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Abstract: Wave data play a critical role in offshore structure design and coastal vulnerability studies.
For various reasons, such as equipment malfunctions, wave data are often incomplete. Despite the
interest in completing the data, few studies have considered constructing a machine learning model
with publicly available wind measurements as input, while wind data from reanalysis models are
commonly used. In this work, ANNs are constructed and tested to fill in missing wave data and
extend the original wave measurements in a basin with limited fetch where wind waves dominate.
Input features for the ANN are obtained from the publicly available Integrated Surface Database (ISD)
maintained by NOAA. The accuracy of the ANNs is also compared to a state-of-the-art reanalysis
wave model, MEDSEA, maintained at Copernicus Marine Service. The results of this study show
that ANNs can accurately fill in missing wave data and also extend beyond the measurement period,
using the wind velocity magnitude and wind direction from nearby weather stations. The MEDSEA
reanalysis data showed greater scatter compared to the reconstructed significant wave heights from
ANN. Specifically, MEDSEA showed a 22% higher HH index for expanding wave data and a 33%
higher HH index for filling in missing wave data points.

Keywords: machine learning; artificial neural network; wind; wind waves; Integrated Surface
Database; wave reanalysis

1. Introduction

Knowledge of significant wave heights at a site is important for the management of
maritime activities [1], the design of floating offshore wind turbines (FOWT) [2], the design
of flood protection measures [3], and coastal vulnerability assessments [4]. For example,
wind energy, which is a clean and efficient renewable energy source [5], could be harvested
with FOWTs [6]. However, FOWTs are exposed to forces such as sea waves and sea currents
that can reduce production and lead to faster fatigue of the exposed marine turbines [7,8].
Therefore, accurate and reliable long-term wave data are of paramount importance to
marine and coastal engineers for structure design [9].

Unfortunately, important long time series of wave measurements are often plagued
with missing data or simply extended periods without conducted measurement cam-
paigns [10]. Wave buoys providing wave climate measurements could be continuously
maintained by various national or international climate monitoring networks (e.g., Span-
ish Harbor Authority [11]) or sporadic wave measurements during certain measurement
campaigns [12].

Several methods are available to fill in missing data or extend wave measurement data,
such as simplified empirical models [12,13] or complex local numerical wave models [14,15],
as well as climate wave reanalysis products [16] or the combination of local numerical
models with regional or global wave reanalysis products through the downscaling proce-
dure [17–19]. Nevertheless, regional or global numerical models are limited by available
computing power, detailed bathymetry data, their complexity, and difficult-to-determine
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coefficients (e.g., white-capping parameters, bottom frictional dissipation, depth-limited
wave breaking, etc.) [20], while the main advantage is that they perform physically based
calculations. To avoid computer resource challenges, reanalysis products often have rel-
atively large numerical cells, but include a complete record of changes in weather and
climate over decades. The size of numerical cells for reanalysis products is typically 0.5◦

× 0.5◦ [21] and 0.25◦ × 0.25◦ [22] for global reanalysis products, or even 1/24◦ × 1/24◦

for regional reanalysis products [23], with a temporal resolution between 1 h and 3 h. This
resolution is not detailed enough for the wind forcing or wave model itself to accurately
represent shallow, enclosed areas bounded by complex topography [23]. For example, the
MEDSEA reanalysis model [23] is the most detailed Copernicus numerical model reanalysis
for the Mediterranean Sea (in both spatial and temporal terms). In reporting the accuracy
of the MEDSEA reanalysis product, Korres, Ravdas [23] still observed low accuracy when
validating the reanalysis data with buoy measurements in well sheltered areas, such as the
Adriatic Sea.

Although not constrained by physical laws, machine learning methods are proving to
be a computationally efficient way to fill in missing wave data. Machine learning models
are capable of mapping complex nonlinear functions between inputs and outputs when
sufficient training data are available [24]. It should be noted that these techniques are used
in many areas of marine and coastal engineering, such as wave forecasting with a lead
time of several hours [1,20,25–27], wave hindcasting from a regional to a local scale [11,28],
wave runup [29], beach sediment transport [30,31], beach nourishment requirements [32],
etc. In addition, machine learning models have been used when data are missing in the
measured wave time series to fill in the missing wave heights [33,34] or to find a mapping
function between multiple nearby wave buoys at nearshore locations [35]. Features used
in the input layer are typically offshore wind measurements at the wave buoy itself [6],
wave measurements of other nearby wave buoys [33,35], or reanalysis sourced model
data [11,20,34,36]. The accuracy and feasibility of machine learning techniques are highly
dependent on the quality and source of input features. Easily accessible input feature data
could promote future use [37].

This study aims to propose a machine learning method, specifically artificial neural
networks (ANNs), that uses publicly available onshore meteorological measurements from
nearby weather stations for filling and extending significant wave heights in a sheltered and
complex topographic case. The meteorological measurements are from NOAA’s publicly
available Integrated Surface Database (ISD) [38–40]. The feasibility of the ANNs is tested
using state-of-the-art regional reanalysis wave data (MEDSEA), which covers the entire
Mediterranean Sea and is maintained at the Copernicus Marine Service. The study area is
in the Adriatic Sea, which has proven to be the most challenging region for MEDSEA. In
addition, we are testing the capability of the ANN to extend the wave time series beyond the
duration of the buoy measurement campaign. It should be noted that the proposed method
of filling in missing wave measurements at sheltered locations is not as computationally
expensive compared to numerical wave modeling when using an established machine
learning model.

This article is organized as follows: Section 2 explains the methodology, Section 3.1
examines the significance of each feature using a univariate feature ranking, Section 3.2
compares machine learning-filled wave data with measured data, and Section 3.3 analyzes
the potential for extending the wave measurements. Sections 4 and 5 provide the discussion
and conclusions of the paper.

2. Materials and Methods
2.1. Study Site

The research area includes the area around Split, Croatia, on the mid-latitude Adriatic
Sea, as shown in Figure 1. The area is complex, with two islands in the southwest (Šolta
and Vis) and four islands in the southeast (Brač, Hvar, Korčula and Lastovo). The wave
buoy measurements were collected off the port of Split (43.48833◦ N, 16.46500◦ E) (shown
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with cyan rectangle in Figure 1). Wind-driven waves dominate on the location of Split, as
the surrounding islands protect the site from offshore swells. Therefore, the local winds
(mainly bora (NE) and scirocco (SE)) dictate the significant wave heights observed at the
wave buoy off Split. This leads to the hypothesis that weather data from surrounding
weather stations, which include the wind velocity magnitudes and wind direction, could
have significant explanatory power to fill in missing data or extend the wave data.
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Figure 1. Map of the study site on the southern coast of Croatia, showing nine weather stations
(circles) and one wave buoy (rectangle), described in detail in Section 2.2.

2.2. Wind and Wave Data

Wave measurements were made using the well-known DATAWELL Waverider DWR
MKIII anchored in cooperation with the Hydrographic Institute of the Republic of Croatia.
The GPS-tracked and anchored Waverider measures wave direction, wave height and peak
period. Figure 2 shows a time series of significant wave heights during the wave buoy
measurement period from November 2007 to November 2008, with a measurement gap
in summer. The wave time series shows a typical year in terms of wave climate. The
hourly significant wave height reached 1.29 m on 6 March 2008, the most extreme value
for this fetch-limited location (Figure 2). During the measurement period of the buoy
site, the average wave height was very low, at 0.21 m (Figure 2). The significant wave
heights measured were predominantly in the range of 0.1 m–0.2 m. Figure 2 shows the
training period (1 November 2007 to 19 June 2008) for the ANN training and fill testing with
missing wave data (separated by red vertical lines). Blue vertical lines separate another
test period for testing the trained ANN for wave measurement extension (8 August 2008 to
15 November 2008). Both periods show prominent energetic events for the region under
study, making them suitable for ANN training and testing.

The ANN method can generally be used to hindcast the significant wave height given
in this study, as well as other wave parameters such as wave period or wave direction.
However, we did not consider the wave period in this paper because we did not have
enough data (only 2 months of wave period measurements for the considered Split site,
from September 2008 to October 2008; see Figure 2).
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Figure 2. Time series of measured significant wave heights at the wave buoy location in front of Split
with indicated period for ANN training and ANN testing for filling missing data (limited by red
vertical lines) and period for ANN testing for wave data extension (limited by blue vertical lines).

Weather observation data from the Integrated Surface Database (ISD) were used as
features in the input layer of the ANN. The ISD is a global database of synoptic observations
compiled from numerous sources and archived and maintained at NOAA [38–40]. The
ISD contains many parameters at hourly intervals, including wind velocity and direction,
temperature, dew point, sea level pressure, etc. In this paper, we extracted the weather
data available in the ISD from weather stations near the location of the wave buoy.

Unfortunately, there are missing data in the weather data obtained from ISD. These
data points are subjected to exploratory data analysis and data cleaning. As a result of the
initial visual analysis, it was determined that some parameters simply do not have data
for the station and time period in question, such as wind gusts, precipitation, etc. These
empty variables are considered useless, and can therefore be discarded. The variables
that provided some data for the weather stations are listed in Table 1 (the locations of the
weather stations are shown in Figure 1). A complete list of weather stations with geographic
details can be found in Table 2.

Table 1. Measured meteorological features obtained from ISD for the 9 locations shown in Figure 1
and Table 2 (items 2–10), which were used as inputs in the artificial neural network.

Feature Name Physical Measure (Units)

temp Air temperature (◦C)
dew Dew point (◦C)

rhum Relative humidity (%)
wdir Wind direction (◦)

wmag Wind magnitude (km/h)
pres Sea-level air pressure (hPa)

The 6 hourly parameters that provide data are still plagued by missing data. If all
‘NaN’ (Not A Number) data points were discarded, too few data points would remain for
ANN training and testing. Therefore, missing data gaps that were less than 5 h long were
filled in by linear interpolation between the bounding known data points for each variable.
If the data gap was longer than 5 h, the data points were simply excluded from further
consideration.

To benchmark the accuracy of the ANN, we used a 27 year wave reanalysis for the
Mediterranean Sea, MEDSEA [23] (maintained and distributed by Copernicus Marine
Service). This wave reanalysis is based on the advanced third generation wave model
WAM Cycle 4.6.2 [14,41]. It explicitly solves the wave transport equations without taking
the form of the wave spectrum. The included source terms were wind input, white-capping
dissipation, nonlinear transmission, and bottom friction. The wind and white-capping dis-
sipation terms were based on Janssen’s quasilinear theory of wind wave generation [42,43],
while the empirical JONSWAP formulation was used for the bottom friction term [44]. The
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numerical model discretized the wave spectra, with 32 frequencies covering a logarithmi-
cally scaled frequency band from 0.04177 Hz to 0.8018 Hz and 24 uniformly distributed
directional bins (bin size of 15 degrees). Winds from the ERA5 reanalysis 10 m above the
sea surface (Copernicus Climate Service—ECMWF) forced the numerical wave model. The
bathymetric map was created using the GEBCO bathymetric dataset [45]. The MEDSEA
reanalysis model provided hourly 2D instantaneous fields (Table 2) with a horizontal
resolution of 1/24◦.

Table 2. The sources of wave and wind data used in the study, with the respective spatial and
temporal resolutions.

Wind Data Type Spatial
Resolution

Temporal
Resolution Location/Region Altitude

MEDSEA Gridded data
(Copernicus) 0.25◦ × 0.25◦ 1 h Regional, extracted at

wave buoy location N/A

Hvar Weather data (ISD) Point data 1 h 43◦ 10′ 15′′ N
16◦ 26′ 14′′ E 20 m

Resnik Weather data (ISD) Point data 1 h 43◦ 32′ 22′′ N
16◦ 18′ 5′′ E 19 m

Split Weather data (ISD) Point data 1 h 43◦ 30′ 30′′ N
16◦ 25′ 35′′ E 122 m

Lastovo Weather data (ISD) Point data 1 h 42◦ 46′ 6′′ N
16◦ 54′ 1′′ E 186 m

Palagruza Weather data (ISD) Point data 1 h 42◦ 23′ 36′′ N
16◦ 15′ 05′′ E 98 m

Komiza Weather data (ISD) Point data 1 h 43◦ 2′ 55′′ N
16◦ 5′ 14′′ E 20 m

Sibenik Weather data (ISD) Point data 1 h 43◦ 43′ 41′′ N
15◦ 54′ 23′′ E 77 m

Ploce Weather data (ISD) Point data 1 h 43◦ 2′ 51′′ N
17◦ 26′ 34′′ E 2 m

Makarska Weather data (ISD) Point data 1 h 43◦ 17′ 16′′ N
17◦ 1′ 12′′ E 50 m

Importantly, the MEDSEA reanalysis incorporates a data assimilation procedure that
uses significant wave heights obtained from altimeters and adjusts the resulting wave
spectrum at each grid point accordingly (originally developed by [46]). This method allows
the reanalysis to achieve higher accuracy compared to the initial ‘first guess’ outputs of the
WAM numerical wave model.

2.3. Artificial Neural Network Training and Model Building Workflow

The ANN building workflow that was used in the paper is summarized in Figure 3,
with corresponding sections for a detailed explanation of the various steps undertaken
during the ANN model building and accuracy testing.

Prior to the training procedure, we randomly flagged 20% of the data points from the
wave time series from 1 November 2007 to 19 June 2008 as “missing” data points (separated
by red vertical lines in Figure 2). These data points were discarded from the training dataset
to avoid data leakage. The remaining 80% of the time series were used for ANN training.
The discarded 20% of data points marked as ‘missing’ were used to test the ability of ANN
to fill in random missing data points in the data (results are shown in Section 3.3). The
wave time series from 8 August 2008 to 15 November 2008 (separated by blue vertical
lines in Figure 2) was used exclusively to test the ability of ANNs to extend the wave time
series to a period outside the training period (results shown in Section 3.4). The input and
response data were preprocessed to improve the efficiency of the ANN training procedure.
Preprocessing included normalizing the inputs and outputs to fall within the range [–1,1]
to avoid the vanishing gradient phenomenon. The question of which weather data features
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should be fed into the ANN was examined using univariate feature ranking (results shown
in Section 3.1).
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The ANN model itself (gray rectangle in Figure 3) is a regular multilayer feed-forward
network, which is commonly used to fit non-linear functions that relate the input data (wind
data from ISD, as described in Section 2.2) to the response data (measured wave data, as
described in Section 2.2) [24]. Each node (blue circle in Figure 4) passes information, starting
from the input layer to the next layer until the output layer [47]. An ANN usually consists
of nodes arranged in an input, multiple hidden layers, and an output layer (Figure 4). In
this paper, the output layer consists of only one node corresponding to the significant wave
height.

Information is passed from the input nodes through the nodes in the hidden layers up
to the output layer using the following formulation (arrows in Figure 4):

hj = f

(
aj +

n

∑
i=1

wixi

)
(1)

where xi are the input features, hj are the responses of the subsequent node, wi are the
weights, aj are the biases, and f is the activation function.

The ANN training process determines the weights and biases in Equation (1) that
connect each node to the nodes in the subsequent layers using the backpropagation algo-
rithm. The algorithm minimizes the difference between the ANN significant wave height
prediction and measurements.. The algorithm used the memory-constrained Broyden–
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Fletcher–Goldfarb–Shanno quasi-Newton algorithm (LBFGS), where the mean square error
(MSE) is the optimization objective for training the weights and biases [48]. The usual 5-fold
cross-validation was performed during training on the training set to minimize overfitting
of the ANN weights and biases to the training data. This paragraph about ANN training is
related to one iteration in the Bayesian optimization process, as shown in Figure 3.
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wave data or extending wave data.

To automate the process to some extent, Bayesian optimization (Figure 3) was used
to find the best possible values for the hyperparameters for ANN training, such as the
activation function, the lambda value for model regularization, and the number and width
of the hidden layers. The Bayesian optimization process trained the ANN’s weights and
biases 200 times with varying hyperparameters in order to find the best hyperparameter
combination for ANN construction and training. The Bayesian optimization process chose
the smallest mean square error (MSE) to determine the best possible hyperparameter
combination.

2.4. Statistical Error Metrics

The filling and extending capabilities of the trained ANN and the MEDSEA reanalysis
model were examined using the statistical errors metrics. These include the scatter indices
such as HH proposed by Hanna and Heinold [49] and the normalized root mean square
error (NRMSE), and also the common Pearson correlation coefficient (R), along with the
normalized bias (NBIAS). These are described in Equations (2)–(5):

R =

N
∑

i=1

((
Pi − P

)(
Oi −O

))
[(

N
∑

i=1

(
Pi − P

)2
)(

N
∑

i=1

(
Oi −O

)2
)]1/2 (2)
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HH =

√√√√√√√√
N
∑

i=1
(Pi −Oi)

2

N
∑

i=1
PiOi

(3)

NBIAS =
P−O

O
(4)

NRMSE =

√√√√√√√√
N
∑

i=1
(Pi −Oi)

2

N
∑

i=1
Oi

2
(5)

where N is the number of data points examined, Pi and Oi denote the model prediction
and observation, respectively, while the overbar indicates respective mean values.

NRSME has shown unrealistically good accuracy toward predictions, with negative
bias in previous research, so the HH index is generally recommended for quantifying
scattering errors [50]. A high value indicates high scatter, and therefore high error for both
HH and NRMSE indices, and thus a smaller value is preferred.

3. Results

To determine which features of the input dataset are most valuable in constructing an
ANN, a univariate feature ranking is presented in Section 3.1. Depending on the amount of
input data used in the input layer of ANN, three different machine learning models are
created. Next, the machine learning models are trained in Section 3.2 and tested for filling
missing wave data from the wave buoy in Section 3.3. Finally, the same machine learning
models are tested for accuracy in expanding the wave time series outside of the original
training and testing period in Section 3.4. These machine learnings are also benchmarked
against the MEDSEA reanalysis filling and extension capabilities.

3.1. Univariate Feature Ranking

Feature selection consists of determining a subset of input features from all existing
features that show a high explanatory power. In this paper, the F-test was conducted to
perform the feature selection. If the F-test results in a small p-value, then the feature is
significant. Subsequently, all predictors in the ISD dataset were ranked according to their
significance (Figure 5), with the results presented as the negative logarithm of the p-value
(−log(p)). When a p-value is close to zero, the output would be Inf. Therefore, the features
that had an Inf score were colored orange instead of blue and scaled to the largest non-Inf
score that was blue. Overall, a higher score value in Figure 5 means that the corresponding
predictor is more important.

The highest ranked features all related to wind at different weather stations (wind
velocity magnitude and wind direction). In particular, the wind velocity magnitudes at the
weather stations of Hvar, Komiza, Makarska, Split, Resnik and Sibenik are all included in
the top 7, as is the wind direction at Resnik. The wind velocity magnitude features that
performed less well were measured at the Ploce, Lastovo and Palagruza weather stations.
This seems reasonable since these stations are farthest from the location of the wave buoy
(wave buoy and wind station locations shown in Figure 1).

Some weather stations were discarded even though they had high scores because
the number of available data points was still low (Table 3), even after the data cleaning
described in Section 2.2. Stations with available data points below the 95% threshold were
Lastovo, Makarska, Palagruza, and Ploce (Table 3). A small number of data points of input
features would greatly reduce the number of wave height reconstructions possible with a
trained ANN, and is therefore undesirable. Overall, this resulted in the removal of features
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such as wmag_Makarska that had high predictor importance due to a small number of
data points.

Wind 2022, 2, FOR PEER REVIEW 9 
 

 

score that was blue. Overall, a higher score value in Figure 5 means that the corresponding 

predictor is more important. 

The highest ranked features all related to wind at different weather stations (wind 

velocity magnitude and wind direction). In particular, the wind velocity magnitudes at 

the weather stations of Hvar, Komiza, Makarska, Split, Resnik and Sibenik are all included 

in the top 7, as is the wind direction at Resnik. The wind velocity magnitude features that 

performed less well were measured at the Ploce, Lastovo and Palagruza weather stations. 

This seems reasonable since these stations are farthest from the location of the wave buoy 

(wave buoy and wind station locations shown in Figure 1). 

 

Figure 5. Univariate feature ranking of each predictor from the ISD weather database (described in 

Section 2.2) using an F-test; orange bars indicate that the predictor score is actually Inf, but are scaled 

to the largest non-Inf (blue) score. 

Some weather stations were discarded even though they had high scores because the 

number of available data points was still low (Table 3), even after the data cleaning de-

scribed in Section 2.2. Stations with available data points below the 95% threshold were 

Lastovo, Makarska, Palagruza, and Ploce (Table 3). A small number of data points of input 

features would greatly reduce the number of wave height reconstructions possible with a 

trained ANN, and is therefore undesirable. Overall, this resulted in the removal of fea-

tures such as wmag_Makarska that had high predictor importance due to a small number 

of data points. 

Table 3. Wave and wind data sources used in this study with corresponding spatial and temporal 

resolutions. 

Feature Available Data Points 

Hvar 98% 

Komiza 98% 

Lastovo 32% 

Makarska 61% 

Palagruza 16% 

Ploce 61% 

Resnik 99% 

Sibenik 98% 

Split 99% 

In total, three different ANN models were created with a different number of input 

features in the input layer. These three ANN models contained the first available 6, 8, and 

10 ranking features (Table 4). The other features were discarded as unimportant for fur-

ther analysis. 

Figure 5. Univariate feature ranking of each predictor from the ISD weather database (described in
Section 2.2) using an F-test; orange bars indicate that the predictor score is actually Inf, but are scaled
to the largest non-Inf (blue) score.

Table 3. Wave and wind data sources used in this study with corresponding spatial and temporal
resolutions.

Feature Available Data Points

Hvar 98%
Komiza 98%
Lastovo 32%

Makarska 61%
Palagruza 16%

Ploce 61%
Resnik 99%
Sibenik 98%

Split 99%

In total, three different ANN models were created with a different number of input
features in the input layer. These three ANN models contained the first available 6, 8, and
10 ranking features (Table 4). The other features were discarded as unimportant for further
analysis.

A matrix of Pearson correlation coefficients between input features was created to
avoid including redundant information in the ANN (not shown here for brevity). Features
such as air temperature, dew point temperature, and barometric pressure were frequently
correlated with each other at different weather stations, but are still not included in the 10
highest ranked variables.

3.2. Training of ANN

The training procedure was performed as described in Section 2.3, using 80% of the
available data points from 1 November 2007 to 19 June 2008, while the remaining 20% was
used to test filling the missing data points of significant wave height. Figure 6 shows that
increasing the features from ANN6 to ANN10 only slightly increased the accuracy of ANN
on the training set (from ANN6 to ANN10; HH decreases by 7%). However, this is not a
measure of the overall ANN accuracy, but could indicate possible overfitting.
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Table 4. Input features used for training the ANNs with 6, 8, and 10 input features; features are
ordered by predictor importance (Figure 5); the mark ‘x’ designates the features that are included in
the respective ANN, and the mark ‘-‘ designates the features not included in the respective ANN.

ANN ANN6 ANN8 ANN10

wmag_Hvar x x x
wmag_Komiza x x x

wmag_Makarska low amount of data points
wdir_Resnik x x x

wmag_Resnik x x x
wmag_Sibenik x x x

wmag_Split x x x
wdir_Split - x x

wmag_Lastovo low amount of data points
wdir_Hvar - x x

wdir_Komiza - - x
wmag_Ploce low amount of data points
wdir_Sibenik - - x
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(b) ANN8, and (c) ANN10 (description of ANN shown in Table 3).

We repeated the random separation of the training set and the test set labeled as
‘missing’ (described in detail in Section 2.3) 10 times to observe the sensitivity of the
accuracy of the model ANN to the random separation. This was tested with the ANN10
model, and the results generally showed low sensitivity (Figure 7). The sensitivity to
random separation was higher for the training sets with larger standard deviations than
for the two test sets, except for the NBIAS, where the situation was reversed. The mean HH



Wind 2023, 3 161

and NRMSE indices were slightly higher in the test sets than in the training sets, while the
R index was slightly lower than in the training sets, both of which were to be expected.
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Although the model performance indices varied little for different random training
and test separations (Figure 7), Table 5 shows the hyperparameters of the trained ANNs
which performed best during the five-fold cross-validation training. Interestingly, all ANNs
trained best with similar hyperparameters (Table 4). Relu was chosen as the best activation
function, in combination with only one relatively broad hidden layer (113, 287, and 296
for ANN6, ANN8, and ANN10, respectively). The regularization term, the lambda value,
increased with the increase of features to a value of about double (from ANN6 to ANN10).

Table 5. Hyperparameters inside the ANN training procedure that showed the best accuracy.

ANN Activation Function Lambda Hidden Layers

ANN6 (Figure 6a) relu 0.00039 296
ANN8 (Figure 6b) relu 0.00055 297
ANN10 (Figure 6c) relu 0.00060 113

3.3. Filling Missing Wave Data Using an ANN

Filling the missing wave data points with the MEDSEA reanalysis wave model showed
relatively poor results compared to the filling capabilities of trained ANNs (Figure 8).
The error of filling wave data points with MEDSEA (HH = 0.44) was 37.5% higher than
that of ANN10 (HH = 0.32). The ANNs with a smaller number of features, ANN6 and
ANN8, showed slightly worse accuracy than ANN10 (HH index decrease of 6% and 3%,
respectively). However, they still showed significantly lower error than the fill procedure
using MEDSEA reanalysis wave data (29% and 33% for ANN6 and ANN8, respectively).
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Figure 8. Statistical error metrics for evaluating ANN accuracy for filling missing wave data points
on the test set for (a) ANN6, (b) ANN8, and (c) ANN10 (description of ANN shown in Table 3), and
MEDSEA reanalysis model accuracy on (d) MEDSEA.

The correct wave buoy data points were moderately underpredicted (14%) by the
MEDSEA reanalysis (Figure 8). MEDSEA predominantly underpredicted the smaller
observed significant wave heights Hs < 0.25 m, while it mostly overpredicted the higher
significant wave heights Hs > 0.5 m. On the other hand, every ANN showed minor
underprediction (−1% for ANN6, ANN8 and ANN10).

The empirical Cumulative Distribution Functions (CDFs) in Figure 9 (left) again
show better agreement between the wave data reconstructed by ANN10 and the correct
(measured) significant wave heights. The CDF for MEDSEA shows a higher probability
density for significant wave heights below 0.4 m, with the curves intersecting at 0.5 m and
showing a lower probability density thereafter. The high probability density of the MEDSEA
CDF is due to a strong underprediction of low significant wave heights (Hs < 0.4 m) also
observed in Figure 8d. On the other hand, the CDF of ANN10 shows greater agreement with
measurements for the entire range of significant wave heights. Both MEDSEA and ANN10
CDF fall short of the highest observed significant wave height, indicating underprediction
in the highest observed value. The Taylor diagram in Figure 9 (right) again shows that
the accuracy of the ANN models (ANN6, ANN8 and ANN10) are very similar, while
still showing superior accuracy as opposed to the state-of-the-art reanalysis wave model,
MEDSEA.
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3.4. Extension of Wave Data Using a Trained ANN

Figure 10 shows the accuracy of the ANNs and MEDSEA reanalysis wave data with
respect to the measured significant wave heights outside the training period from 8 August
2008 to 15 November 2008 (limits shown with blue vertical lines in Figure 2).
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A similar pattern of ANN accuracy is observed for wave extension (Figure 10) as for
filling in the missing wave data in Section 3.3. As the number of features in ANN increased,
the error decreases slightly (by 3% from ANN6 to ANN10). However, each ANN still shows
greater accuracy compared to the wave data from the MEDSEA reanalysis model. The
HH index increased by 22% when the MEDSEA reanalysis data were used instead of the
reconstructed wave data from ANN. The MEDSEA reanalysis still underestimated the wave
buoy measurements (NBIAS = −14%), while the ANNs showed minor underestimation or
no bias (NBIAS = −1% for ANN6 and no bias at all for ANN8 and ANN10).

Figure 11 (left) shows the empirical CDF for the measured significant wave heights in
the testing period for wave data extension, as described in Section 2.2. The ANN recon-
structed wave data again showed better agreement with the measured data, as opposed to
the MEDSEA. This was especially evident in the region of low observed significant wave
heights Hs < 0.4 m, where the MEDSEA probability density was substantially higher than
the measured one. Both MEDSEA and ANN10 CDF fell short of the highest observed
significant wave height, indicating underprediction of the peak significant wave heights.
The Taylor diagram in Figure 11 (right) again shows that the accuracy of the ANN models
(ANN6, ANN8 and ANN10) are very similar, as was the case when testing the accuracy to
fill missing wave data (Section 3.3), while still showing slightly better accuracy as opposed
to the state-of-the-art reanalysis wave model, MEDSEA.
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Figure 11. (left) Empirical CDF comparing measurements with ANN10 reconstructed wave data
and MEDSEA reanalysis wave data for the extension of wave data points; (right) Taylor diagram
comparing the accuracy of the models for wave data extension.

The time series excerpt shown in Figure 12 illustrates the ability of ANN to follow
the trend of measured significant wave heights. The agreement between ANN and the
measured wave heights was stronger compared to the MEDSEA reanalysis data, especially
when the wave heights showed a downward trend (e.g., early October 29 and 30). However,
the ANN showed poorer agreement in situations with local maxima of significant wave
heights, such as on November 1, when the ANN reconstructed wave heights tended to
underpredict the peak values.
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4. Discussion

In contrast to previous findings by Vieira, Cavalcante [34], who assumed that wind
data was not an essential parameter in the ANN training procedure, these results suggest
that wind in itself can provide reasonable accuracy to fill in missing wave data or an
extension of wave data outside the training period. It should be noted that Vieira and Cav-
alcante [34] also used wave reanalysis data as an input feature for ANN, which have greater
explanatory power compared to wind data and therefore overshadowed the explanatory
power of wind data. Moreover, the wind data used in [34] were obtained from a reanalysis
model and were not measured directly at weather stations, as in this study. Therefore, it
could be assumed that the reanalysis wind data did not have the same importance as the
measured wind data. On the other hand, Shamshirband, Mosavi [36] have shown that wind
data, even from the reanalysis models, can be sufficient for an effective machine learning
model, which is consistent with this study.

Mahjoobi and Adeli Mosabbeb [27] cautioned that ANN in wave prediction appli-
cations might overfit the training data, which could reduce the accuracy of ANN on the
test set, but this was not observed in this study. As the number of features increased,
accuracy increased on both the training (Figure 5) and test (Figures 6 and 8) sets. However,
this increase in accuracy was only slight; specifically, HH decreased by 6% from ANN6 to
ANN10 in the missing wave data test.

The accuracy of ANN for filling missing wave data (Section 3.3) and extending wave
data beyond the training period (Section 3.4) was similar (if ANN10 is used the HH was
the same; HH = 0.32 for both wave filling and wave extension, respectively). This indicates
that the same ANN could be used to further extend the measured wave data without
significantly decreasing accuracy. Nevertheless, this should be confirmed in future studies
with wave measurements at least several years away from the training period. However, as
the results show for both filling in missing wave data and expanding wave data, the ANN
methods tend to underpredict the higher observed significant wave heights (Hs > 0.7 m).
This could be due to a higher number of lower significant wave heights (Hs < 0.5 m)
In the measurements, and therefore in the training and testing sets. The ANN training
procedure therefore adjusts the ANN’s node weights and biases in order to minimize
the error for the majority of wave data, which in the case of Split, Croatia, are the low
significant wave heights. For occasional higher wave heights, the trained ANN does not
focus on reconstructing these rare cases, as opposed to the low significant wave heights that
make up the majority of the data points. In the future, the input data for the ANN could
be pre-filtered to exclude or limit the number of data points with low significant wave
heights, or strong weights could be introduced to the loss function of ANN to increase the
importance of errors for predicting higher significant wave heights.
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In agreement with the report of Korres, Ravdas [23], the MEDSEA model showed
relatively low accuracy when validating the reanalysis data with buoy measurements off
Split, a well-protected area. This accuracy comparison can be seen in Figures 6 and 8. This
degradation in reanalysis accuracy is likely due to the relatively large numerical cell size
of the reanalysis model. In these situations, local numerical wave models could be used
through the downscaling procedure for a detailed numerical description and an overall
increase in accuracy [17,19].

This study was limited to the use of the publicly available Integrated Surface
Database [38–40], which is itself riddled with missing data, as shown in Sections 2.2 and 3.1.
The cleaning procedure remedied this to some extent, but the authors assume that ANNs
trained on complete and more detailed weather data from the National Weather Service
would have even better accuracy. This should be confirmed in a future study. Even though
the quality of the wind data was not optimal, the trained ANN showed much better ac-
curacy compared to the MEDSEA reanalysis (Figures 6 and 8). As reported by Korres,
Ravdas [23], this relatively low accuracy of MEDSEA was probably due to the complex
topography and the limited resolution of the wave model. This is all because the eastern
Adriatic is a basin that is predominantly semi-enclosed by islands.

5. Conclusions

In this work, ANNs were constructed and trained to test their ability to fill in missing
wave data or extend the measured wave data. Different hyperparameter settings and input
features were varied to find a robust framework for ANN construction and training.

Univariate feature ranking was performed to select the most relevant input features
from weather data publicly available as part of NOAA’s Integrated Surface Database.
The analysis revealed that the most important input features were wind magnitude and
direction data collected from weather stations near the location of the wave buoy, while
data from more distant weather stations had little predictive power and were therefore
excluded from the set of input features. Weather data such as air temperature, dew point,
relative humidity, and air pressure also had low predictive power, and were therefore also
excluded from the feature set.

Based on the univariate feature ranking, ANNs were constructed from the first 6,
8, and 10 ranked features (which were exclusively wind velocity magnitude and wind
direction from nearby weather stations, see Table 4) to see if additional features increased
the accuracy of ANN. Increasing the number of features from 6 to 10 showed a slight
improvement, both in testing the filling of missing wave data and in expanding wave data
outside the original measurement period. Therefore, ANNs constructed with a smaller
number of input features are preferred to reduce model complexity. In addition, the
framework using Bayesian optimization was found to be robust, as the accuracy of ANN
on test data showed low sensitivity to the separation of training and test data, while the
hyperparameter settings were consistently similar. The hyperparameters identified were
consistently the relu activation function and a broad hidden layer (113 to 296 nodes in the
hidden layer for a decreasing number of input features from ANN10 to ANN6).

When testing the ANNs on the test data for filling missing wave data and extending
wave data beyond the original measurement period, the accuracy is similar (ANN10
showed a scatter of HH = 0.32 and HH = 0.32 and a correlation of R = 0.87 and R = 0.86
for filling missing wave data and extending wave data, respectively). Interestingly, the
ANNs showed higher accuracy than a state-of-the-art publicly available reanalysis wave
model for the Mediterranean Sea, MEDSEA (provided by Copernicus Marine Service).
The MEDSEA reanalysis data points showed a 22% increase in HH for expanding wave
data and a 33% increase in HH for filling wave data points. This benchmark against
MEDSEA demonstrated that the ANN’s accuracy was reliable. Overall, the paper results
demonstrated that a robust method for constructing ANNs based on publicly collected
wind strengths and directions can accurately fill in missing wave data and expand wave
data beyond the original training period.
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The inherent value of machine learning methods in this case should be noted, as they
are faster and do not require hard-to-obtain values such as bathymetry and white-capping
parameters, as is the case with numerical wave modeling.
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