL, (A315)

and they satisfy the conservation of impulse and energy from Equations (A292) and (A293).
The Euler-Lagrange Equations (131) and (132) yield the continuity equation

1
c2

∂

∂t

(
ρ

∂θ

∂t

)
−∇ · (ρ∇θ) = 0 (A316)

and the quantum Hamilton-Jacobi (or Bernoulli) equation

1
2c2

(
∂θ

∂t

)2
− 1

2
(∇θ)2 − Q

m
−V′tot(ρ) = 0, (A317)

with the quantum potential

Q ≡ h̄2

2m
�
√

ρ
√

ρ
=

h̄2

4ρmc2
∂2ρ

∂t2 −
h̄2

8ρ2mc2

(
∂ρ

∂t

)2
− h̄2

4ρm
∆ρ +

h̄2

8ρ2m
(∇ρ)2. (A318)
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According to Equation (136), the pseudo energy and the pseudo velocity are

v0 = v0 = −1
c

∂θ

∂t
, vi = −vi = ∂iθ. (A319)

Recalling that θ = Stot/m, we get

Etot = −
∂Stot

∂t
, v =

∇Stot

m
. (A320)

We also have

J0 =
ρEtot

mc
, J = ρv. (A321)

The continuity Equation (A316) and the quantum Hamilton-Jacobi (or Bernoulli)
Equation (A317) can be rewritten as

∂

∂t

(
ρ

Etot

mc2

)
+∇ · (ρv) = 0 (A322)

and

E2
tot

2m2c2 −
v2

2
− Q

m
−V′tot(ρ) = 0. (A323)

Taking the gradient of Equation (A323), we obtain the Euler equation

Etot

mc2
∂v
∂t

+ (v · ∇)v = − 1
m
∇Q− 1

ρ
∇P. (A324)

In the homogeneous case, the foregoing equations reduce to

L =
h̄2

8ρm2c2

(
dρ

dt

)2
+

1
2c2 ρ

(
dθ

dt

)2
−Vtot(ρ), (A325)

T00 =
h̄2

8ρm2c2

(
dρ

dt

)2
+

1
2c2 ρ

(
dθ

dt

)2
+ Vtot(ρ), (A326)

T0i = 0, (A327)

Tij = δijL, (A328)

d
dt

(
ρ

dθ

dt

)
= 0, (A329)

1
2c2

(
dθ

dt

)2
− Q

m
−V′tot(ρ) = 0, (A330)

with the quantum potential

Q ≡ h̄2

2mc2√ρ

d2√ρ

dt2 =
h̄2

4ρmc2
d2ρ

dt2 −
h̄2

8ρ2mc2

(
dρ

dt

)2
. (A331)
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The energy-momentum tensor is diagonal Tµν = diag(ε, P, P, P). The energy and the
pressure are given by

ε =
h̄2

8ρm2c2

(
dρ

dt

)2
+

1
2c2 ρ

(
dθ

dt

)2
+ Vtot(ρ), (A332)

P =
h̄2

8ρm2c2

(
dρ

dt

)2
+

1
2c2 ρ

(
dθ

dt

)2
−Vtot(ρ). (A333)

To obtain the nonrelativistic limit, we first make the Klein transformation (see
Section 3.5)

mθ = S−mc2t, (A334)

and use Equation (130). We get

L =
h̄2

8ρm2c2

(
∂ρ

∂t

)2
+

ρ

2m2c2

(
∂S
∂t

)2
− ρ

m
∂S
∂t

− h̄2

8ρm2 (∇ρ)2 − ρ

2m2 (∇S)2 −V(ρ), (A335)

J0 = − ρ

mc
∂S
∂t

+ ρc, (A336)

Ji = ρ
∂iS
m

= ρui, (A337)

T00 =
h̄2

8ρm2c2

(
∂ρ

∂t

)2
+

ρ

2m2c2

(
∂S
∂t

)2
+ ρc2 − ρ

m
∂S
∂t

+
h̄2

8ρm2 (∇ρ)2 +
ρ

2m2 (∇S)2 + V(ρ), (A338)

T0i = ρ
∂iS
m

c− ρ

m2c
∂S
∂t

∂iS−
h̄2

4ρm2c
∂ρ

∂t
∂iρ, (A339)

Tij =
h̄2

4ρm2 ∂iρ∂jρ +
ρ

m2 ∂iS∂jS + δijL. (A340)

If take the limit c → +∞ in Equation (A335) we recover Equation (40). If we di-
vide Equation (A336) by c and take the limit c → +∞, we obtain J0/c = ρ leading to
Equation (A276). Equation (A337) is equivalent to Equation (A277). To leading order,
Equation (A338) gives T00 ∼ ρc2. If we subtract the rest mass term cJ0 (see Ref. [145]) and
take the limit c→ +∞ in Equation (A338), we recover Equation (A279). If we multiply or
divide Equation (A339) by c and consider the terms that are independent of c (see Ref. [145])
we get

T0i

c
= ρ

∂iS
m

, (A341)

T0ic = − ρ

m2
∂S
∂t

∂iS−
h̄2

4ρm2
∂ρ

∂t
∂iρ. (A342)
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This returns Equations (A280) and (A281). Equation (A340) returns Equation (A282).
Finally, the continuity Equation (A316) and the quantum Hamilton-Jacobi (or Bernoulli)
Equation (A317) become

− 1
mc2

∂

∂t

(
ρ

∂S
∂t

)
+

∂ρ

∂t
+∇ ·

(
ρ
∇S
m

)
= 0 (A343)

and

− 1
2mc2

(
∂S
∂t

)2
+

∂S
∂t

+
1

2m
(∇S)2 + Q + mV′(ρ) = 0. (A344)

Using the identities

Stot = S−mc2t, Etot = E + mc2, (A345)

E = −∂S
∂t

, u =
∇S
m

, (A346)

J0 =
ρE
mc

+ ρc, J = ρu, (A347)

they can be rewritten as

1
mc2

∂

∂t
(ρE) +

∂ρ

∂t
+∇ · (ρu) = 0 (A348)

and

− E2

2mc2 − E +
1
2

mu2 + Q + mV′(ρ) = 0. (A349)

Taking the gradient of Equation (A349) we obtain the Euler equation

∂u
∂t

+ (u · ∇)u = −1
ρ
∇P− 1

m
∇Q +

1
2m2c2∇(E2). (A350)

In the limit c→ +∞, we recover Equations (20), (21) and (24).

Notes
1 For simplicity of presentation we ignore the contribution of baryonic matter in the present discussion. We also assume that the

universe is spatially flat in agreement with the inflation paradigm [5] and the measurements of the CMB anisotropies [1,2].
2 SFs have been used in a variety of inflationary models [34] to describe the transition from the exponential (de Sitter) expansion of

the early universe to a decelerated expansion (radiation era). It was therefore natural to try to understand the present acceleration
of the universe, which has an exponential behaviour too, in terms of SFs [35,36]. However, one has to deal now with the opposite
situation, i.e., describing the transition from a decelerated expansion (matter era) to an exponential (de Sitter) expansion.

3 A class of k-essence models [38,39] has been claimed to solve the coincidence problem by linking the onset of DE domination to
the epoch of DM domination.

4 To explain the accelerated expansion taking place today, the universe must be dominated by a fluid of negative pressure violating
the strong energy condition, i.e., P < −ε/3. For a fluid with a linear equation of state P = ωε, where ω is a constant, we
need ω < −1/3 to have an acceleration. But, in that case, c2

s = ωc2 < 0, yielding instabilities at small scales [18]. This is the
usual problem for a fluid description of domain walls (ω = −2ε/3) and cosmic strings (ω = −ε/3). Quintessence models
with a standard kinetic term do not have this problem because the speed of sound is equal to the speed of light [51]. K-essence
models [37–39] with a nonstandard kinetic term are different in this respect [41], but they still have a positive squared speed of
sound (note that cs can exceed the speed of light in that case).

5 Negative pressures arise in different domains of physics such as exchange forces in atoms, stripe states in the quantum Hall
effect, Bose-Einstein condensates with an attractive self-interaction etc.

6 A d-brane is a d-dimensional extended object. For example, a (d = 2)-brane is a membrane. d-branes arise in string theory for
the following reason. Just as the action of a relativistic point particle is proportional to the world line it follows, the action of
a relativistic string is proportional to the area of the sheet that it traces by traveling through spacetime. The close connection
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between a relativistic membrane [(d = 2)-brane] in three spatial dimensions and planar fluid mechanics was known to J.
Goldstone (unpublished) and developed by Hoppe and Bordemann [66,70] (the Chaplygin equation of state P = −A/ρ appears
explicitly in [66] and the Born-Infeld Lagrangian associated with the action of a membrane appears explicitly in [70]). These
results were generalized to arbitrary d-branes by Jackiw and Polychronakos [58]. The same Lagrangian appears as the leading
term in Sundrum’s [75] effective field theory approach to large extra dimensions. The Born-Infeld Lagrangian can be viewed as a
k-essence Lagrangian involving a nonstandard kinetic term. The Chaplygin equation of state is obtained from the stress-energy
tensor Tµν derived from this Lagrangian. Therefore, the Chaplygin gas is the hydrodynamical description of a SF with the
Born-Infeld Lagrangian. A more general k-essence model is the string theory inspired tachyon Lagrangian with a potential V(θ)
[76–87]. It can be shown that every tachyon condensate model can be interpreted as a 3 + 1 brane moving in a 4 + 1 bulk [88,89].
The Born-Infeld Lagrangian is recovered when V(θ) is replaced by a constant [81].

7 This generalization was mentioned by Kamenshchik et al. [50], Bilic et al. [71] and Gorini et al. [94], and was specifically worked
out by Bento et al. [95]. Equation (7) can be viewed as a polytropic equation of state P = K(ε/c2)γ with a polytropic index
γ = −α and a polytropic constant K = −A. A further generalization of the GCG model has been proposed. It has an equation of
state

P = ωε− A
(ε/c2)α

, (6)

where ω is a constant. This is called the Modified Chaplygin Gas (MCG) model [96]. It can be viewed as the sum of a
linear equation of state and a polytropic equation of state. This generalized polytropic equation of state has been studied in
detail in a cosmological framework in Refs. [97–99]. The potential V(ϕ) of its real SF representation generalizing the result of
Kamenshchik et al. [50] has been determined explicitly in these papers.

8 If a solution to these problems cannot be provided, this would appear as an evidence for an independent origin of DM and DE
(i.e., they are two distinct substances) [103].

9 This procedure is not well-defined mathematically because it yields an infinite additional constant K → +∞. This constant
disappears if we take the gradient of the pressure as in [118]. However, in general, an infinite constant term remains. Therefore,
the above procedure simply suggests a connection between the polytropic and logotropic equations of state, but this connection
is rather subtle.

10 There is no DM and no DE in the logotropic model, just a single dark fluid. Its rest mass density mimics DM and its internal energy
mimics DE [118,119]. In that case, Ωdm,0 represents the constant that appears in the asymptotic expression ε/ε0 ∼ Ωdm,0/a3 of
the energy density versus scale factor relation for a� 1.

11 We could also consider the case of self-gravitating BECs. In that case, one has to introduce a mean field gravitational potential
Φ(r, t) in the GP equation which is produced by the particles themselves through a Poisson equation (see Ref. [126] for more
details).

12 We note that the potential is defined from the pressure up to a term of the form Aρ, where A is a constant. If we add a term Aρ in
the potential V, we do not change the pressure. On the other hand, if we add a constant term C in the potential V, this adds a
term −C in the pressure. However, for nonrelativistic systems, this constant term has no observable effect since only the gradient
of the pressure matters.

13 Similarly, the invariance of the Lagrangian with respect to spatial translation implies the conservation of linear momentum.
In relativity theory, these apparently separate conservation laws are aspects of a single conservation law, that of the energy-
momentum tensor (see Section 3).

14 The variable θ is related to the phase (angle) Θ = S/h̄ of the SF by θ = h̄Θ/m.
15 In our framework, the limit h̄→ 0 corresponds to the TF approximation where the quantum potential can be neglected.
16 The condition V′′ > 0 is necessary for local stablity since c2

s = P′(ρ) = ρV′′(ρ). When the system is subjected to a potential Φ,
the function F determines the relation between the density and the potential at equilibrium (see Section 3.4 of [136]).

17 For that reason, the polytropic equation of state (67) is also called the GCG [95].
18 We stress that ρ is not the rest-mass density ρm = nm (see below). It is only in the nonrelativistic regime c→ +∞ that ρ coincides

with the rest-mass density ρm.
19 The variable θ is related to the phase (angle) Θ = Stot/h̄ of the SF by θ = h̄Θ/m. In the nonrelativistic limit, we shall denote the

variable θ by θNR.
20 The pseudo quadrivelocity vµ does not satisfy vµvµ = c2 so it is not guaranteed to be always timelike. Nevertheless, vµ can be

introduced as a convenient notation.
21 It differs from the pseudo quadrivelocity vµ introduced in Equation (136).
22 We note that

ε =
uµuν

c2 Tµν. (164)
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23 We note that the potential is defined from the pressure up to a term of the form Aρ, where A is a constant. If we add a term
Aρ in the potential V, we do not change the pressure P but we introduce a term 2Aρ in the energy density. On the other hand,
if we add a constant term C in the potential V (cosmological constant), this adds a term −C in the pressure and a term +C in the
energy density.

24 We cannot directly take the limit h̄→ 0 in the KG equation. This is why we have to average over the oscillations. Alternatively,
we can directly take the limit h̄→ 0 in the hydrodynamic equations associated with the KG equation. This is equivalent to the
WKB method.

25 Substituting Equations (17) and (126) into Equation (14), we obtain Stot = S−mc2t which is equivalent to Equation (185).
26 We note that the expression of V(ρ) for an equation of state P(ρ) of type III coincides with the expression of u(ρm) for an

equation of state P(ρm) of type II of the same functional form provided that we make the replacements u→ V and ρm → ρ (see
Appendix F).

27 The true equation of state of a relativistic BEC is given by Equation (331) or (346) corresponding to a polytrope of type III with
index γ = 2 [149,152–156]. However, in order to have a unified terminology throughout the paper, we shall always associate the
polytropic index γ = 2 to a BEC even if this association is not quite correct for models of type I and II in the relativistic regime
(see Appendix H). As explained in Appendix F, all the models coincide in the nonrelativistic limit.

28 The linear equation of state (227) with α = Γ− 1 corresponds to the ultrarelativistic limit of the equation of state (286) associated
with a polytrope of type II with index Γ. Indeed, for a polytrope P = KρΓ

m, Equation (286) yields P ∼ (Γ− 1)ε in the ultrarelativistic
limit. The index Γ = 4/3 corresponds to α = 1/3 (radiation) and the index Γ = 2 corresponds to α = 1 (stiff matter).

29 The linear equation of state (227) with α = (Γ− 1)/(Γ + 1) corresponds to the ultrarelativistic limit of the equation of state (340)
associated with a polytrope of type III with index Γ. Indeed, for a polytrope P = KρΓ, Equation (340) yields P ∼ [(Γ− 1)/(Γ+ 1)]ε
in the ultrarelativistic limit. The index Γ = 2 corresponds to α = 1/3 (radiation) and the index Γ = ∞ corresponds to α = 1
(stiff matter).

30 Equation (264) is similar to the Tsallis free energy density of index q = (1 + α)/(1− α). Comments similar to those following
Equation (248) apply to the present situation.

31 Note that V represents here the total potential including the rest mass term. For brevity, we write V instead of Vtot.
32 K-essence Lagrangians were initially introduced to describe inflation (k-inflation) [40,41]. They were later used to described dark

energy [37–39]. K-essence Lagrangians can also be obtained from a canonical complex SF in the TF limit h̄→ 0 [71,89]. In that
case, the real SF ϕ corresponds to the action (phase) θ of the complex SF (see Section 3.4).

33 Note that the more general Lagrangian (A23) does not conserve the charge (or the boson number).
34 In this Appendix and in Appendices C.2 and C.3, t stands for ct.
35 In a homogeneous universe,
36 The case of a phantom universe is treated in [99].
37 According to Equations (A161) and (A164), the rest-mass energy density (DM) corresponds to a sort of “constant” of integration.
38 We have taken e = 1 so that the charge of the SF coincides with the boson number.
39 For a spatially homogeneous SF, it is shown in Ref. [149] that the TF approximation is equivalent to the fast oscillation

approximation ω � H.
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