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Abstract: Pitch systems form an essential part of today’s wind turbines; they are used for power
regulation and serve as part of a turbine’s safety system. Hydraulic pitch systems include hydraulic
accumulators, which comprise a crucial part of the safety system, as they are used to store energy
for emergency shutdowns. However, accumulators may be subject to gas leakage, which is the
primary failure mode. Gas leakage affects the performance of the accumulator and, in extreme cases,
compromises the safety function of the pitch system. This paper deals with the development and
experimental validation of an algorithm to detect gas leakage in piston-type accumulators. The
innovation of the algorithm is the ability to generate estimates of the remaining amount of gas while
solving the drift problem evidenced in previous research. Additionally, this method enables the
ability to isolate gas leakage to a single accumulator out of a bank of accumulators. The approach is
based on a State Augmented Extended Kalman Filter (SAEKF), which utilizes an extended thermal
model of the accumulator, as well as temperature measurements along the accumulator surface to
estimate the remaining gas in the accumulator. The method is experimentally validated and addresses
the drift problem in estimating the gas leakage evidenced from previous research. Additionally, the
method can identify and isolate gas leakage to a single accumulator from a bank of accumulators.

Keywords: fault detection and diagnosis; fluid power; accumulator

1. Introduction

Hydraulic piston accumulators are utilized in a wide range of applications; one
example is the pitch control system for large wind turbines, which is used to control the
pitch of the blades. In the pitch system, the piston accumulators are primarily used for the
safety system, where the hydraulic energy stored in the piston accumulators is used during
emergency shutdowns. The piston accumulators are also used for the supply system,
where they are used for increased efficiency, decreased pressure spikes, and to supplement
the pump in periods with high flow demands. Therefore, the accumulators’ function
makes them a crucial part of the system. According to Carroll et al. [1], accumulators are
responsible for 10.7% of the failures in the pitch control system in wind turbines, making it
the third-most-common failure. The main failure mode of a gas-charged piston accumulator
is the loss of pre-charge pressure, i.e., gas leakage, reducing the energy-storing ability of the
accumulator. Direct measurement of the accumulator piston position to detect gas leakage
is costly [2] and further introduces extra leakage paths. Therefore, to increase the overall
reliability and decrease the service costs, enhanced methods for detecting the reduced
pre-charge pressure of piston accumulators should be introduced. Different methods have
been addressed in the review by Asmussen et al. [3]. The following presents methods based
on that review with the addition of more recent research.

Elorza et al. considered a signal-based method for detecting several faults in a hy-
draulic pitch system [4]. Accumulator gas leakage was also considered, and a simulation
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study showed the ability to detect a 50% drop in pre-charge pressure. This is a significant
change in pre-charge pressure, which questions the ability of the method to detect the fault
before developing into a failure.

Nisters et al. presented an accumulator gas leakage detection using only a fluid
pressure sensor [5]. They showed that a significant pressure decay occurs when the piston
reaches the end stop, where fluid is completely expelled from the accumulator. Therefore,
the method relies on emptying the accumulator to access the pre-charge pressure of the
gas. Similar methods for pitch systems in wind turbines are presented in the patents by
Nielsen et al. [6] and Minami et al. [7].

Liniger et al. [8] described a method for detecting the changes in the pre-charge
pressure of an accumulator used in wind turbines. The method is based on wavelet analysis
and uses a measurement of the fluid pressure close to the accumulator. The RMS value
of the detail coefficient, corresponding to a frequency range of 0.39–0.78 Hz, in which a
known excitation frequency for wind turbines is located, is used to quantify changes in
the pre-charge pressure. Through simulations, it was shown that the method was able to
distinguish pre-charge pressures of 180 bar, 100 bar, and 50 bar at an ambient temperature
range of 22 to 60 ◦C. The method was further validated experimentally, to distinguish
100 bar, 75 bar, and 50 bar pre-charge pressure levels. The detectable levels suffice for
evaluating if the accumulators need gas replenishment or not.

In [9], Liniger et al. described a method for detecting gas leakage using an Extended-
Kalman-Filter (EKF)-based algorithm. The method utilized fluid pressure measurements
and ambient temperature measurements to estimate the accumulator’s pre-charge pressure.
Experiments showed that the pre-charge pressure could be estimated when using mea-
surements of the input flow of the accumulator. However, the estimate of the pre-charge
pressure was drifting when an estimated input flow was used. Flow measurements are
generally not present in hydraulic pitch systems; thus, the method may not be applied
to monitor the pre-charge pressure continuously. The pre-charge pressure was estimated
during the charging of the accumulator with an estimation error within ±2 bar.

Helwig et al. [10] detected accumulator gas leakage, among other faults, by multivari-
ate statistics based on multiple signals to extract features related to faults. The method was
tested experimentally when subjected to both fixed and random loading cycles and could
distinguish between 90 bar, 100 bar, 110 bar, and 115 bar pre-charge pressures for fixed
working cycles. However, the method showed decreased performance when detecting the
change in pre-charge pressure for random load cycles. Due to the random wind speed
affecting the blades, accumulators in wind turbines are exposed to random loading cycles.
Several other studies have considered the development of fault-detection algorithms using
machine learning on the same set of experimental data; yet, the robustness to random loads
when operating remains a challenge [11–13].

Haas and Pichler used a Support Vector Machine (SVM), trained by a simulation
model, to detect and isolate pump leakage and accumulator gas leakage faults in a simple
loading circuit [14]. The method was experimentally validated in a pure loading cycle.
However, the method’s performance in the case of varying load flow is not clear.

Jakobsson et al. investigated fault detection in hydraulic rock-drilling equipment [15].
They showed that accumulator gas leakage could be detected by estimating the pressure
gradient in a known load cycle. However, the load cycle is unknown for a pitch system,
and the method is not directly applicable.

Sorensen et al. [16] described a method using a bank of EKFs to detect changes in the
pre-charge pressure of a piston accumulator. The residuals of four EKFs with different
assumed pre-charge pressures were analyzed using a multi-model adaptive estimation
scheme to evaluate the most-likely pre-charge level. Through experiments, the method
was shown to be capable of isolating 140 bar, 110 bar, 80 bar, and 50 bar from each other.
However, the method relied on a flow measurement in the accumulator, which is generally
not present in standard pitch systems.
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A common challenge regarding several of the methods above is that they use mea-
surements typically unavailable in hydraulic pitch control systems, e.g., flow or vibration
measurements. In addition, using estimates instead of measurements, the methods experi-
ence problems with drifting. Another challenge is that the detection level is coarse, in the
range of 25–30 bar [4,8,9,16]. More detailed detection levels further the ability to determine
the remaining useful life, thus enhancing the planning of maintenance tasks.

Therefore, one of the ideas in this paper is the possibility of estimating the pre-charge
directly by using the gas equation of state and the piston position. However, as described
above, using a position sensor is not desirable as it is costly and not readily available
in hydraulic pitch systems. The work presented in this paper was thus motivated by
utilizing the relationship between the accumulator surface temperature and the piston
position under the excitation of the accumulator pressure, as given experimentally in
Figure 1. Figure 1 shows the mean surface temperature of a 5 min pressure charging
sequence for three different pre-charge pressures. The fluid pressure is initially stepped
from atmospheric to 180 bar and subsequently kept constant. The vertical black bar
indicates the measured final piston position. The surface temperatures are clearly elevated
by the gas temperature increase due to the gas compression. The experiment suggests
that the surface temperature can be used as an indicator of the piston position. Yet, it
should be noticed that accumulators are in general operated under many different load
scenarios where the relation between piston position and surface temperature is not as
clear as given in this illustrative experiment; hence, the detection algorithm developed in
this paper utilizes more information than just surface temperatures.
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Figure 1. Mean surface temperatures for different pre-charge pressures. The fluid inlet is located on
the left-hand side of the plot (also seen in Figure 2), which also denotes the initial piston position.
The vertical black bar shows the final piston position. The surface temperature values are interpolated
from eight evenly distributed sensors along the length of the accumulator.

In previous model-based approaches [9,16,17], the accumulator is treated as a lumped
mass, and the heat transfer to the surroundings is described with a thermal time con-
stant. This approximation was described by Rotthauser [18]. Hansen and Rasmussen [17]
suggested that the thermal model may be extended for a more accurate model. Hence, to im-
prove the methods that have been discussed, it is suggested to extend the thermal model
of the accumulator, inspired by the models presented by Pfeffer [19], where three thermal
models for a carbon-fiber-reinforced plastic housing were developed. Even though this



Wind 2022, 2 787

paper deals with steel accumulators, the approach is still valid for other accumulator types.
By extending the thermal model to include the temperature of surface elements and end
caps, it is expected that the pre-charge pressure estimation can be improved. Furthermore,
the potential drifting seen [9] when using estimated flows instead of measurements can be
removed as the presented method does not rely on flow measurements or estimated flow.

Gas inlet

Oil inlet

Piston

End capAccumulator 
wall

Figure 2. Schematic of the accumulator showing internal parts.

In this paper, a State Augmented Extended Kalman Filter (SAEKF) with an extended
thermal model is proposed to estimate the pre-charge pressure of a hydraulic piston
accumulator. Compared to the previously published models, the thermal model of the
SAEKF is extended, where the temperature of the accumulator surface is included to
increase the accuracy of the thermal model. The presented method uses temperature
measurements along the accumulator surface, the ambient temperature, the oil temperature,
and the oil pressure in the detection algorithm. By using surface temperatures, the proposed
method does not rely on the estimation of the input fluid flow, which was seen to cause
estimation drift issues. Accumulators are often arranged in a bank of multiple accumulators.
Since the input oil flow is not needed for detection, the proposed method can isolate faults
to a single accumulator out of a bank of accumulators, rendering the maintenance procedure
more effective.

2. Accumulator Model

The accumulator model is divided into three parts; a mechanical model, a gas model,
and a thermal model. All three models will be described in the following, starting with the
mechanical model. The gas leakage is not explicitly modeled, as it either occurs in discrete
events caused by seal blow-by or slowly develops over weeks or even months. Hence,
it is suitable to consider the amount of gas constant during the time frame of detection
considered in this paper. The model parameter values are collected in Table 1.

2.1. Mechanical Model

The piston movement of the accumulator is modeled by Newton’s second law of
motion as:

ẍp mp =
(

po − pg
)

Ap − Ff ric (1)

where xp is the piston position, po is the oil pressure, pg is the gas pressure, Ap is the piston
area, and mp is the mass of the piston. A simple friction model is used and Ff ric is given as:

Ff ric = B f ric ẋp + C f ric sign(ẋp) (2)

where B f ric is the viscous friction constant and C f ric is the Coulomb friction constant.

2.2. Gas Model

The gas inside the accumulator is nitrogen, and it is modeled by the Benedict–Webb–
Rubin (BWR) equation of state [21], which is given by:

pg =
RTg

v
+

B0RTg − A0 − C0
T2

g

v2 +
bRTg − a

v3 +
aα

v6 +
c
(

1 + γ
v2

)
e−

γ

v2

v3T2
g

(3)
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where Tg is the gas temperature, v is the specific molar volume, and (A0, B0, C0, a, b, c, α, γ, R)
are the gas constants for nitrogen [21]. The specific molar volume is determined as a func-
tion of the piston positions such that:

Table 1. Parameter values used in the model. The values for τ, αa, αo, and αg are not stated, but left
as tuning parameters and evaluated during model validation [20,21].

Notation Description Value Unit

mp Piston mass 3.97 (kg)

B Viscous friction coefficient 5 × 103
(

N·s
m

)
C Coulomb friction coefficient 2× 103 (N)

R Gas constant 8.31 (N)

A0 BWR constant 0.11 ()

B0 BWR constant 4.07× 10−5 ()

C0 BWR constant 816.58 ()

a BWR constant 2.54× 10−6 ()

b BWR constant 2.33× 10−9 ()

c BWR constant 7.38× 10−2 ()

α BWR constant 1.27× 10−13 ()

γ BWR constant 5.3× 10−9 ()

cN2 Specific heat capacity of nitrogen 1040
(

J
kg·K

)
MN2 Molar mass of nitrogen 2.8× 10−2

(
kg

mol

)
Va,0 Non-displaceable accumulator volume 1.4× 10−3 (m3)

me End-cap mass 28.45 (kg)

csteel Specific heat capacity of steel 490
(

J
kg·K

)
αa Heat transfer coefficient (air to steel) -

(
W

m2·K

)
αo Heat transfer coefficient (oil to steel) -

(
W

m2·K

)
αg Heat transfer coefficient (gas to steel) -

(
W

m2·K

)
Aeg Area between end-cap and gas 2.54× 10−2 (m2)

Aea Area between end-cap and air 9.18× 10−2 (m2)

Apg Area between piston and gas 2.71× 10−2 (m2)

Ap Piston area 2.54× 10−2 (m2)

ris Inner radius of accumulator 9× 10−2 (m)

ros Outer radius of accumulator 11× 10−2 (m)

n Number of wall elements 8 (-)

dx Length of wall element 0.123 (m)

lp Piston length 0.11 (m)

la Accumulator length 0.983 (m)

ρ Density of steel 7800
(

kg
m3

)
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v =
Ap
(
la − xp

)
+ Va,0

nN2
(4)

where la is the maximum stroke of the piston, Va,0 is the non-displaceable volume, and nN2
is the amount of nitrogen contained in the accumulator in moles.

The temperature of the gas is found from the first law of thermodynamics, where the
gas is considered a closed system with a uniform temperature distribution. Following the
deduction in [22], the change in temperature of the gas can be derived as:

Ṫg = − Q̇s

cN2 nN2 MN2
−

v̇Tg

cN2 MN2

(
∂pg

∂Tg

)
(5)

where Q̇s is the heat transfer from the gas to the interfacing thermal elements, as seen
in Equation (24), cN2 is the specific heat capacity of nitrogen, mgas is the mass of the gas,
and MN2 is the molar mass of nitrogen. By assuming a constant amount of nitrogen,
the time derivative of v is given as:

v̇ = −
Ap ẋp

nN2
(6)

2.3. Thermal Model

For the thermal model, the accumulator is divided into three parts: the piston, the end
cap in the end with the gas inlet, and the accumulator wall. The different parts are shown
in Figure 2. The thermal model is based on Model 2 in Pfeffer et al. [19].

The temperature of the end cap towards the oil inlet is assumed to be equal to the oil
temperature as it is in contact with the oil during operation. In the following, the thermal
models of the different parts are elaborated, starting with the end cap at the gas inlet.

2.3.1. End Cap

The gas inlet end cap is modeled as a lumped thermal body with a uniform tempera-
ture and solving with respect to the temperature gradient [20]:

Ṫe =
Q̇ge + Q̇ae

mecsteel
(7)

where Te is the temperature of the end cap, me is the mass of the end cap, csteel is the specific
heat capacity of steel, and Q̇ge and Q̇ae are the heat flows from the gas and surroundings to
the end cap, respectively. Q̇ge and Q̇ae are described as convective heat transfers and are
found in Equations (8) and (9) [20].

Q̇ge = αg Aeg
(
Tg − Te

)
(8)

Q̇ae = αa Aea(Ta − Te) (9)

where Ta is the ambient temperature, αa and αg are convective heat transfer coefficients,
and Aea and Aeg are the surface areas of the end towards the surroundings and the
gas, respectively.

2.3.2. Accumulator Piston

The piston is modeled in the same way as the end cap, thus yielding:

Ṫp =
Q̇gp + Q̇op

mpcsteel
(10)

Q̇gp = αg Apg
(
Tg − Tp

)
(11)

Q̇op = αo Ap
(
To − Tp

)
(12)
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where Tp is the temperature of the accumulator piston, αg and αo are convective heat
transfer coefficients, and Apg and Ap are the surface areas of the piston towards the gas
and the oil, respectively.

2.3.3. Accumulator Wall

The accumulator is divided into eight wall elements to model the temperature distri-
bution along the wall, as shown in Figure 3.

Gas inletOil inlet dx

1 2 3 4 5 6 7 8

la
xp

Figure 3. Accumulator wall schematic divided into eight elements including the piston position notation.

The temperature distribution is thus considered uniform for each wall element. Eight
elements are chosen as a compromise between model complexity and model accuracy.

The heat flows between the accumulator elements are described as conductive heat
flows. The energy balance for each wall element may thus be divided into a convective
part and a conductive part such that:

Ṫ[i]
w = Ṫ[i]

convective + Ṫ[i]
conductive (13)

where i denotes the wall element number. An illustration of a wall element is shown in
Figure 4 depicting the heat flows Q̇gw, Q̇ow, and Q̇aw. The surface contact areas for gas–wall
Agw, oil–wall Aow, and ambient–wall Aaw interaction are also shown in Figure 4.

Agw

Aow

Aaw

Qaw

Qgw, QowQgw, Qow

Figure 4. Wall element with surface areas and heat flow denotation.

The convective part for the i’th element can be described as:

Ṫ[i]
convective =

Q̇[i]
aw + Q̇[i]

ow + Q̇[i]
gw

ρ csteel
(
r2

os − r2
is
)
πdx

(14)

where ros and ris are the outer and inner radius of the accumulator, respectively, and dx is
the length of the wall element. The heat flows, shown in Figure 4, are then calculated as:

Q̇[i]
ow = αo Aow

(
To − T[i]

w

)
ξ
[i]
o (15)

Q̇[i]
gw = αg Agw

(
Tg − T[i]

w

)
ξ
[i]
g (16)

Q̇[i]
aw = αa Aaw

(
Ta − T[i]

w

)
(17)
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where ξo and ξg describe the ratio of which the wall element is in contact with oil or gas,
respectively. They are given in Equations (18) and (19). A similar approach was used in the
work by Pfeffer et al. [19]. The contact areas are given as Aow = Agw = dx 2π ris.

ξ
[i]
o =


1 for xp > i dx

xp − (i− 1)dx

dx
for i dx ≤ xp ≤ i dx

0 for xp < idx

(18)

ξ
[i]
g =


0 for xp + lp > i dx

1−
xp − lp + idx

dx
for (i− 1)dx ≤ xp + lp ≤ i dx

1 for xp + lp < idx

(19)

where lp is the length of the accumulator piston. Note that, in the above equations, the heat
transfer between the piston and the accumulator surface is neglected, as it is significantly
smaller than the other heat transfers in the model.

The conductive heat flows between the wall elements using only the axial component
are given as [20]:

Ṫconductive =
1

ρ csteel

∂

∂x

(
λx

∂Tw

∂x

)
(20)

The term ∂
∂x

(
λx

∂Tw
∂x

)
is estimated using a second-order central difference equation

such that:

Ṫ[i]
conductive =

λx

ρcsteel

T[i−1]
w − 2T[i]

w + T[i+1]
w

d2
x

(21)

The end conditions are set to the temperature of the accumulator end caps such that:

Ṫ[1]
conductive =

λx

ρcsteel

To − 2T[1]
w + T[2]

w

d2
x

(22)

and

Ṫ[8]
conductive =

λx

ρcsteel

T[7]
w − 2T[8]

w + Te

d2
x

(23)

The total heat flow from the gas to the accumulator is hence defined as:

Q̇s =

(
8

∑
i=1

Q̇[i]
gw

)
+ Q̇gp + Q̇ge (24)

3. Model Validation

The test bench consisted of a 25 L accumulator with valves controlling the flow to the
accumulator. The size of the accumulator is similar to those used in hydraulic pitch control
systems for multi-MW wind turbines. Figure 5 shows the test bench. The test sequence
used to generate the experimental data was chosen to simulate the typical operation for an
accumulator placed in the supply unit of a hydraulic pitch control system, which was also
used in previous works [8,9]. Here, the pressure level is controlled between two thresholds
chosen as 165 bar and 190 bar. A constant flow supply is turned on when the pressure is
below the lower threshold. The supply is turned off when the pressure rises to the upper
threshold pressure. The fluid flow from the accumulator is controlled in a closed loop to
simulate the flow demand from a pitch system, where the flow varies due to the volatility
of the pitch activity.

For the validation of the model, thermocouples were attached to the accumulator,
as shown in Figure 6. For validation purposes, the piston position was also measured.
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Fluid 
control 
circuit

Accumulator

Thermocouple 
on the 
accumulator 
surface

Figure 5. Test bench used to generate experimental data.

Gas inletOil inlet dx

1 2 3 4 5 6 7 8

Thermocouples on top of 
the accumulator

Thermocouples on bottom 
of the accumulator

Figure 6. Placement of the thermocouples attached to the accumulator surface.

As shown in Equation (25), the oil pressure, ambient temperature, and oil temperature
are given as the input. The model states used for validating the model are the accumu-
lator piston position and temperatures, which are compared to the measured values; cf.
Equation (25). The ambient temperature is measured in the vicinity of the accumulator.
The distance to the accumulator should be chosen such that the measurement is unaf-
fected by radiation. In practice, a distance above a couple of centimeters suffices. The oil
temperature is measured at the oil inlet of the accumulator.

Figure 7 shows the simulated and measured piston position and the measured oil
pressure. For the simulation, the heat transfer coefficients of steel to oil, αo, air, αa, and gas,
αg, are determined as:

αo = 100, αa = 20, αg = 25

It is noted that the heat transfer coefficients were determined under natural convection
conditions. Especially, αa can change in orders of magnitude if the accumulator exhibits
a forced convection [23]. The robustness of the fault detection method developed in this
paper is evaluated in Section 5.

As seen, the piston position residual is within −1 cm and −3 cm during the entire test
sequence. In Figure 8, the temperature of two different surface elements can be seen for the
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same test. The upper sub-figure in Figure 8 shows the cylinder position and the definitions
of the wall element (indicated by the horizontal grid lines). For this test, the piston position
is within Wall Element 2 for most of the period. Wall Element 1 is in contact with the oil
during the test. Wall Element 8, shown in the lower sub-figure, is only in contact with the
gas. For Wall Element 8, the experimental temperature is shown for both the thermocouples
attached to the top and bottom.

Figure 7. Simulated and experimental piston position for a test sequence emulating the operation of
a supply accumulator. The position residual is defined as the difference between the simulated and
experimental values.

In the lower sub-figure of Figure 8, it is seen that the temperatures at the bottom and
the top of the accumulator are not the same. Instead, a temperature difference of up to
2 degrees is seen, indicating that the gas temperature is not uniform when the accumulator
is fixed horizontally. The temperature difference may be ascribed to non-uniform gas
temperature and different convention conditions over the circumference of the accumulator.
As the model assumes a uniform temperature, the simulated temperature falls between
the temperatures measured at the accumulator’s bottom and top, thus resembling an
intermediate temperature.

The results show that the model is partly deviating from the measurements, indicating
that some uncertainties influence the model’s accuracy. As an example, the assumption of
a uniform gas temperature can be seen to cause a steady-state error between the measured
and simulated surface temperatures. Therefore, these deviations are expected to cause
estimation errors, and the robustness to such model errors is investigated in Section 5. When
applied in a wind turbine, the accumulators are rotating in the hub. It is suspected that the
gas in a rotating accumulator is mixed to a larger extent than in the fixed configuration, thus
leading to a lower temperature gradient in the radial direction compared to the experiments
shown in this paper.
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Figure 8. Simulated and experimental wall temperature of two wall elements. The upper sub-figure
shows the piston position during the test. The dashed lines indicate the wall elements.

4. Estimator Design

For estimating changes in the pre-charge pressure of the accumulator, a State Aug-
mented Extended Kalman Filter (SAEKF) was designed based on the model described
above. The filter is used to obtain a direct estimate of the pre-charge pressure. In this
section, the implementation of the SAEKF is presented based on the work by [24]. For the
SAEKF, the model was augmented with an additional state—nN2—which represents the
number of mol of nitrogen in the accumulator and is a more direct measure of the amount
of remaining gas. Furthermore, the number of mol of nitrogen can be used together with
the gas temperatures to determine the pre-charge pressure, another standard measure of
remaining accumulator gas. The state and input vectors of the SAEKF are, thus:

x =
[

xp ẋp T[1]
w · · · T[8]

w Te Tp Tg pg nN2

]T

u =
[
po To Ta

] (25)

The state transition model and observation model can be described as a stochastic
process, as shown in Equation (26).

x[k] = f(x[k− 1], u[k]) + w[k] (26)

y[k] = h(x[k]) + v[k] (27)

where w ∈ Rm is the process noise and v ∈ Rn the measurement noise. Both w and v are
assumed to be zero mean multivariate Gaussian noises with covariance Q ∈ Rm×m and
R ∈ Rn×n, respectively. [k] and [k− 1] represent the current and previous time step.
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The non-linear state transition function f(x, u) is shown below:

xp[k] = xp[k− 1] + Ts ẋp (28)

ẋp[k] = ẋp[k− 1] + Ts

(
po − pg

)
Ap − Ff ric

mp
(29)

T[i]
w [k] = T[i]

w [k− 1] +
Ts

ρcsteel

 Q̇[i]
aw + Q̇[i]

ow + Q̇[i]
gw(

r2
os − r2

is
)
πdx

+ λx
To − 2T[i]

w + T[i+1]
w

d2
x

 (30)

Te[k] = Te[k− 1] + Ts
Q̇ge + Q̇ae

mecsteel
(31)

Tp[k] = Tp[k− 1] + Ts
Q̇gp + Q̇op

mpcsteel
(32)

Tg[k] = Tg[k− 1] + Ts
Q̇s

cN2 nN2 MN2
+

v̇Tg

cN2 MN2

(
∂pg

∂Tg

)
(33)

pg[k] =
RTg

v
+

B0RTg − A0 − C0
T2

g

v2 +
bRTg − a

v3 +
aα

v6 +
c
(

1 + γ
v2

)
e−

γ

v2

v3T2
g

(34)

nN2[k] = nN2[k− 1] (35)

where T[i]
w [k] is calculated for i = 1 : 8 with the last element being T[9]

w = Te. Recall
that v and v̇ are both a function of piston position, xp, and molar value, nN2, as given in
Equations (4) and (6).

The output function h(x[k]) is shown below:

h(x[k]) =
[
09×2 I9 09×4

]
x[k] (36)

The filter first calculates a prior state estimate, x[k]−, by the discrete model shown in
Equation (26):

x̂[k]− = f(x[k− 1], u[k]) (37)

The prior state error covariance matrix, P[k]−, and the Kalman gain, K[k], is then
calculated as shown in Equations (38) and (39).

P−[k] = A[k]P+[k]A[k]T + Q (38)

K[k] = P[k]−H[k]T
(

H[k]P−[k]H[k]T + R
)−1

(39)

where A ∈ Rm×m and H ∈ Rn×m are Jacobian matrices defined as:

A[k] =
∂f
∂x

∣∣∣∣∣
x̂[k−1]+ ,u[k]

H[k] =
∂h
∂x

∣∣∣∣∣
x̂[k]−

The Kalman gain is then used to calculate the posterior state estimate, x̂[k]+, and state
error covariance matrix, P[k]+, as shown in Equations (40) and (41):

x̂[k]+ = x̂[k]− + K[k](z[k]− h(x̂[k]−)) (40)

P[k]+ = (I−K[k]H[k])P[k]− (41)

where z[k] is the measurement of sample k. The measurements are the wall and end cap
temperature measured on top of the accumulator, as shown in Figure 6. The choice of the
covariance matrices Q and R is important for the performance of the filter, as they have
an influence on the dynamic performance. For this paper, Q and R were chosen as the
diagonal matrices:
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Q = diag
(
0.5 0.5 10 10 5 . . . 5 5000

)
(42)

R = diag
(
0.5 . . . 0.5

)
(43)

This completes the SAEKF description. In the following section, both the simulation
and experimental results are presented, showing the filter’s performance.

5. Results

The pre-charge charge estimation was conducted for five levels of pre-charge pressure
ranging from 145 to 95 bar. To evaluate the estimator in different conditions, the accumula-
tor was run in two different load sequences: the one where the fluid is discharged over a
fixed orifice to the tank is denoted as low load, and the one where the discharge oil flow
follows a sequence similar to a load cycle in a wind turbine is denoted as high load. The
low- and high-load scenarios do not have an explicit effect on the mathematical model due
to the assumption of a uniform gas temperature; yet, for the physical system, the gas is
mixed to a larger extent when the piston moves faster, thereby affecting the conduction
conditions between the gas and accumulator. Selecting high- and low-load conditions,
therefore, allows for testing robustness due to these non-modeled effects. The test bench
was located at an ambient temperature of 21 ◦C, and the fluid temperature was controlled
in the reservoir at 45 ◦C.

The duration of the load sequences was chosen to be 2000 s, which is long enough for
capturing the main thermal dynamics. The input to the estimator SAEKF u = [pa, To, Ta]

T

was given from experimental data. The temperature of the wall and accumulator were

used as measurements, z =
[

T[1]
w , . . . , T[8]

w , Te

]T
, as shown in Equation (25).

The state vector was initialized as the first entrance of z for the measured states.
The piston position and velocity were initialized as zero. The piston and gas temperature,
Tp and Tg, were initialized as the mean of all the wall elements’ temperatures. The gas
pressure, pg, was initialized as the measured pre-charge pressure, and the molar value,
nN2, was calculated from the measured pre-charge pressure from Equation (3) when the
gas temperature has settled to the ambient temperature. The pre-charge pressure was
read using a manometer. The low-load sequence was used for the experimental result.
The estimated and measured piston positions are shown together with the estimated and
measured molar values in Figure 9.

As seen, the estimated piston position and molar value converged after a transient
period of 600 s to a value just below the target. Comparing the target to the average of the
estimated molar value from 1800–2000 s yielded a steady-state error of −3%. The results of
the high-load test sequence are shown in Figure 10.

The estimation at the high-load scenario showed a similar transient behavior as for
the low-load sequence. The discrepancy between the estimated and target molar value was
larger than for the low-load sequence, valued at −8%. In general, for all the tested pre-
charge levels and load sequences, the estimated values converged after a similar transient
period, as shown in Figures 9 and 10. The presented estimation technique, therefore, clearly
solves the drifting problem presented in the literature. The steady-state results of the
experiments are shown in Figure 11. The first axis shows the measured pre-charge pressure
p0,meas, and the second axis shows the estimated value p0,est. The error bars show the first
standard deviation of the values used for determining the average estimated pre-charge
pressure. The standard deviation was small in all experimental results.

The estimation was seen to fall above and below the target value with a maximum error
of 10% in the low-load 95 bar experiment. The error was ascribed to the model uncertainties
caused by the heat transfer coefficients and uniform gas assumption, where the model
yielded a steady-state error, as indicated in Figure 8. Despite the error, the estimated
values generally followed the tendency of the measured pre-charge pressure. While the
estimation from the low-load sequence at 135 bar pre-charge cannot be isolated from the
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high-load sequence at 145 bar, all other levels can be isolated irrespective of the load
sequence. Generally, the high-load sequence reduced the estimated value.
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Figure 9. Estimated and experimentally measured piston position and molar value of gas for the
low-load test sequence. The accumulator is pre-charged to 125 bar/134 mol.
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Figure 10. Estimated and experimentally measured piston position and estimated molar value of gas
for the high-load test sequence. The accumulator is pre-charged to 125 bar/134 mol.
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Figure 11. Estimated pre-charge pressures at selected levels for the low-load and high-load
test sequences.

To further show that the estimation converged, a test where the estimated molar
value was initialized at different values was conducted. The estimated molar values were
initialized at ±20% of the measured value. The results for the low-load sequence and a
pre-charge pressure of 125 bar are shown in Figure 12.
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Figure 12. Estimated and experimental molar value for the low-load test sequence at different initial
conditions. The accumulator is pre-charged to 125 bar/134 mol.

As seen, the estimation converged towards the same value despite the uncertainty of
the actual pre-charge level of the accumulator.

The robustness of the method to changing convention conditions was tested by forcing
air axially along the accumulator using a fan. The wind speed was measured as 5 m/s,
which is more than what can be expected in the hub of a wind turbine. The results are
shown in Figure 13.
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Figure 13. Estimated and experimental molar value for the low-load test sequence under natural and
forced convection conditions. The accumulator is pre-charged to 125 bar/134 mol.

The transient period was similar for the two conditions, while the converged value
was slightly higher for forced convection. The difference in the estimated value is limited
to a few percent, and thus, the method is robust to changing convection conditions. It
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is noted that the surface temperatures were reduced below 1 K between the forced and
natural convection conditions.

Conclusively, the estimated values show a difference between the tests with different
pre-charge pressures. Even though the estimated pre-charge pressure shows an offset,
the estimate may still be compared to an estimated value of a “fault-free” accumulator, and
in that way, it can detect a potential change in pre-charge pressure. Here, it should also be
considered that a high load, i.e., high flow in and out of the accumulator, influences the
estimate, however to a significantly lower extent.

6. Conclusions

This paper investigated gas leakage detection by the estimation of the pre-charge
pressure of a hydraulic piston accumulator using a State Augmented Extended Kalman
Filter, which used temperature measurements on the accumulator surface as the inputs.
Contrary to previous methods, this approach enabled the ability to isolate gas leakage
to a single accumulator out of a bank of accumulators. The SAEKF was based on a
model of the accumulator, which estimates the number of moles of nitrogen gas in the
accumulator, which together with the gas temperature, was used to determine the pre-
charge pressure. The SAEKF was tested on an experimental setup using low and high
accumulator flow, i.e., varying load, and for five different pre-charge pressures. Based
on the experiments, it was found that the estimated pre-charge pressure drift, which has
been reported in previous works, was solved. Furthermore, it was found that, for the
considered experiments, the estimation was associated with an offset up to 10%, which
partly was attributed to the uncertainties with the used heat transfer coefficients and
model assumption of uniform gas temperatures. Despite the offsets in the estimated pre-
charge pressure, the SAEKF was shown to settle to constant values for a given pre-charge
pressure. The method can, therefore, be used to detect changes in the pre-charge pressure
by comparing different measurements over time to detect any change in the estimated
pre-charge pressure in spite of this offset.
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