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Abstract: A short review of spherically symmetric static regular black holes and spherically symmetric
non-singular cosmological space-time is presented. Several models, including new ones, of regular
black holes are considered. First, a large class of regular black holes having an inner de Sitter
core with the related issue of a Cauchy horizon is investigated. Then, Black Bounce space-times,
where the Cauchy horizon and therefore the related instabilities are absent, are discussed as valid
alternatives to regular black holes with inner de Sitter cores. Friedman–Lemaître–Robertson–Walker
space-times admitting regular bounce solutions are also discussed. In the general analysis concerning
the presence or absence of singularities in the equations of motion, the role of a theorem credited to
Osgood is stressed.
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1. Introduction

As is well known, fundamental achievements in gravity research have recently been
obtained: the first detection of gravitational waves from binary systems of black holes
(BHs) and the “multimessenger” signals obtained from the first observation of the collision
of two relativistic neutron stars [1–4]. Furthermore, the images of BH shadows by the
Event Horizon Telescope have been reproduced (see [5] and references therein) with further
important information about the nature of these astrophysical compact objects. Other
important analyses on ultra-compact stars can be found in [6–10].

The main result of these studies is that the Kerr nature of these compact objects is
confirmed within a small uncertainty. Since the Kerr BH solution is a mathematical vacuum
solution of General Relativity (GR), one may conclude that it might be a good, although
approximate, description of reality, and the possible existence of other compact objects
with horizons may not be ruled out. We should also stress that many conceptual problems
still exist regarding the nature of Kerr BHs, namely, the central singularity problem and
so on. In fact, Kerr BH is the unique vacuum solution of GR and admits a non-physical
singularity. This is a consequence of the GR singularity theorems.

Thus, one needs alternative “stuffs” to avoid the problem: for example, regular black
holes associated with exotic sources in order to bypass GR singularity theorems. We also
should note that regular BHs exist in a vacuum (absence of matter) if one goes beyond GR
in a modified gravity framework.

With regard to this issue, maybe it is necessary to clarify that in our paper, non-
singular space-times are space-times free of curvature divergences. We remind that in GR,
the singularity theorems state that the presence of geodesic incompleteness is associated
with the appearance of physical singularities. For us, the presence of severe pathologies
in the curvature invariants are a sufficient condition to regard the space-times as singular,
being aware that geodesic incompleteness and curvature singularities might be, in some
cases, not equivalent concepts.
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In our paper, we discuss several aspects of regular black holes, namely, BHs where the
central singularity is absent due to the presence of a de Sitter (dS) core or the presence of a
fundamental length.

With regard to this, we first analyze a class of solutions with a delta-regularized source.
These solutions are interesting since they present Schwarzschild-like behaviour at large
distances, and for suitable choices of parameters, the horizons (event and Cauchy horizons)
may be absent. The related metrics are asymptotically flat. In the BH case, however, the
regular behaviour of the metric is not a sufficient condition to avoid singularities in the
curvature invariants and their derivatives. Thus, we discuss the Sakarov criterion, which
allows us to identify a restricted class of regular BH solutions for which the scalar invariants
and their covariant derivatives are everywhere bounded.

Furthermore, in general in the BH case, the presence of a dS core also brings the exis-
tence of an inner Cauchy horizon, which may lead to some instability. In this respect, a class
of alternative BHs is given by Black Bounce space-times, metrics which are asymptotically
flat and for which the Cauchy horizon is absent. For these metrics, the central singularity is
absent thanks to the introduction of a minimal length scale in the metric components.

We also show how various BHs can be recovered in the framework of regularized
Lovelock Lagrangians, a class of Lagrangians that have been an object of recent interest.

Finally, we give attention to non-singular cosmological models, investigating the
absence of singularities in cosmology with some general considerations of the proprieties
of field equations of the theories under investigation.

The paper is organized as follows. In Section 2, we revisit the formalism of Spherically
Symmetric (SS) space-time and focus our attention on static black hole and wormhole
(WH) solutions. In Section 3, we discuss a special class of black holes with an inner de
Sitter core in the presence of a delta-like regularized source, and some applications of
the covariant Sakarov Criterion. In Section 4, alternative black holes described by Black
Bounce space-time are analysed as valid alternatives to non-singular black holes without
Cauchy horizons. In Section 5, black holes in four-dimensional regularized Lovelock
Lagrangians are discussed, while Section 6 is devoted to cosmological models free of space-
time singularity. Conclusions and final remarks are given in Section 7, and Appendix A
reports additional material on Painlevè gauge and its application to Hawking radiation
regarding generic static BHs and WHs.

In our convention, the speed of light c = 1 and the Newton Constant GN = 1; thus,
the Planck mass is M2

Pl = 1/8π. We also adopt the “mostly plus” metric convention.

2. Black Holes and Wormholes in Static Spherical Symmetric Space-Time

Here, we recall the Kodama–Hayward invariant formalism (see, for example, [11–14])
for a generic four-dimensional Spherical Symmetric Space-time (SSS). The related met-
ric reads

ds2 = γabdxadxb + r(xa)2dS2 , (1)

where dS2 is the metric of a two-dimensional sphere, γab is the metric tensor of the two-
dimensional space-time (the normal metric) with coordinates xa , a = 0, 1, and r ≡ r(xa)
is the areal radius and is a scalar quantity that depends on the coordinates of the normal
space-time. Another relevant scalar, related to the variation of a surface with radius r, is
given by

χ(xa) = γab∂ar∂br , (2)

which defines a (dynamical) trapping horizon by

χ(xH) = 0 , ∂aχ(xH) > 0 , a = 0, 1 . (3)
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The second condition is required in order to preserve the metric signature out of the horizon.
A related scalar quantity is the Hayward surface gravity,

κH =
1

2
√
−γ

∂a

(√
−γγab∂br

)
H

, (4)

where γ is the determinant of the two-metric γab, and the pedex ‘H′ denotes a quantity
evaluated on the horizon.

Finally, the Kodama vector is

Ka =
εab
√
−γ

∂ar , (5)

where εab is the volume-form associated with the two-metric γab. The Kodama vector is
orthogonal to the normal space-time and is covariant conserved in a generic SS space-time,
namely

∇µKµ = 0 . (6)

Note that
√
−γ has to be well-defined such that −γ > 0.

2.1. The Static Case

The Static SSS case is well understood and investigated. In the Schwarzschild gauge,
the metric reads

ds2 = −A(r)dt2 +
dr2

B(r)
+ r2dS2 , (7)

where A ≡ A(r) and B ≡ B(r) are metric functions of the radial coordinate r only. In what
follows, we denote with the prime index the derivative with respect to r.

Note that the determinant of the metric g is given by
√−g =

√
A(r)
B(r) r2, such that

A(r)
B(r) > 0. The invariant quantity χ ≡ χ(xa) and the Kodama vector are well defined
and read

χ = B(r) , Kµ =

(√
B(r)
A(r)

, 0, 0, 0

)
. (8)

The Kodama energy ω associated with a test particle with four-momentum pµ = ∂µ I, I
being the action is given by

ω = −Kµ pµ =

√
B
A

E , (9)

where E = −∂t I is the test-particle Killing energy.
Black holes and wormholes possess a trapping (event) horizon with χH = 0. If

A(rH) = B(rH) = 0, one has a BH. If B(rH) = 0, but A(rH) 6= 0, one has to deal with a
WH [15–24]. If χ is never vanishing, one obtains an horizonless compact object (HCO) .

The Kodama vector may provide an invariant way to distinguish between BHs and
WHs [25]. In the Schwarzschild static gauge, the trapping horizon is defined by

B(rH) = 0 . (10)

Thus, we may define a static black hole as a SSS solution where the Kodama energy in
(9) evaluated on the horizon is not vanishing (see also Appendix A for a derivation of the
Hawking temperature). This is the case for a black hole where A(r) is proportional to B(r),
and A(rH) = 0 , A′(rH) > 0 (event horizon).

The Hayward surface gravity associated with a trapping horizon is

κH =
B′(rH)

2
. (11)
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In the static case, one can define a time-like Killing vector field with an associated Killing
surface gravity,

κK
H =

√
B′(rH)A′(rH)

2
. (12)

In general, the Killing surface gravity differs from the Hayward surface gravity due to a
different renormalization of the Killing vector with respect to the Kodama vector. However,
for most known BHs, A(r) = B(r), and they coincide.

We recall that if A(r) 6= 0, in particular on the horizon, one has a static regular
wormhole a la Morris–Thorne. Thus, ωH is vanishing. The Hayward surface gravity

κH =
B′(rH)

4
, (13)

implies a minimum value rH for r, the throat or mouth of a traversable wormhole (κH > 0),
such that r > rH . Moreover, if A(r) is vanishing at some point, one has singular WHs. A
well-known example is the Brans–Dicke WH [26–33].

Another interesting example is given by a variant of the Damour and Solodhukin
metric [34],

ds2 = −
(

1− 2m
r

)
dt2 +

dr2(
1− 2m+b2r

r

) + r2dS2 , (14)

where m is a mass parameter, and b2 is a dimensionless arbitrarily small parameter. Here,
rH = 2m

1−b2 , but A(rH) = b2 > 0, and the Kodama energy vanishes on the throat, namely,
ωH = 0, and we are describing a static wormhole. Since r > rH , the singularity r = 0 is
not present.

Static WHs are non-singular objects, but in General Relativity, they can be obtained
only in the presence of a source of exotic matter that violates the energy conditions, and
they are generally unstable (see also the recent work in [35], where vacuum WH solutions
are found in the presence of trace anomaly contributions).

2.2. Effective Fluid Models in General Relativity

The simplest way to go beyond GR is to consider Einstein’s equations in the presence
of effective relativistic anisotropic fluids. Einstein’s equations are

Gµν = 8πTµν , (15)

with
Tµν = (ρ + pT)uµuν + pT gµν + (pr − pT)CµCν , (16)

where uµuµ = −1 is a time-like vector, and CµCµ = 1 is the anisotropy space-like vector.
Moreover, ρ is the energy density of fluid, pr is the radial pressure, and pT is the trasversal
pressure. Equations of motion read

rB′ + B− 1 = −8πr2ρ , (17)

A′

A
− B′

B
=

8πr(ρ + pr)

B
. (18)

The Tolman–Oppenheimer–Volkov equation leads to

p′r +
ρ + pr

2
A′

A
=

2(pT − pr)

r
. (19)

In principle, given the energy density ρ, the metric function B(r) is computable. Chosing
the fluid Equation of State (EoS) pr = pr(ρ), the metric function A(r) is also computable.
Finally, the Tolman–Oppenheimer–Volkov equation gives the form of pT . Alternatively,
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choosing A(r) and B(r), ρ, pr, pT are computable, and we can reconstruct the fluid that
supports a given SSS metric.

3. Regular Black Hole Solutions with Inner de Sitter Core

Since space-time singularities are very problematic to treat, a lot of investigations have
been carried out on non-singular black hole solutions, where the central singularity that
characterizes the Schwarzschild metric is removed and substituted with a De Sitter core.
The resulting solution is a non-vacuum solution of Einstein’s equations. Explicit examples
have been provided by Bardeen, Hayward and many others (for a partial list see [36–54]
and references therein). Other related results can be found in [55–57].

Since on a BH horizon, the conditions A(r) = 0 and B(r) = 0 must be satisfied for the
same value of r = rH , a direct consequence of Equations (17) and (18) is that pH = −ρH .
Thus, a simple way to obtain non-vacuum BH solutions is given by the generalization of
this condition, namely, one assumes the EoS p = −ρ such that A(r) = B(r). Furthermore,
it is convenient to write the metric functions in the form

A(r) = B(r) = 1− 2m(r)
r

, (20)

where m ≡ m(r) is a mass function depending on r. For m(r) = m, one gets the
Schwarzschild solution. The Ricci scalar reads

R =
2
r2 (1− A(r))− 4

A′(r)
r
− A′′(r) =

4m′(r)
r2 + 2

m′′(r)
r

, (21)

while the other curvature invariants are

RµνRµν = 8
m′(r)2

r4 + 2
m′′(r)2

r2 , (22)

RµναβRµναβ = 48
m(r)2

r6 + O
(

m′′(r)2

r2 ,
m′(r)

r2

)
. (23)

As a result, for r → 0, in order to avoid the central singularity, one has to take m(r) =
r3C + O(r4), m′(r) = 3r2C + O(r3), m′′(r) = 6rC + O(r2), and C being a constant, and the
curvature invariants are finite at r = 0. In this way, one gets small values of r,

A(r) = 1− 2Cr2 + . . . (24)

This is the so-called Sakarov Criterion: an interior de Sitter core leads to a BH with finite
curvature invariants. Related to this is the Limiting Curvature Conjecture (see [58–60] and
references therein).

A very popular example is given by a Poisson–Israel–Hayward BH [38]:

A(r) = B(r) = 1− 2mr2

r3 + `3 , (25)

and

A(r) = B(r) = 1− 2mr2

r3 + `2m
, (26)

where m and ` are constants. The metric exhibits a de Sitter core for small values of r, while
for large values of r, one recovers the behaviour of Schwarzschild space-time. In order to
deal with a BH, the mass m has to satisfy the inequality m > mc = 33/2`/4. For m < mc,
there is not a horizon, and one has a simple example of a horizonless compact object (HCO),
very similar to the Gravastar of Mazur–Mottola, which is characterized by a dS core with a
stiff matter shell (interior) and Schwarschild behaviour at large distances (exterior).
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Unfortunately, solutions with A(r) = B(r) and a dS core suffer two problems. The
first one is that the square of the radial speed of sound v2

s is negative, a possible signal of
instability. This is a direct consequence of the fact that pr = −ρ. Thus, v2

s = dpr
dρ = −1 < 0.

The second problem is related to the presence of an inner Cauchy horizon with
associated instability related to mass inflation [61] and kink instability [62]. Mass inflation
is the result of the exponential growth of the mass parameter of the solution due to the
crossflow of infalling and outgoing radiation perturbations, and it is strictly connected to
the presence of a Cauchy horizon (see the recent papers and references therein [63,64]).
Moreover, regarding the mass inflation issue, see also [65–67], and [68] for quadratic gravity.

Very recently, Visser and co-workers [52] constructed a regular BH with a dS inner core
that was asymptotically flat, working in the Schwarzschild gauge (7) with metric functions
A(r) = B(r) such that

A(r) =
(r− rH)(r− rC)c3

N(r)
, (27)

with rC < rH , and N(r) a suitable function such that there exists a dS core, and A(r) =
1− 2M

r + . . . for large values of r. There are two horizons, the event horizon at r = rH and
a Cauchy horizon at r = rC, which is, however, a triple zero of A(r). As a consequence, the
surface gravity associated with it is vanishing and the mass inflation is absent. This result
has some similarities with the absence of mass inflation in higher-order derivative gravity
obtained in [68].

3.1. Regular Black Holes with Delta-like Regularized Sources

Among regular BHs with de Sitter cores, there exists a specific class we are going to
discuss. The main idea, well-justified by physical considerations, is to deal with densities
that are related to regularization of Dirac delta distribution in spatial dimension D = 3.

With regard to this issue, we recall that if we have an even integrable positive function,
namely f (−~x) = f (~x), f (~x) > 0, and with∫

R3
d~x f (~x) = C < ∞ , (28)

then,

lim
ε→0

1
Cε3 f

(
~x
ε

)
= δ(~x) . (29)

Let us use the Schwarzschild gauge (7) and now take the simple EoS p = −ρ such that
A(r) = B(r), as previously discussed. We assume the form (20) for our metric functions.
Moreover, we take as density

ρ =
M

Cε3 f
( r

ε

)
. (30)

Here f (r) is an even integrable positive function which satisfies (28), M is a mass param-
eter, and ε is the regularization parameter, such that ρ is a delta-like regularized energy
density source.

By using (17), the mass function results are defined as

m(r) = 4π
∫ r

0
dyy2ρ(y) . (31)

Now it is convenient to introduce a new function g(r), dubbed “g-function”, defined by
2m(r) = r3g(r). Then, one has

g(r) =
8π

r3

∫ r

0
dyy2ρ(y) , A(r) = B(r) = 1− r2g(r) . (32)
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Therefore, the g-function associated with a delta-regularized density

g(r) =
8π

r3

∫ r

0
dyy2 M

Cε3 f
(y

ε

)
, (33)

namely,

g(r) =
8πM
Cr3

∫ r/ε

0
dyy2 f (y) . (34)

It is easy to show that one recovers the Schwarzschild limit for large values of r, namely,
r2gG = 2M

r + O(1/r). In order to obtain a (hyper) dS core for a small r, one has to assume
smooth behaviour for f (r) at r = 0, namely, f (r) ' ra(c0 + c1r + . . .) , a > 0 and c0,1,... are
constants. Thus,

g(r) ' 8πMra

(3 + a)Cε3+a (c0 + O(r)) . (35)

For a = 0, one has a dS core. Moreover, since A(r = 0) = 1 and A(r → ∞) = 1, an even
number of zeros exist. For example, according to the values of parameters ε, a and M, there
are two horizons or no horizons. Let us see some examples.

As a first example, one may take the family of the well-known Gaussian delta-like
generating functions f (~x) = |~x|ae−~x

2
with a a non-negative real number. Then,

Ca ≡
∫ ∞

0
ra+2e−r2

dr = 2πΓ
(

3 + a
2

)
, (36)

where Γ(α) is the Gamma function, the related energy density is well-defined, and there is
a dS core,

ρG =
M

Caε3

( r
ε

)a
e−

r2

ε2 . (37)

In fact, the associated g-function reads

gG(r) =
2M

Γ
( 3+a

2
)
r3

γ

(
3 + a

2
,

r2

ε2

)
, (38)

where now γ(α, z) is the (lower) incomplete Gamma function. For example, for a = 1, one
simply obtains

gG(r) =
M
r3

(
1− e−

r2

ε2

(
1 +

r2

ε2

))
. (39)

We can check the presence of a dS core for small r when gG(r) in (38) assumes the form

gG(r) '
2M

Γ( 3+a
2 )

ra

εa+3

(
co + c1

r2

ε2 + c2 +
r4

ε4 + . . .
)

, (40)

with c0,1,2,... constant coefficients depending on a. In the case of a = 1, one has

gG(r) '
Mr
ε4 . (41)

For a = 0, the related BH has been discussed in [41].
Another class of regular BHs may be constructed by making use of the other well-

known delta-generating function, the Lorentzian, namely, f (~x) = |~x|a
(x2+1)N/2 , where a is a

real number, and N is a natural number. The integrability in D = 3 requires N > 3 + a > 0,
and we take a > 0. The normalization constant results in

CN = 4π
∫ ∞

0

r2+a

(r2 + 1)N/2 dr = 2πΓ
(

3 + a
2

)
Γ(N−3−a

3 )

Γ(N/2)
. (42)
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The associated energy density is

ρN =
M
CN

εN−3−a

(r2 + ε2)N/2 . (43)

The related g-function reads

gN(r) =
8πM
CNr3

∫ r/ε

0

y2+a

(y2 + 1)N/2 dy =
8πMε−a−3

cN(3 + a)
raF
(

3 + a
2

,
N
2

;
5 + a

2
,− r2

ε2

)
, (44)

where F(α, β; γ, z) is the Gauss hypergeometric function. For general N > 3 + a, it is easy
to show that for a small r, there is a dS core,

gN(r) '
8πMε−a−3

CN(3 + a)
ra
(

1− (3 + a)N
2a + 10

r2

ε2 + O(r4)

)
. (45)

On the other hand, for large values of r, one has r2gN(r) = 2M
r + . . ., and M can be

identified with the BH mass.
Let us consider some specific values for N and a. We start with a = 0, N = 4, such that

g4(r) =
4M
πr3

(
arctan

( r
ε

)
− εr

r2 + ε2

)
. (46)

This corresponds to a BH discussed by Dymnikova [40].
The next example is N = 5, a = 0. With this choice, one has

g5(r) =
M

(r2 + ε2)3/2 . (47)

This corresponds to the well-known Bardeen BH [36].
Of course, one may continue, and for N = 6, a = 0, we get

g6(r) =
4M
πr3

(
arctan

r
ε
− εr(r2 − ε2

(r2 + ε2)2

)
. (48)

The cases N = 7, 8, 9, a = 0 present no difficulties.
We conclude this subsection with two other examples. The first example is related to

the following choice:

f (~x) =
3

(1 + |~x|3)2 . (49)

The normalization constant is C = 4π, and the g-function turns out to be

g(r) =
24πM

Cr3

∫ r/ε

0
dy

y2

(1 + y3)2 . (50)

Thus,

g(r) =
2M

r3 + ε3 , (51)

which corresponds to Poisson–Israel–Hayward BH in (25) and (26).
For the second example, we take

f (~x) =
3

(1 + |~x|)4 . (52)
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The normalization constant is C = 4π, and the g-function reads

g(r) =
24πM

Cr3

∫ r/ε

0
dy

y2

(1 + y)4 . (53)

Thus,

g(r) =
2M

(r + ε)3 , (54)

associated with a regular BH investigated by Fan and Wang [51].
With respect to the validity and violation of the several energy conditions associated

with these regular BHs, a detailed discussion can be found in a recent paper by Maeda [69].

3.2. GR Coupled with Non-Linear Electrodynamics

For sake of completeness, in the following, we shortly describe regular BH solutions
with an inner dS core that may be obtained coupling GR with Non-Linear Electrodynamics
(NLE) [37]. We follow [48]. However, for a recent critical discussion concerning this
approach, see [70], in which further references can be found.

The NED gravitational model is based on the following action:

S =
∫

d4x
√
−g(

R
2
− 2Λ−L (I)) , (55)

where R is the Ricci scalar, Λ is a cosmological constant, and I = 1
4 FµνFµν is an

electromagnetic-like tensor, with L (I) a suitable function of it. Recall that Fµν = ∂µ Aν −
∂ν Aµ. We will only deal with gauge invariant quantities, and we put Λ = 0 because its
contribution can be easily restored. The equations of motion read

Gν
µ = −Fαν∂L Fµα +L δν

µ (56)

∇µ(Fµν∂IL ) = 0 . (57)

Another equivalent approach is called the dual P approach, and it is based on two new
gauge invariant quantities

Pµν ≡ Fµν(∂IL (I)) , P ≡ 1
4

PµνPµν , (58)

and
H ≡ 2I(∂IL (I))−L (I) , (59)

∇µPµν = 0 . (60)

In the following, we make use only of the traditional approach based on Equations (56)
and (57).

Within the static spherically symmetric ansatz and from (57), one has

∂r

(
r2∂IL F0r

)
= 0 , (61)

Since I = 1
2 F0rF0r = − 1

2 F2
0r, one gets

r2∂IL =
Q√
−2I

, (62)

where Q is a constant of integration. As a result, within this NED approach, one may
solve the generalized Maxwell equation. We make use of this equation and the the (t,t)
component of the Einstein equation, which reads

Gt
t =

r f ′ + f − 1
r2 = 8π(−2I∂IL +L ) = −8πρ . (63)
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Introducing the more convenient quantity X

X = Q
√
−2I , (64)

one may rewrite Equation (62) as
r2∂XL = 1 . (65)

Furthermore, we have

ρ = X∂XL −L =
X
r2 −L . (66)

Thus, when L (X) is given, then, making use of (62), one may obtain ρ = ρ(r).
As an example of this direct approach, let us investigate the following class of

NED models

L (X) =
1

αγ

(
(1− γ

2
X2)α − 1

)
, ∂XL = −X(1− γ

2
X2)α−1 . (67)

in which α and γ are two parameters. Note that for small γ, one has the Maxwell La-
grangian.

Let us show that for γ not vanishing, we may obtained specific exact black hole
solutions. In fact, from (67), one gets

(1− γ

2
X2)−2α+2 = r4X2 . (68)

Again, for α = 1, one has the usual Maxwell case. Thus, we consider α 6= 1.
The choice α = 1

2 leads the to well-known Einstein–Born–Infeld case. With this choice,
one has

X2 =
1

r4 + γ
2

. (69)

This means that the static electric field is regular at r = 0, similar to the Born–Infeld model.
Furthermore, since

L = − 2
γ

(
1 + r2X

)
, (70)

the effective density reads

r2ρ(r) =
2r2

γ
+

2
√

r4 + γ
2

γ
. (71)

In order for this object to satisfy the Weak Energy Condition (WEC), it is necessary to
require γ > 0, since ρ is ill-defined in the limit γ → 0, and no solution associated with a
vanishing electromagnetic field might exist. However, since γ is an external parameter and
not an integration constant, there is no trouble fixing it to be positive, so that the Lagrangian
(67) satisfies the WEC.

When γ > 0, the solution is

A(r) = 1− 8π

r

∫ r

0
r2

1ρ(r1)dr1 , (72)

and may be expressed in terms of an Elliptic function, but it is easy to show there is no
strictly de Sitter core for r → 0

lim
r→0

r2ρ(r) =
√

2/γ +
2r2

γ
+ O(r4) . (73)

The presence of the non-vanishing constant
√

2/γ means that a conical singularity is present.
As a last example, let us consider the generalized Maxwell Lagrangian
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L (X) = − 1
ξ2

(√
b−
√

X
)2

, b =
a

4πξ2 , (74)

with a and ξ given parameters. One easily gets

√
X =

√
br2

r2 + ξ2 , ρ =
b

r2 + ξ2 . (75)

Here, the WEC is satisfied as long as b is positive. However, in this case also, b is just
an external parameter; its being positive rests on the condition a ≥ 0, but this is a safe
condition, since we are allowed to impose it into the Lagrangian.

For this model, one has no conical singularity in the origin, namely, a de Sitter core,
and the particular solution reads

A(r) = 1− 2a
ξ2 +

2a
ξr

arctan(
r
ξ
) . (76)

However, this solution is not asymptotically Minkoskian.

3.3. The Covariant Sakarov Criterion

Let us work in a generic SS space-time. We have already remarked that the areal radius
r is a scalar quantity, as well as χ = γab∂ar∂br in (2). Thus, one may introduce another
invariant,

Z =
1− χ

r2 . (77)

In [48], the authors propose a so-called Sakarov (covariant) Criterion, which states that a
sufficient condition to deal with a generic non-singular SS is to assume Z and its covariant
derivatives are uniformly bounded everywhere. In the static case for small values of r
and in the the Schwarzschild gauge with A(r) = B(r), this leads to A(r) = 1 + cr2 + . . .,
namely, to the existence of a dS core. We have already observed that this condition renders
the curvature invariants finite at r = 0.

We observe that in SSS space-time where χ = B(r), Z is nothing other than the
g-function (32). Then, by assuming a power series expansion in r, we get

Z(r) = g(r) =
∞

∑
0

gnrn = g0 + g1r + g2r2 + g3r3 + . . . . (78)

For the sake of simplicity, we consider here only the presence of a dS core, namely, g0 6= 0.
Furthermore, in order to have an asymptotically flat SSS, for large r, we know one has to
assume

g(r → ∞) =
2M
r3 . (79)

One may further test the regularity of the SSS solution, checking the regularity of other
invariants associated with Z. All the invariants built with the contractions of the four-vector
∇µZ must be regular at r = 0. Let us consider the invariant Z1 = gµν∇µ∇νZ, namely, the
d’Alambertian of Z. One has (here, A(r) = B(r))

Z1 =
2g′(r)

r
− 2rg(r)g′(r) + A′(r)g′(r) + A(r)g′′(r) =

2g′(r)
r

+ Z12 . (80)

Here Z12 is a smooth function of r. The first term reads

2g′(r)
r

=
2g1

r
+ 4g2 + 6g3r + . . . (81)

As a result, one has to deal with g1 = 0; thus, the scalar Z1 is uniformly bounded for every r.
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We can continue, considering the invariant Z2 = gµν∇µ∇νZ1, and we get

Z2 = −2g′(r)
r

+ Z22 . (82)

Here Z22 is a smooth function of r, while the first term reads

− 2g′(r)
r

= 6g3r + O(r) . (83)

As a result, if we require the scalar Z2 to be uniformly bounded for every r, one should assume

g3 = 0 . (84)

Continuing in this way, requiring Zn = (gµν∇µ∇ν)nZ to be uniformly bounded for every
r, it follows that g2n+1 = 0, namely, g(−r) = g(r). This result is in agreement with the one
obtained recently in [71]. Thus, a BH admitting a dS core is regular only if the g-function is
an even function of r.

Let us consider some explicit examples. The well-known Hayward BH (26) does not
fulfil this requirement, as has also been stressed in [71], where other BH examples have
been investigated.

In our example of delta-like regularized BHs (38), one has to take a as an even number
(see (40)). Thus, the relate g-functions are even functions in r. For example, Bardeen and
Dynmikova BHs belong to this class of regular BHs.

Finally, we mention the class of regular BHs, the one with an inner Minkowsky core,
recently re-proposed by Simpson and Visser [72–76]. In the Schwarzschild gauge, the
metric reads

ds2 = −
(

1− 2me−`/r

r

)
dt2 +

dr2(
1− 2me−`/r

r

) + r2dS2 , (85)

where ` , m are constants. The g-function associated with this class reads

g(r) =
2M
r3 e−

`
r . (86)

When r → 0, all the curvature invariants vanish.
One might think that the further requirement we have stressed to adopt in order to

deal with a regular BH having an inner dS core, namely, g(−r) = g(r), depends on the fact
we are working in the Schwarschild gauge. In fact, for example, performing the coordinate
change r = σ2, one obtains

ds2 = −A(σ2)dt2 +
4σ2dσ2

A(σ2)
+ σ4dS2 . (87)

In this way, all the components of the metric are always even functions of σ, and also
the invariant Z = g(σ2). However, if g(r) is not an even function, the divergences in the
invariant are still present.

At this point, we may take an example, namely, the BH in [51] with

A(r) = B(r) = 1− r2

(r + ε)3 , (88)

such that
g(r) =

1
(r + ε)3 , (89)

is not an even function, and we expect divergence in Z1.
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After the identification r = σ2, we have

g(σ2) =
1

(σ2 + ε)3 . (90)

Now, if we compute the invariant Z1 = gµν∇µ∇νZ, we derive

Z1 =
1

4σ2

(
3

g′(σ2)

σ
+ g′′(σ2)

)
+ O(σ) . (91)

Therefore,

Z1 = − 6
σ2

1
ε4 + O(σ) , (92)

and we see that the result in the Schwarschild gauge is still valid: if g(r) is not even function,
there exists a divergent invariant when r → 0.

4. Alternative Regular Black Holes: Black Bounce Space-Times

These regular space-times have been dubbed “Black Bounce space-times” by Visser
et al. [77–79]. In the examples of static metrics we are going to discuss, no interior dS core
is present, and the central singularity is avoided thanks to the introduction of a minimal
length scale.

The starting point is the following metric

ds2 = −A(r)dt2 +
dr2

A(r)
1

(1− f`(r))
+ r2dΩ2 . (93)

with f`(r) a positive function of r such that f`(r)→ 0 for `→ 0, and f`(r)→ 0 for r → ∞.
Therefore, ` is a small length parameter, for example, on the order of the Planck length.

Since in the Schwarzschild gauge (7), the metric function B(r) is given by

B(r) = A(r)(1− f`(r)) , (94)

it follows that the range of r is restricted by the condition A(r)
B(r) > 0, namely, 0 < f`(r) < 1.

The possible horizons satisfy
A(r)(1− f`(r)) = 0 , (95)

and are located at r = rH , r0 such that

A(rH) = 0 , f`(r0) = 1 . (96)

When r0 is smaller than rH , one has a BH, and r0 is identified with a sort of minimal length
scale for the metric. In the other case, one is dealing with a WH; r0 represents the WH
throat, and rH may also be absent. Note that in general, r0 ≡ r0(`).

Within F(R)-modified gravity models with the on-shell condition F(0) = FR(0) = 0,
an attempt to deal with such BHs has been presented by Bertipagani et al. [68], but in this
case a Cauchy horizon is generically present unless one makes a specific choice for `.

We observe that in the the Eddington–Filkenstein (EF) gauge, one has

ds2 = −A(r)dv2 + 2

√
1

(1− f`(r))
dvdr + r2dΩ2 , (97)

and the singularity at (1− f`(r)) is harmless and may be removed by a suitable change of
coordinates.
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Coming back to the framework of GR in the presence of fluid, the simplest and
physically relevant choice for A(r) is given by

A(r) = 1− C
r

, C = 2m , (98)

where m, as usual, is a constant mass parameter. Thus, making use of Equation (17), the
associated energy density reads

ρ =
f`(r) + (r− C) f ′`(r)

8πr2 . (99)

From Equation (18), one derives

pr = −
f`(r)
8πr2 , (100)

while from Equation (19), we get

pT =
(C/2− r) f ′`(r)

16πr2 . (101)

Thus,

ρ + pr =
(r− C) f ′`(r)

8πr2 . (102)

As a consequence, the Null Energy Condition (NEC) may be violated, but due to the
restrictions 1 > f`(r) > 0, r > r0(`), all the physical quantities and curvature invariants are
bounded. For example, the Ricci curvature is

R = 16πρ +
C f ′`(r)

2r2 . (103)

Let us see some examples of these non-singular BH metrics. The simplest choice for f`(r) is

f`(r) =
`

r
. (104)

This has been used by D’Ambrosio–Rovelli [80,81] and Bertipagani et al. [68]. The static
version of the D’ambrosio– Rovelli solution reads

ds2 = −
(

1− C
r

)
dt2 +

dr2

(1− C/r)(1− `/r)
+ r2dΩ2 . (105)

The Simpson–Visser choice is [77]

f`(r) =
`2

r2 , (106)

with the related metric

ds2 = −
(

1− C
r

)
dt2 +

dr2

(1− C/r)(1− `2/r2)
+ r2dS2 . (107)

In both cases, we have the restriction on r as r > `. The possible horizons are rH = C and
r = `. When ` < C, one has a BH; for ` > C, one is dealing with a WH. These metrics are
regular for ` > 0, namely, r > `, and the singularity in r = 0 is avoided.

In order to remove the coordinate singularity, it is convenient to make use of another
radial coordinate, namely, r =

√
σ2 + `2, with −∞ < σ < +∞. With regard to this new

radial coordinate, the most-natural choice for f` is [77]

f`(r) =
`2

r2 , (108)
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and we get

ds2 = −A(σ)dt2 +
dσ2

A(σ)
+ (σ2 + `2)dΩ2 . (109)

With the choice from (104), the metric reads, in terms of σ,

ds2 = −A(σ)dt2 +
dσ2

A(σ)

(
1 +

`√
σ2 + `2

)
+ (σ2 + `2)dΩ2 . (110)

For a generic metric, one has a regular BH as soon as the function A(σ) and its derivatives
with respect to σ are finite everywhere.

For example, the Simpson–Visser BH (107) assumes the simple form

ds2 = −
(

1− C√
σ2 + `2

)
dt2 +

dσ2(
1− C√

σ2+`2

) + (σ2 + `2)dΩ2 . (111)

The horizon is given by σH =
√

C2 − `2, and for large σ, one gets A(σ) = B(σ) = 1− C
σ −

C`2

2σ3 × . . .
For the D’ambrosio–Rovelli metric (105) one has,

ds2 = −
(

1− C√
σ2 + `2

)
dt2 +

dσ2(
1− C√

σ2+`2

)(1 +
`√

σ2 + `2

)
+ (σ2 + `2)dΩ2 . (112)

The horizon is given by σH =
√

C2 − `2, and for large σ, we have A(σ) = 1− C
σ −

C`2

2σ3 + . . .,

and B(σ) = 1− C+`
σ −

C`2+`3

2σ3 + . . ..
A further example is the Peltola–Kunstetter BH, motivated by Loop Quantum Gravity

(LQG) [82,83]. The related space-time is given by

ds2 = −
(√

1− `2/r2 − C
r

)
dt2 +

dr2(√
1− `2

r2 − C/r
)
(1− `2/r2)

+ r2dS2 , (113)

or, in the free-coordinate singularity form,

ds2 = − (σ− C)√
σ2 + `2

dt2 +
dσ2

(σ−C)√
σ2+`2

+ (σ2 + `2)dΩ2 . (114)

The horizon is located at σH = C, and for large σ, one has A(σ) = B(σ) = 1− C
σ −−

`2

σ2 −
C`2

2σ3 + . . ..
Related to these examples, there is the BH solution found by Modesto within the Loop

Quantum Gravity (LQG) approach (see [46] and references therein).
These metrics are quite interesting examples of regular BHs that are asymptotically flat

and without Cauchy horizons. The issue of their stability can be investigated by studying
the Quasi Normal Modes (QNMs). The other important issue is generalization to the
rotating case. For the Simpson–Visser BH, this has been done, and the result is the Kerr
rotating metric with the new radial

√
σ2 + `2 replacing r [84,85]. With regard to this issue,

the possible physical relevance for these metrics has been subjected to several investigations;
see [8], in which further references can be found.

It should be noted that some of these metrics can be derived by suitable Non-Polynomial
Lagrangian (NPL) (see [48], which also discusses a class of metrics describing regular BHs
without the Cauchy horizon issue).
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5. Black Holes in Four-Dimensional Regularized Lovelock Models

Recently, there has been increasing interest in an approach initiated by Tomozawa [86],
further revisited and extended to flat Friedman–Lemaître–Robertson–Walker (FLRW) cos-
mological models in [87], and recently rediscovered and extended in [88].

Several aspects have been considered in [89,90]. It should be stressed that such a
procedure has been criticized in the literature; see, for example, [91]. However, in [92], one
can find a recent and very complete review, containing a vast bibliography on this issue.

The basic idea is to bypass the Lovelock theorem, which states that the only gravi-
tational theory admitting second-order equations of motion in four dimension (D = 4)
is the Einstein–Hilbert, plus a cosmological constant term. On the other hand, in D > 4,
the so-called Lovelock contributions are possible, and the equations of motion are still
second-order. However, by making use of a suitable regularization procedure, it is possible
to include additional non-trivial Lovelock contributions in D = 4 also.

Let us start with the simplest case. The starting point is the following gravitational
action in the generic dimension D,

I =
∫

dDx
√
−g
(

R− ξ
G

D− 4

)
, (115)

where ξ is real, and G is the Gauss–Bonnet Lovelock contribution, namely,

G = RµναβRµναβ − 4RµνRµν + R2 . (116)

It is well-known that in D = 4, the Gauss–Bonnet is a topological invariant, and it does not
contribute to the equations of motion.

The trick (motivated by dimensional regularization), consists in including the factor
1

D−4 , regularizing the Gauss–Bonnet coupling constant. As a result, evaluating the equa-
tions of motion in a D-dimensional SSS space-time and then taking the limit D → 4, one
has, for four-dimensional SSS space-time (7), the solution [86–88]

A(r) = B(r) = 1− r2

ξ

(
1−

√
1− 8ξm

r3

)
, (117)

where m is an integration constant, and we assume ξ > 0. The solution represents a BH
because A(r) = 0 gives only a positive root,

rH = m +
√

m2 + ξ . (118)

We note that the other root r = m −
√

m2 + ξ is negative when ξ > 0, and there is no
Cauchy horizon. Furthermore, for large values of r, one has A(r) = 1− 2m

r + . . ., and m
can be identified with the mass of the BH.

Finally, there exists a restriction on the values of r, since the solution above is real as
soon as [86]

r > rc = 2(mξ)1/3 . (119)

Therefore, one gets an asymptotic flat BH without the Cauchy horizon problem. One may
take ξ = γm2 with the dimensionless parameter γ << 1. The critical radius becomes
rc = 2m(γ)1/3, and the horizon is located at

rH = m(1 +
√

1 + γ) . (120)

However, also with the above restriction, since the derivatives of A(r) are ill-defined at the
critical radius, if follows that the curvature invariants are ill-defined there, and one is not
dealing with a regular BH.
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This regularization procedure may be generalized to higher-order Lovelock gravity,
including a suitable dimensional-dependent factor in all higher-order Lovelock coupling
constants [93–96]. Again, the starting point is the following gravitational action in D-
dimension,

I =
∫

dDx
√
−g

(
R + ∑

p
apLp

)
, (121)

in which there is no cosmological constant, and the Einstein–Hilbert action leads to ap = 0.
All the other higher-curvature terms may be dimensionally regularized, including a suitable
factor (∏( kD− k))−1 in all higher-order Lovelock coupling constants [93], and Lp are the
related Lovelock higher-curvature invariants.

In the limit D → 4 and in a vacuum, the solution of the regularized EOMs is

C
r3 = ∑

p
cpg(r)p = G(r) , g(r) =

1− A(r)
r2 , (122)

with g(r) a function of r, and C the integration constant of the solution. When the sum is
over a finite number (depending on D), one may determine g(r) by solving an algebraic
equation, and then A(r) is found. In general, the resulting BH solutions are singular. For
example, in GR, G(r) = g(r) = C

r3 , and one has A(r) = 1− C
r . In the Gauss–Bonnet case,

G(g) = g(r)− ξg(r)2, and one finds the regularized Gauss–Bonnet model as discussed
above, since

C
r3 = g(r)− ξg(r)2 , (123)

the solution being

g(r) =
1

2ξ

(
1−

√
1− 4ξC

r3

)
, (124)

and we recover (117) once ξ → ξ/2. However, we may consider an infinite number of
suitable dimensional-regularized Lovelock terms [93,95,96], and if the arbitrary coupling
constants left are properly chosen, the sum may be considered the expansion of a function
G(r) ≡ G(g(r)) within its radius of convergence, and one derives

C
r3 = G(g(r)) g(r) =

1− A(r)
r2 . (125)

As an interesting application within this infinite regularized Lovelock model, we present
two non-trivial examples. The first one is related to the choice

G(g(r)) =
2Mh(r)

(1− ε2h(r)2/3)3/2 , h(r) =
g(r)
2M

, (126)

where ε is an arbitrarily small constant parameter. Thus,

h(r) =
1

(r2 + ε2)3/2 , (127)

and one gets the Bardeen BH,

A(r) = 1− 2Mr2

(r2 + ε2)3/2 . (128)

The second choice is [93,96]

G(g(r)) =
h(r)

1− b3h(r)
, h(r) =

g(r)
2M

, (129)
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where b is a constant. Thus,

h(r) =
1

r3 + b3 , (130)

and one gets the Poisson–Israel BH (25) with b3 = `3 or the Hayward BH (26) with
b3 = `2m. Thus, we have shown that Bardeen and Hayward and other regular BHs may be
also derived as vacuum solutions within this Lagrangian framework.

6. Non-Singular Cosmological Models

In this section, we discuss some non-singular cosmological models. We work within
flat FLRW models whose metric reads

ds2 = −dt2 + a(t)2d~x2 , (131)

where a ≡ a(t) stands for the expansion factor and is a function of the cosmological time
t. Moreover, in what follows, we use the Hubble parameter H ≡ H(t) = ȧ(t)

a(t) , where the
dot is the derivative with respect to time. In GR, the first Friedmann equation and matter
conservation law read

3H2 = 8πρ , (132)

dρ

dt
+ 3H(ω + 1)ρ = 0 , (133)

where ρ , p are the energy density and pressure of matter contents of the Universe, respec-
tively, and we assuming the EoS p = ωρ with the EoS parameter ω constant. As is well
known, matter conservation has a solution ρ = ρ0a−3(1+ω) (ρ0 is the energy density when
a(t) = 1) and if ω 6= −1, these equations lead to the well-known Big Bang (or Big Rip)
singularity when a(t) vanishes.

If we apply the Covariant Sakarov Criterion (see Section 3.3), we have

χ = 1− H2 , Z =
1− χ

r2 = H2 . (134)

Thus, one has to deal with Z and therefore H(t) and its derivatives, and must require them
to be uniformly bounded. In a FLRW Universe, if H and Ḣ are uniformly bounded, then
the space-time is causally geodesically complete (see [97–99] and references therein).

However, in this cosmological framework, we may investigate the absence of singular-
ities working directly on the equations of motion as follows.

Loop Quantum Cosmology (LQC) [100], modified gravity and mimetic gravitational
models [101,102], NPL models [103] amd Lovelock-regularized models [93,95,96] lead to a
first generalized Friedmann equation of the type

3H2 = F(ρ) , (135)

or
G(H2) =

ρ

3
, (136)

where the form of F(ρ) and G(H2) depends on the model under consideration, and the
on-shell are functions of ρ or H2. Moreover, the matter conservation law (133) is still valid.

6.1. The 3H2 = F(ρ) Case

When F(ρ) is a positive or negative function, in general, the Big Bang singularity is
present. This may be understood as a consequence of the Osgood Criterion (OC) (see, for
example, [104]): given y ≡ y(t), if f (y) is never vanishing (always positive or negative)
and one has the initial value problem

ẏ = f (y(t)) y(t0) = y0 , (137)
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then there exists a finite singularity if∫ ∞

y0

dy
f (y)

< ∞ . (138)

In our case from Equations (133) and (135), we get

ρ̇ = −
√

3F(ρ)(1 + ω)ρ , (139)

and if F(ρ) > 0, we do not have any restriction on the range of ρ. We assume ω 6= −1 and
ρ(t0) = ρ0. Now, if

1√
3(1 + ω)

∫ ∞

ρ0

dρ

ρ
√

F(ρ)
< ∞ , (140)

the OC guarantees the existence of a finite-time singularity. For example, the string brane
correction leads to

3H2 = ρ + αρ2 , α > 0 . (141)

Thus, F(ρ) = (ρ + αρ2), no restriction on ρ is a priori present, 1
ρ
√

F(ρ)
is summable, and OC

leads to the existence of a finite-time singularity. One derives the exact solution

ρ =
ρ0

−α + 3
4 (1 + ω)2t2

, (142)

and the related scale factor becomes

a(t) =
(
−α +

9
4
(1 + ω)2t2

) 1
3(1+ω)

. (143)

As a consequence, a(t) is vanishing at t2
s = 4α

3(1+ω)2 , and ρ and H2 diverge there. For α = 0,
we recover the GR case. If ω > −1, the singularity is present at t = 0; otherwise a(t) is
well-defined by replacing (1 + ω)t→ −(1 + ω)(t∗ − t), where t∗ is an integration constant
corresponding to the time of future singularity [105].

The situation changes in the case of Loop Quantum Cosmology (LQC) or other similar
cases. In fact, one has

3H2 = ρ− αρ2 , α > 0 . (144)

Now, since H2 > 0, the OC cannot be applied due to the constraint ρ < 1
α = ρc, and the

exact solution confirms the non-existence of the time singularity, and reads

a(t) = (α +
3
4
(1 + ω)2t2)

1
3(1+ω) . (145)

Here, a(t) is always positive, and ρ and H2 are bounded. Thus, all the curvature invariants
are bounded.

In general, when F(ρ) is not positive definite and admits a (positive) fixed point, one
may argue as follows [101]. Let us rewrite Equation (135) as(

da
dt

)2
=

a2

3
F(ρ(a)) = Y(a) . (146)

We assume that there exists a positive fixed point F(ρ(a∗)) = 0 , a∗ = a(t∗), namely,
Y(a∗) = 0. By expanding Y(a) near this fixed point, we obtain,

Y(a) =
dY(a∗)

da
(a− a∗) . (147)
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Solving the differential equation above, one gets

a(t) = a∗ +
1
4

dY(a∗)
da

t2 . (148)

The chain rule together with the solution of the conservation law (133), ρ = ρ0a−3(1+ω)

lead to

a(t) = a∗ −
(1 + ω)

4
a−(2+3ω)
∗

(
∂F
∂ρ

)
t∗

t2 . (149)

As a result, if
(

∂F
∂ρ

)
t∗
< 0, there is no Big Bang-like singularity.

As a check, in the case of LQC, F(ρ) = ρ − αρ2 with a fixed point ρ(a∗) = 1
α , and(

∂F
∂ρ

)
t∗
= −1, such that there is no Big Bang singularity.

A simple generalization is given by F(ρ) = ρ− αρ2 − βρ3 with α > 0 and β > 0. The
positive fixed point is

ρ(a∗) =
−α +

√
α2 + 4β

2β
, (150)

and (
∂F
∂ρ

)
t∗
= −ρ∗(α + 2βρ∗) < 0 . (151)

Again, no Big Bang singularity is present.

6.2. The G(H2) = ρ
3 Case

As in the previous case, when G(H2) is always positive, the Big Bang-like singularity
is present. In fact, we may again argue as follows. First, taking the derivative with respect
to t of Equation (136) and making use of the matter conservation law (133), one obtains

dH
dt

= −3(1 + ω)

2
G(H2)

GH2(H2)
= Y(H2) , GH2(H2) =

∂G(H2)

∂H2 . (152)

Now, by introducing H2
0 ≡ H2(t0), and if G(H2)

GH2 (H2)
is positive or negative definite,

− 2
3(1 + ω)

∫ ∞

H2
0

dH2 GH2(H2)

G(H2)
< ∞ . (153)

Then, OC says that a finite-time singularity is present. For example, if G(H2) = H2 + ξ2H4

and ξ2 is a positive constant, the OC hypotheses are satisfied and there is singularity.
If G(H2) is not positive definite, then there exists a fixed point H2

∗ for which G(H2
∗) = 0,

and by expanding around the positive fixed point, we get

dG(H2)

dH2 (H2 − H2
∗) =

ρ

3
. (154)

By using the fact that

ρ = − ρ̇

3H(1 + ω)
= − 2

3(1 + ω)

dG(H2)

H2 Ḣ , (155)

we obtain

Ḣ = −9(1 + ω)

2

(
H2 − H2

∗

)
. (156)
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Thus, one has, for small t,

H(t) = H∗ tanh
(

9(1 + ω)

2
H∗t

)
. (157)

From this it follows H2(t) < H2
∗ , and

a(t) =
(

cosh
(

9(1 + ω)

2
H∗t)

)) 2
9(1+ω)

, (158)

namely, the Big Bang singularity is absent.
As an interesting example, let us consider G(H2) = H2 − ξH4, ξ > 0. The fixed point

is H2
∗ =

1
ξ > 0. Thus, there is no Big Bang singularity, in agreement with [87].

This is a quite general result concerning an approximate solution of a generalized
Friedmann equation, since it is a consequence only of the existence of a positive fixed point.
In this case, G(H2) cannot be always positive or negative.

When G(H2) is always positive/negative, a negative/positive fixed point H2
∗ may

exist, formally an imaginary H∗. One may proceed as above, making the expansion around
this fixed point, and for small t , the solution for a(t) is now

a(t) =
(

cos
(

9(1 + ω)

2
|H∗|t)

)) 2
9(1+ω)

. (159)

As a result, a singular cyclic universe is present, in agreement with the numerical results
presented in [92].

We conclude with this remark: As in the static case, we may generalize the Lovelock-
regularized model in D = 4 in the cosmological setting considering an infinite number of
Lovelock contributions. Thus, the first generalized Friedmann equation reads

G(H2) = ∑
p

cp H2p =
ρ

3
, (160)

with G(H2) a suitable function of H2 depending on the coefficients cp (for example,
c0 = 0 , c1 = 1).

An interesting example is given by

G(H2) =
1

2α

(
1−

√
1− 12αH2

)
, (161)

with α > 0, which leads to the LQC-modified equation

3H2 = ρ− αρ2 . (162)

Other examples can be found in [96].

7. Conclusions

In this paper, the problem of singularity in spherically symmetric space-times has
been investigated. Specifically, some aspects of regular BHs and non-singular cosmological
models have been discussed.

We have constructed a class of regular BH solutions in the framework of GR and in the
presence of a delta-like regularized source. The metric components have been expressed
as A(r) = B(r) = 1− r2g(r), namely, via the “g-function” g(r). This category of metrics is
asymptotically flat and show Schwarzschild-like behaviour at large distances. In the case
of regular BHs with a dS core, the central singularity is absent. However, even though all
the curvature invariants are bounded, for the class of models that do not admit an even-
numbered g-function, namely, g(−r) 6= g(r), there exist invariants built with covariant
derivatives that are not bounded when r → 0. This result can be achieved by making
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use of the Sakarov Criterium, which offers a method that permits discrimination between
singularity-free solutions and solutions with singularities.

We may add this remark: Regular BHs for which g(r) is an even function (for example,
the Bardeen BH) admit an extension to negative values of r. As a consequence, the curvature
invariants have singularities only for imaginary values of r. On the other hand, regular
BHs for which g(r) is a non-even function (for example, the Hayward BH) have curvature
singularities for real (negative) values of r. This fact is also related to the determination of
the QNM asymptotics of regular BHs via the monodromy approach (see [106]).

We should note that this first kind of regular BHs may suffer from an instability issue
associated with the presence of the Cauchy inner horizon. In this respect, it has been
noticed that, if the Cauchy horizon surface gravity is vanishing, then Cauchy horizon
instability may be avoided [52,68]. In the model investigated in [68], this is equivalent
to the introduction of a minimal length scale in the metric, for example in the order of
the Planck scale, and the resulting metric falls within the other class of regular BHs, the
so-called Black Bounce space-times.

We have also shown that many regular BH solutions may also be viewed as vacuum
solutions of four-dimensional regularized Lovelock models. As a consequence, there
exist alternative Lagrangian methods, such as the NPL approach [48] and the Lovelock-
regularized approach discussed in this paper, which permit derivation of regular BHs
besides those found using the Non-Linear Electrodynamics approach [89].

In the final part of our work, we have presented a general approach to the problem of
finite-time singularities in flat FLRW space-time cosmological models, making use of the
so-called Osgood Criterion.
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Appendix A. A Note on Painlevè Gauge and Hawking Temperature

When one deals with SSS space-time, it may be convenient to adopt different metric
gauges with respect to the Schwarzschild one. For example, by using the Eddington–
Filkenstein gauge with A(r)

B(r) > 0, we can rewrite the static metric (7) as

ds2 = −A(r)dv2 + 2

√
A(r)
B(r)

dvdr + r2dS2 . (A1)

Here v is the advanced time coordinate, and v = cost represents radial in-going null
geodesics. In this coordinate system, the metric is explicitly non-singular at the BH radius.

Another useful reference system where there is no coordinate singularity at the BH
event horizon is the Painlevè gauge, with

dt = dT −

√
(1− B(r))
A(r)B(r)

dr , (A2)
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such that the metric (7) can be rewritten as

ds2 = −A(r)dT2 + 2

√
A(r)
B(r)

(1− B(r))dTdr + dr2 + r2dS2 , (A3)

and a further restriction is present since B(r) < 1. This means that Painlevè gauge cannot
be extended to all ranges of the radial coordinate r for every SSS metric.

For example, a static Kottler solution with

A(r) = B(r) = 1− 2m
r
− H0r2 , (A4)

where m , H0 are constants, leads to

1− B(r) =
2m
r

+ H2
0r2 > 0 , (A5)

and the metric exists for any value of r. However, if one considers the Schwarzshild Anti-De
Sitter (AdS) BH solution with

B(r) = 1− 2m
r

+ H2
0r2 , (A6)

we get

1− B(r) =
2m
r
− H2

0r2 , (A7)

and there is a restriction on the range of r. The same fact is also present in the Reissner–
Nordström BH solution, where

A(r) = B(r) = 1− 2m
r

+
Q2

r2 , (A8)

where Q is a constant. Thus,

1− B(r) =
2m
r
− Q2

r2 , (A9)

which is not positive-defined for any value of r.
We recall a possible way to deal with this issue [107]. One may introduce a generalized

Painlevè time in (7) as

dT = dt +

√
(1− B(r)g(r))

A(r)B(r)
dr , (A10)

with g(r) > 0 an arbitrary function such that (1− B(r)g(r)) > 0. The associated metric is

ds2 = −A(r)dT2 + 2

√
A(r)
B(r)

(1− g(r)B(r))dTdr + g(r)dr2 + r2dS2 . (A11)

Thus, for a BH with A(r) = B(r) = 1− 2m
r + Z(r), Z(r) > 0, which has a restriction with

the usual Painlevè gauge, one may make the choice G(r) = 1
1+Z(r) , and the (new) metric is

ds2 = −
(

1− 2m
r

+ Z(r)
)

dT2 + 2

√
2m
r

1
(1 + Z(r))

)dTdr +
dr2

1 + Z(r)
+ r2dS2 , (A12)

which is well defined for any value of r. Is it easy to show that all the invariant quantities
do not depend on the positive function g(r).

As an application of the generalized Painlevè gauge, we review the Hawking radiation
for static BHs and WHs, making use of the so-called tunnelling method [82] in its covariant
variant of the Hamilton–Jacobi (HJ) tunnelling method [108].
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We begin with massless test particle action,

I =
∫

γ
∂µ Idxµ , (A13)

where γ represents a path crossing the horizon. The action satisfies the HJ relativistic
equation,

gµν∂µ I∂ν I = 0 . (A14)

Thus, the radial trajectory of a massless particle is given by

γab∂a I∂b I = 0 . (A15)

The relevant two-dimensional normal metric in the generalized Pailevè gauge (A11) reads

dγ2 = −A(r)dT2 − 2Q(r)dTdr + g(r)dr2 , Q(r) =

√
A(r)
B(r)

− g(r)A(r) . (A16)

Introducing the particle energy E = −∂T I, one has

∂r I = − E
A(r)

(Q(r) +
√

Q2(r) + g(r)A(r)) . (A17)

Thus,

I = −E
∫

γ

1
A(r)

(Q(r) +
√
(Q2(r) + g(r)A(r)) dr , (A18)

with the integration variable r crossing the horizon. We remember that the trapping horizon
is located at r = rH with B(rH) = 0 , B′(rH) > 0. First, if we are dealing with a regular
WH, only B(rH) = 0, A(rH) 6= 0, and Q(r) has a integrable singularity at r = rH . Thus, the
action is finite and real. On the other side, in the BH case, A(rH) is also vanishing at the
horizon, and one has

B(r) = B′(rH)(r− rH) + . . . , A(r) = A′(H)(r− rH) + . . . . (A19)

As a consequence, Q(rH) =
√

A′(rH)/B′(rH). One may split the integration over r
and write

I = −E
∫

γ

1
A′(rH)(r− rH + iε)

(Q(r) +
√
(Q2(r) + g(r)A(r))) dr + I1 , (A20)

where I1 is a finite, real contribution, and in the first integral, the horizon divergence is
present and has been cured by deforming the integration in r in a suitable way. As a result,
an imaginary part of the action appears as

ImI =
2πE√

A′(rH)B′(rH)
. (A21)

Since the tunnelling probability is given by

Γ = e−2Im[I] , (A22)

one derives the Hawking radiation formula,

Γ = e
− 4πE√

A′(rH )B′(rH ) , (A23)

with Hawking temperature,

TH =

√
A′(rH)B′(rH)

4π
. (A24)
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It should be noted that the function g(r) does not enter into the final result.
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